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Abstract

Computer vision algorithms are composed of differ-
ent sub-algorithms often applied in sequence. Deter-
mination of the performance of a total computer vi-
sion algorithm is possible if the performance of each of
the sub-algorithm constituents is given. The problem,
however, is that for most published algorithms, there is
no performance characterization which has been estab-
lished in the research literature. This is an awful state
of affairs for the engineers whose job it is to design
and build image analysis or machine vision systems.

For these engineers, the issue is how to quickly de-
sign machine vision systems which work efficiently and
which meet requirements. To do this requires an en-
gineering basis which describes precisely what is the
task to be done, how this task can be done, what is the
criterion function, and what is the performance of the
algorithm under various kinds of random degradations
of the input data.

In this paper, we discuss the meaning of perfor-
mance characterization in general, and then discuss
the protocol details under which an algorithm’s per-
formance can be characterized.

1 Introduction

Our question is what methodology should re-
searchers be using to facilitate computer vision engi-
neers to quickly design machine vision systems which
work efficiently and which meet requirements. Quick
efficient designs requires an engineering basis which
describes precisely what is the task to be done, how
this task can be done, what is the random degrada-
tion the input data undergoes, and what is the result-
ing output random degradation characteristics under
different algorithm tuning parameters. Once this is
known and a criterion function is specified, it should
be possible to compute the performance of the algo-
rithm with respect to the criterion function under var-
ious kinds of random degradations of the input data
and under different values of algorithm tuning param-
eters. Such an analysis can be thought of as a sys-
tem’s engineering open loop analysis. Analyzing the
more complex adaptive algorithms requires being able
to do a closed loop engineering analysis. But to per-
form a closed loop engineering analysis requires being
able to first do an open loop engineering analysis. In
this paper, we concentrate on open loop analyses.

Our perspective is as follows: Computer vision al-
gorithms have multiple steps. Each step typically has

some tuning parameters. The input data to each step
can be considered to be randomly perturbed. The
random perturbation on the output data produced by
each step is a function of the input random perturba-
tion and the tuning parameters. Associated with the
purpose of the vision algorithm is a criterion function.
The tuning parameters must be chosen to optimize the
criterion function for the given kinds of input random
perturbations.

To initiate our analysis, we will first expand on the
meaning of performance characterization in general,
and then discuss the general theoretical and/or ex-
perimental protocol under which an algorithm perfor-
mance can be characterized.

2 Performance Characterization

What does performance characterization mean for
an algorithm which might be used in a machine vision
system? The algorithm is designed to accomplish a
specific task. If the input data is perfect and has no
noise and no random variation, the output produced
by the algorithm ought also to be perfect. Otherwise,
there is something wrong with the algorithm.

So measuring how well an algorithm does on perfect
input data is not interesting. Performance characteri-
zation has to do with establishing the correspondence
of the random variations and imperfections which the
algorithm produces on the output data caused by the
random variations and the imperfections on the input
data. This means that to do performance characteri-
zation, we must first specify a model for the ideal input
world in which only perfect input data exist. Then we
must give a random perturbation model which spec-
ifies how the imperfect perturbed input data arises
from the perfect input data. There may be multi-
ple random perturbation models: one for the objects
of each class and one for the clutter. Similarly, for
the output, we need to specify a model for the ideal
output world in which only perfect output data ex-
ist. Then we must give a random perturbation model
which specifies how the imperfect perturbed output
data arises from the perfect output data.

Notice that because the input and output perfect
worlds may be different we must have different mod-
els. It is typically the case that an algorithm changes
the data unit. For example, an edge-linking process
changes the data from the unit of pixel to the unit
of a group of pixels. An arc segmentation/extraction
process applied to the groups of pixels produced by



an edge linking process produces fitted curve seg-
ments. This data unit change means that the rep-
resentation used for the random variation of the out-
put data set may have to be entirely different than
the representation used for the random variation of
the input data set. In our edge-linking/arc extraction
example, the input data might be described by the
false alarm/misdetection characteristics produced by
the preceding edge operation, as well as the standard
deviation in the position and orientation of the cor-
rectly detected edge pixels. The random variation in
the output data from the extraction process, on the
other hand, must be described in terms of fitting er-
rors (random variation in the fitted coefficients) and
segmentation errors.

