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Abstract 

Computer vision algorithms are composed of different sub-algorithms 
often applied in sequence. Determination of the performance of a to­
tal computer vision algorithm is possible if the performance of each of 
the sub-algorithm constituents is given. The problem, however, is that 
for most published algorithms, there is no performance characterization 
which has been established in the research literature. This is an awful 
state of affairs for the engineers whose job it is to design and build image 
analysis or machine vision systems. 

This suggests that there has been a cultural deficiency in the computer 
vision community: computer vision algorithms have been published more 
on the merit of an experimental or theoretical demonstration suggesting 
that some task can be done, rather than on an engineering basis. Such 
a situation was tolerated because the interesting question was whether it 
was possible at all to accomplish a computer vision task. Performance 
was a secondary issue. 

Now, however, a major interesting question is how to quickly design 
machine vision systems which work efficiently and which meet require­
ments. To do this requires an engineering basis which describes precisely 
what is the task to be done, how this task can be done, what is the error 
criterion, and what is the performance of the algorithm under various 
kinds of random degradations of the input data. 

In this paper, we discuss the meaning of performance characterization 
in general, and then discuss the details of an experimental protocol under 
which an algorithm performance can be characterized. 

1 Introduction 

A major interesting question is how to quickly design machine vision systems 
which work efficiently and which meet requirements. To do this requires an en­
gineering basis which describes precisely what is the task to be done, how this 
task can be done, what is the error criterion, and what is the performance of the 
algorithm under various kinds of random degradations of the input data. To 
accomplish this in the general case means propagating random pertqrbations 
through each algorithm stage in an open loop systems manner. To accomplish 
this for adaptive algorithms requires being able to do a closed loop engineer­
ing analysis. To perform a closed loop engineering analysis requires first doing 
an open loop engineering analysis and closing the loop by adding a constraint 
relation and solving for the output and the output random perturbation pa­
rameters. 
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The purpose of this discussion is to raise our sensitivity to these issues so 
that our field can more rapidly transfer the research technology to a factory 
floor technology. To initiate this dialogue, we will first expand on the meaning 
of performance characterization in general, and then discuss the experimental 
protocol under which an algorithm performance can be characterized. 

2 Performance Characterization 

What does performance characterization mean for an algorithm which might 
be used in a machine vision system? The algorithm is designed to accomplish a 
specific task. If the input data is perfect and has no noise and no random varia­
tion, the output produced by the algorithm ought also to be perfect. Otherwise, 
there is something wrong with the algorithm. 

So measuring how well an algorithm does on perfect input data is not inter­
esting. Performance characterization has to do with establishing the correspon­
dence of the random variations and imperfections which the algorithm produces 
on the output data caused by the random variations and the imperfections on 
the input data. This means that to do performance characterization, we must 
first specify a model for the ideal world in which only perfect data exist. Then 
we must give a random perturbation model which specifies how the imper­
fect perturbed data arises from the perfect data. Finally, we need a criterion 
function which quantitatively measures the difference between the ideal output 
arising from the perfect ideal input and the calculated output arising from the 
corresponding randomly perturbed input. 

Now we are faced with an immediate problem relative to the criterion func­
tion. It is typically the case that an algorithm changes the data unit. For 
example, an edge-linking process changes the data from the unit of pixel to 
the unit of a group of pixels. An arc segmentation/extraction process applied 
to the groups of pixels produced by an edge linking process produces fitted 
curve segments. This data unit change means that the representation used for 
the random variation of the output data set may have to be entirely different 
than the representation used for the random variation of the input data set. 
In our edge-linking/ arc extraction example, the input data might be described 
by the false alarm/misdetection characteristics produced by the preceding edge 
operation, as well as the standard deviation in the position and orientation of 
the correctly detected edge pixels. The random variation in the output data 
from the extraction process, on the other hand, must be described in terms 
of fitting errors (random variation in the fitted coefficients) and segmentation 
errors. Hence, the random perturbation model may change from stage to stage 
in the analysis process. 

Consider the case for segmentation errors. The representation of the seg­
mentation errors must be natural and suitable for the input of the next process 
in high-level vision which might be a model-matching process, for example. 
What should this representation be to make it possible to characterize the 
identification accuracy of the model matching as a function of the input seg­
mentation errors and fitting errors? Questions like these, have typically not 
been addressed in the research literature. Until they are, analyzing the perfor­
mance of a machine vision algorithm will be in the dark ages of an expensive 
experimental trial-and-error process. And if the performance of the different 
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pieces of a total algorithm cannot be U(!ed to determine the performance of the 
total algorithm, then there cannot be an engineering design methodology for 
machine vision systems. 

This problem is complicated by the fact that there are many instances of 
algorithms which compute the same sort of information but in forms which 
are actually non-equivalent. For example, there are arc extraction algorithms 
which operate directly on the original image along with an intermediate vector 
file obtained in a previous step and which output fitted curve segments. There 
are other arc extraction algorithms which operate on groups of pixels and which 
output arc parameters such as center, radius, and endpoints in addition to the 
width of the original arc. 

What we need is the machine vision analog of a system's engineering method­
ology. This methodology can be encapsulated in a protocol which has a mod­
eling component, an experimental component, and a data analysis component. 
The next section describes in greater detail these components of an image anal­
ysis engineering protocol. 

3 Protocol 

The modeling component of the protocol consists of a description