To make this more concrete, suppose, for the sake
of argument that a surface defect is a small dark area
in a smooth lighter background. This is the idealiza-
tion. Next we must state the random perturbation
model. The random perturbation model describes the
density, size, and brightness of the defects. It can do
this with a spatial Poisson process. For each size and
brightness combination of defect, a number is chosen
from an associated Poisson distribution. This number
is the number of defects of that kind per unit area with
which the surface will be infected. Then the random
population of images becomes that obtained by infect-
ing surfaces with a uniform distribution, planting the
chosen random number of defects on each unit area of
the surface. Then some model of texture needs to be
given. There could be one texture for the background
and another texture for the defect. This would then
constitute a model of the population of images to be
processed for defect inspection.

Suppose now that the first operation to be per-
formed on the images from this population is edge
detection. By whatever edge detector and edge detec-
tor algorithm parameter values used, the edge detector
has a performance. There will be some defect edges
which are missed and some defect edges which are
detected. There will be some background or clutter
edges detected. From the performance characteristics
of the edge detector and the known random pertur-
bation characteristics of the image model, it will be
possible to infer the fraction of misdetected edges and
the fraction of false alarms. In addition it will be pos-
sible to infer the edge direction distribution for each
true detected edge relative to what its true direction
is and the edge direction distribution for each falsely
detected edge.

Suppose that the next operation is a spoke filter.
Then utilizing the information in edge direction, it
will be possible to infer for each pixel location for any
image the distribution of counts that the given pixel
has coming from detected edges in some neighborhood
around it. In particular, a distribution of counts due
to false background edges for pixels in and around a
defect can be determined and a distribution of counts
for pixels in the open background area can be deter-
mined. Similarly, a distribution of counts due to cor-
rect edge detections for pixels in and around a defect
and for pixels in the open background area can be
determined.

Suppose that the final operation is a detection op-
eration. Suppose that the detection operation is one
which looks for relative maximal counts and if the
maximal count is great enough declares a defect. Now
from the distribution of counts that defect pixels have
and the distribution of counts that non-defect pixels
have, it should be possible to compute the misdetec-
tion and false alarm characteristics of the final defect
detection step. And this characterization will be a
parametric characterization with the parameters con-
sisting of the Poisson density parameters, the back-
ground brightness, the defect brightness and size, and
all algorithm tuning parameters.

Next consider the case for segmentation errors. The
representation of the segmentation errors must be nat-
ural and suitable for the input of the next process
in high-level vision which might be a model-matching
process, for example. What should this representation
be to make it possible to characterize the identification
accuracy of the model matching as a function of the in-
put segmentation errors and fitting errors? Questions
like these, have typically not been addressed in the
research literature. Until they are, analyzing the per-
formance of a machine vision algorithm will be in the
dark ages of an expensive experimental trial-and-error
process. And if the performance of the different pieces
of a total algorithm cannot be used to determine the
performance of the total algorithm, then there cannot
be an engineering design methodology for machine vi-
sion systems.

This problem is complicated by the fact that there
are many instances of algorithms which compute the
same sort of information but in forms which are ac-
tually non-equivalent. For example, there are arc ex-
traction algorithms which operate directly on the orig-
inal image along with an intermediate vector file ob-
tained in a previous step and which outputs fitted
curve segments. There are other arc extraction al-
gorithms which operate on groups of pixels and which
output arc parameters such as center, radius, and end-
points in addition to the width of the original arc.

What we need is the machine vision analog of a
system’s engineering methodology. This methodology
has been extremely successful in the analysis, synthe-
sis, and simulation of the most complex engineering
systems ever designed, built, and put into operation.
This methodology can be encapsulated in a protocol
which has a modeling component, an estimation com-
ponent, a validation componenet, a theoretical error
propagation component, an experimental component,
and a data analysis component. The next section de-
scribes in greater detail these components of an image
analysis engineering protocol.

3 Protocol

The protocol has six components: modeling, anno-
tating, estimating, validating, propagating, and opti-
mizing. In addition there is an experimental compo-
nent and a data analysis component. This protocol
applies to each stage of the algorithm as well as to the
total algorithm in an end-to-end manner.

The modeling component of the protocol consists
of a description of the world of ideal inputs, a descrip-



tion of a random perturbation model by which such
non-ideal inputs arise, and a description of a random
perturbation process which characterizes the random
perturbation of the output for the algorithm stage.

The annotating component involves gathering a
representatiive sample of images and annotating the
images delineating the different class of structures or
clutter so that the statistics of the respective random
perturbation processes can be estimated. The annota-
tion means that for each of the different random pro-
cess involved, the random process for the clutter, the
random perturbation process for each of the kinds of
entities of interest, the annotation identifies the units
which are involved (a set of pixels, a chain of pixels, a
boundary, a set of boundaries, an area, a set of areas,
etc.) so that each of the units can be measured for
its observed value. Then from this data, the free pa-
rameters of each random perturbation model can be
estimated.

The estimation component involves determining
how to estimate the values of the free parameters of
the each random perturbation model from experimen-
tally prepared and annotated data sets.

The validation component consists of statistically
validating each random perturbation model. This
involves using the estimated values for each of the
free parameters of the input random perturbation
processes as the true values and then with the ran-
dom perturbation models fully specified, theoreti-
cally propagating their effects through each algorithm
phase. Then the output data must be annotated so
that each different output unit can be identified and
assigned a label of its kind. And the free parameters
for each of the output random perturbation processes
must be estimated. The validation then amounts to
comparing the theoretically predicated values of the
free parameters of the random perturbation processes
with the estimated values of the free parameters fo
the random perturbation processes. If they are close
enough, then the models are validated.

The propagating component of the protocol spec-
ifies the expected relationship between the values of
the parameters of the input random perturbation to
the values of the parameters of the output random
perturbation process. This will be a function of the
ideal input data. For an algorithm which has many
stages this methodology would permit the theoretical
determination of the parameters of the output random
perturbation process given the parameters of the the
input random perturbation process very much in the
manner of chaining together the perturbation param-
eter transformations from stage to stage. The param-
eters of the final output random perturbation then
relate to what the system user is most interested in
by determining the value of the appropriate criterion
function for the system and its application.

The optimizing component specifies how the opti-
mal value of the tuning parameters can be determined
once the distribution of the different classes of objects
has been estimated.

The experimental component of the protocol de-
scribes the experiments performed under which the
data relative to the performance characterization can

be gathered. Some experiments can use synthetically
generated images/data and some experiments can use
real images/data. In either case the experimental com-
ponent of the protocol indicates how the input data is
to be gathered or generated, how it is to be perturbed,
and what values will be measured. The description
must be detailed enough so that another researcher
can replicate the experiments.

The data analysis component of the protocol de-
scribes what statistical analysis must be done on the
experimentally observed data to determine the ex-
perimental performance characterization, compare the
experimental with the theoretically expected perfor-
mance, and to validate the the perturbation models
and/or the approximations/simplifications used in the
derivations of the theoretically expected performance.

3.1 Image Acquisition

This part of the protocol describes how, in accor-
dance with the specified model, a suitably random,
independent, and representative set of images is to be
acquired or generated to constitute the sampled set
of images. This aquisition can be done by taking real
images under the specified conditions or by generat-
ing synthetic images. If the population includes, for
example, a range of sizes of the object of interest or
if the object of interest can appear in a variety of sit-
uations, or if the object shape can have a range of
variations, then the sampling mechanism must assure
that a reasonable number of images are sampled with
the object appearing in sizes, orientations, and shape
variations throughout its permissible range. Similarly,
if the object to be recognized or measured can appear
in a variety of different lighting conditions which cre-
ate a similar variety in shadowing, then the sampling
must assure that images are acquired with the light-
ing and shadowing varying throughout its permissible
range.

Some of the variables used in the image acquisition
process are ones whose values will be estimated by the
computer vision algorithm. We denote these variables
by 21,...,2x. Other of these variables are nuisance
variables. Their values provide for variation. The per-
formance characterization is averaged over their val-
ues. We denote these variables by wy, ..., wys. Other
of variables specify the state of the controlled random
perturbation and noise against which the performance
is to be characterized. We denote these variables by
Y1,..-.,Ys. The generation of the images in the pop-
ulation can then be described by N = J+ K + M
variables. If these N variables having to do with kind
of lighting, light position, object position, object ori-
entation, permissable object shape variations, unde-
sired object occlusion, environmental clutter, distor-
tion, noise etc., have respective range sets Ry, ..., Ry,
then the sampling design must assure that images are
selected from the domain R; x R; X ...x Ry in a rep-
resentative way. Since the number of images sampled
is likely to be a relatively small fraction of the number
of possibilities in R; x R3 X ...x Ry, the experimen-
tal design may have to make judicious use of a Latin
square layout.



3.2 Random Perturbation and Noise

Specification of random perturbation and noise is
not easy because the more complex the data unit, the
more complex the specification of the random pertur-
bation and noise. Each specification of randomness
has two potential components. One component is a
small perturbation component which affects all data
units. It is often reasonable to model this by an addi-
tive Gaussian noise process on the ideal values of the
data units. This can be considered to be the small
variation of the ideal data values combined with ob-
servation or measurement noise. The other component
is a large perturbation component which affects only
a small fraction of the data units. For simple data
units it is reasonable to model this by replacing its
value by a value having nothing to do with its true
value, or by introducing extraneous units which have
nothing to do with the objects of interest but whose
apearance mimics aspects of the objects of interest,
(false alarms) or by just eliminating some of the inter-
esting units (misdetections). Large perturbation noise
on more complex data units can be modeled by frac-
tionating a unit into pieces or by merging spatially
connected units together. In the case of fractionat-
ing, values can be given to most of the pieces which
would follow from the values the parent data unit had
and values can be given to the remaining pieces which
have nothing to do with the values the original data
unit had. In the case of merging, values can be given
to the merged unit which are consistent with the size
and geometry and appearance of the merged unit.

This kind of large random perturbation affecting a
small fraction of units is replacement noise. It can
be considered to be due to random occlusion, link-
ing, grouping, or segmenting errors. Algorithms which
work near perfectly on small amounts of random per-
turbation on all data units, often fall apart with large
random perturbation on a small fraction of the data
units. Much of the performance characterization of a
complete algorithm will be specified in terms of how
much of this replacement kind of random perturbation
the algorithm can tolerate and still give reasonable re-
sults. Algorithms which have good performance even
with large random perturbation on a small fraction of
data units can be said to be robust.

3.3 Characterization

Some of the variables used in image acquisition are
those whose values are to be estimated by the machine
vision algorithm. For objects which are not narrow
and have distinct features on all their surfaces, object
kind, location, and orientation are prime examples.
The values of such variables do not make the recogni-
tion and estimation much easier or harder, although
they may have some minor effect. For example, an es-
timate of the surface normal of a planar object viewed
at a high slant angle will tend to have higher vari-
ance than an estimate produced by the planar object
viewed at a near normal angle. The performance char-
acterization of an image analysis algorithm is not with
respect to this set of variables. From the point of view
of what is to be calculated, this set of variables is cru-
cial. From the point of view of performance charac-

terization, the values for the variables in this set as
well as the values in the nuisance set are the ones over
which the performance is averaged.

Another set of variables characterize the extent of
random perturbations which distort the ideal input
data to produce the imperfect input data. These vari-
ables represent variations which degrade the informa-
tion in the image, thereby increasing the uncertainty
of the estimates produced by the algorithm. Such vari-
ables may characterize object contrast, noise, extent
of occlusion, complexity of background clutter, and a
multitude of other factors which instead of being mod-
eled explicitly are modeled implicitly by the inclusion
of random shape perturbations applied to the set of
ideal model shapes.

Finally, there are the algorithm tuning constants
that must be set in the algorithm. The values of these
variables may to a large or small extent change the
performance of the algorithm. And, for best perfor-
mance, they need to be set to provide best algorithm
performance for the given input random perturbation
processes.

The random perturbation parameters and the al-
gorithm tuning parameters constitute the set of vari-
ables in terms of which the performance characteri-
zation must be measured. Let us denote the setable
algorithm parameters by z, the parameters of the in-
put random perturbation processes by y;, the ideal
values of the units of the input image by z;, the ob-
served values made on the units of the input image
by 2;, the ideal values of the units on the output im-
age by z,, and the observed values made on the units
of the output image by 2,, and the values of the free
parameters of the output random perturbation pro-
cess by y,. Then %; is to be regarded as an outcome
of the input random perturbation processes with free
parameters y; acting on z; and 2, is to be regarded as
an outcome of the output random perturbation pro-
cesses with free parameters y, acting on z,. And the
random perturbation models provide the way of cal-
culating the probabilties or the probability densities
P(2i|z, %) and p(2o|z,, yo)-

The perturbation propagation step amounts to
theroetically determining y,, the values of the free
parameters of the output random perturbation pro-
cesses, as a function of z;, the ideal input state, y;,
the values of the free parameters of the input random
perturbation processes, and z the algorithm turning
constants. No criterion function is involved in this
step and this is the reason that it becomes possible to
propagate the values of the free parameters of the ran-
dom perturbation processes from one algorithm stage
to another. It is not until the last algorithm stage that
a criterion function is needed. The criterion function
e is a scalar function comparing the ideal output z,
with the observed output Z,: e(zo,2,). So if e(zo, 2,)
is known and p(2,|2.,¥,) is known then it becomes
possible to compute the expected value of e, or for
that matter any of its moments or any statistics of its
distribution. For example,

Ele(2o, 20)|yo] = ) _ (20, 20)P(Z020, ¥o)

Zo



And since y, depends on the ideal input state z;,
the free parameters of the input random perturba-
tion process y;, and the algorithm tuning paramters
z, we see that it becomes possible to compute
Ele(zo, 2,)|2i, yi,z]. If the input environment can be
characterized by a prior probability p(z;), then the ex-
pected value of the criterion function can be computed
over the input environment population.

Ele(zo, 2,) |y, 2] = Z Ele(zo, 20)|2i, i, 2]p(2:)

Now it becomes clear what the smartest non-adaptive
algorithm control should do: it must determine the
value of algorithm tuning parameters z to maximize
Ele(zo, 2,)|Ui, z], where §; is the estimated value of y;.

3.4 Reliability

Consider algorithms which estimate some parame-
ter such as position and orientation of an object. One
kind of criterion function e is reliability. An estimate
can be said to be reliable if the algorithm is operating
on data that meets certain requirements and if the dif-
ference between the estimated quantity and the true
but known value is below a user specified tolerance.
An algorithm can estimate whether the results it pro-
duces are reliable by making a decision on estimated
quantities which relate to input data noise covari-
ance, output data covariance, and structural stability
of calculation. Output quantity covariance can be es-
timated by estimating the input data noise variance
and propagating the error introduced by the noise co-
variance into the calculation of the estimated quantity.
Hence the algorithm itself can provide an indication of
whether the estimates it produces have an uncertainty
below a given value. High uncertainties would occur
if the algorithm can determine that the assumptions
about the environment producing the data or the as-
sumptions required by the method are not being met
by the data on which it is operating or if the random
perturbation in the quantities estimated is too high to
make the estimates useful.

Characterizing reliability can be done by two
means. The first is by the probability that the al-
gorithm claims reliability as a function of algorithm
parameters and parameters describing input data ran-
dom perturbations. The second is by misdetection
false alarm operating curves. A misdetection occurs
when the algorithm indicates it has produced a reli-
able enough result when in fact it has not produced a
reliable enough result. A false alarm occurs when the
algorithm indicates that it has not produced a reliable
enough result when in fact it has produced a reliable
enough result. A misdetection false alarm rate oper-
ating curve results for each different noise and random
perturbation specification. The curve itself can be ob-
tained by varying the algorithm tuning constants, one
of which is the threshold by which the algorithm de-
termines whether it claims the estimate it produes is
reliable or not.

3.5 Robustness

Robustness of an algorithm is the degree to which
large perturbations in a small fraction of the data units

affects the variance of the parameters estimated by the
algorithm. To measure the robustness of an algorithm
we can perturb a given fraction of the data units. Sup-
pose of the N data units, K data units are perturbed
with a large perturbation and N — K data units are
perturbed with small perturbations. Next we deter-
mine the expected value of the error criterion function
for two cases: the case of N — K data units perturbed
with small perturbations, the error criterion function
having expected value F;, and the case of N data units
with K data units perturbed with large perturbations,
the error criteion function haveing expected value E,.
The robust efficiency can be measured as E,/E;. The
idea behind this measure is that the large perturba-
tions essentially create outliers and the function of the
robustness of the algorithm is to throw out the out-
liers. In that case, the best the algorithm can do is to
estimate based on the N — K inlier units. But a ro-
bust algorithm is not perfect and will not completely
throw out all the outliers. So by looking at the ratio
we can measure the extent to which robust processing
is really working.

3.6 Experiments

In a complete design, the values for the algorithm
tuning parameters z, and the values of the free param-
eters of the random perturbations y will be selected in
a systematic and regular way. The values for z, which
specify the ideal input data state and the values for
the nuisance variables will be sampled from a uniform
distribution over the range of their permissible values.

The values for z uniquely specify an ideal image.
The values for y specify the extent to which random
perturbations and noise are randomly introduced into
the ideal image and/or object(s? in the ideal image.
In this manner, each noisy trial image may be syn-
thetically generated. Or if the qcquisiton is to be with
real images, then the real images must be annotated,
the annotation essentially defining z. The values for
z specify the algorithm tuning parameter values. The
algorithm is then run over the trial image producing
estimated values Z for z. The data produced by each
trial then consists of a record z, v, z, 2.

The data analysis plan describes how the set of
records produced by the experimental trials will be
processed or analyzed to compactly express the per-
formance characterization. For example, an equiva-
lence relation on the range space for y may be defined
and an hypothesis may be specified stating that all
combinations of values of y in the same equivalence
class have the same expected error. The data anal-
ysis plan would specify the equivalence relation and
give the statistical procedure by which the hypothesis
could be tested. Performing such tests are important
because they can reduce the number of variable com-
binations which have to be used to express the perfor-
mance characterization. For example, the hypothesis
that all other variables being equal, whenever the ratio
of the last two components of y have the value k, then
the expected performance is identical. In this case, the
performance characterization can be compactly given
in terms of k and the remaining components of y.

Once all equivalence tests are complete, the data



analysis plan would specify the kinds of graphs or ta-
bles employed to present the experimental data. It
might specify the form of a simple regression equation
by which the expected error, the probability of claimed
reliability, the probability of misdetection, the proba-
bility of false alarm, and the computational complex-
ity or execution time can be expressed in terms of the
independent variables z,y. As well it would specify
how the coefficients of the regression equation could
be calculated from the observed data. If error prop-
agation can be done analytically using the parame-
ters associated with input data noise variance and the
ideal noiseless input data, the data analysis plan can
discuss how to make the comparison between the ex-
pected error computed analytically and the observed
experimental error.

Finally, if the computer vision algorithm must meet
certain performance requirements, the data analysis
plan must state how the hypothesis that the algorithm
meets the specified requirement will be tested. The
plan must be supported by a theoretically developed
statistical analysis which shows that an experiment
carried out according to the experimental design and
analyzed according to the data analysis plan will pro-
duce a statistical test itself having a given accuracy.
That is, since the entire population of images is only
sampled, the sampling variation will introduce a ran-
dom fluctuation in the test results. For some fraction
of experiments carried out according to the protocol,
the hypothesis to be tested will be accepted but the
algorithm, in fact, if it were tried on the complete
population of image variations, would not meet the
specified requirements; and for some fraction of ex-
periments carried out according to the protocol, the
hypothesis to be tested will be rejected but if the algo-
rithm were tried on the complete population of image
variation, it would meet the specified requirements.
The specified size of these errors of false acceptance
and missed acceptance will dictate the number of im-
ages to be in the sample for the test. This relation be-
tween sample size and false acceptance rate and missed
acceptance rate of the test for the hypothesis must
be determined on the basis of statistical theory. One
would certainly expect that the sample size would be
large enough so that the uncertainty caused by the
sampling would be below 20%.

For example, suppose the error rate of a quantity
estimated by an machine vision algorithm is defined
to be the fraction of time that the estimate is further
than € from the true value. If this error rate is to be
less than 1,%6: then in order to be about 85% sure
that the performance meets specification, 10,000 tests
will have to be run. If the image analysis algorithm
performs incorrectly 9 or fewer times, then we can
assert that with 85% probability, the machine vision
algorithm meets specification.

4 Protocol Summary
Any protocol must include the following items.

1. The protocol must state:

e what is to be measured on each experimental
trial

e what is to be inferred (estimated) from the
measurements or what hypothesis is to be
tested (the requirement)

e with what precision (standard deviation) is
the inferred quantity to be estimated or with
what misdetect and false alarm error is the
hypothesis to be tested

e over what population of scenes/images and
vision algorithm tuning parameters are the
experiments to be done

2. The protocol must layout an experimental design
which describes

e how a suitable random, independent, and
representative set of images from the speci-
fied population is to be sampled, generated,
or acquired, including the setting of all pa-
rameters relevant to the population

e what parameters of the algorithm will be
varied and how their values will be varied

e what parameters of the algorithm will be set
and what values they will be set at

e the experiments which must carried out for
each image in the population

e the accuracy criterion which states how the
comparison between the true values and the
measured values will be evaluated

3. The protocol must have a data analysis plan
which

o states how to test the hypothesis that the
algorithm meets the specified requirement

e indicates how the data (the true values and
the corresponding measured values) will be
analyzed

o tells explicitly what performance curves will
be generated

4. The data analysis plan

e must be supported by a theoretically devel-
oped statistical analysis

e and show that an experiment carried out ac-
cording to the experimental design and an-
alyzed according the data analysis plan will
produce results having a given accuracy (i.e.,
the rates of false alarms and miss detections
due to the experimental sampling variation)

5 Summary

We have described a protocol for computer vision
algorithm performance characterization, not just in
terms of a simple criterion function, but in terms of
how the random perturbation characterization on the
output is a function of the random perturbation char-
acterization of the input. Although this idea is a clas-
sic one in system’s engineering, it is one which has
been more neglected in the computer vision commu-
nity. Indeed, there is actually considerable resistance



to this methodology, a methodology which has been
considered part of sound engineering practice for a
long time. This resistance says something about where
the field is. Statements like “It is too hard.” or “It
involves too much work to do this correctly and only
get a single paper out of it.” or “It requires having
a fluency with probability and statistics that I do not
have.” or “The field is not yet ready for this.” or “It
is not something new or advanced enough for many
funding agencies to be interested in.” or “Haralick,
you are taking the fun out of vision.” are indicative
of a cultural attitude. Engineers do what engineers
must to sucessfully get an engineering project done.
They work hard. They learn what they have to. They
experiment to get data points they do not have. They
do analysis of subsystems. They do simulation of their
designs. They do performance characterization.

Computer vision as an engineering or as an exper-
imental discipline can be advanced in a deeper way
by a general change in cultural paradigm. Changes in
cultural paradigms are precisely the changes that have
historically advanced science. They have been respon-
sible for the scientific revolutions. And such changes
in cultural paradigms are typically resisted by the “the
old guard”.

This position statement will have served its purpose
if it facilitates discussions and thinking which helps
move the computer vision frontiers by the opening of a
more comprehensive methodology essentially effecting
a paradigm change.

The paradigm change puts a different look at the
way that we are called upon to do our research. For
it suggests that one of the first steps is to gather a
suitable real data set and annotate or ground-truth it.
And from this data set the parameters of the perturba-
tion model must be estimated and then the perturba-
tion model must be statistically validated. Then hav-
ing a validated perturbation model, we should proceed
to the design of the algorithm step whose input data
perturbation model we have in hand. And the design
will use the values of the algorithm tuning parameters
which optimize the expected value of the final error
criterion.



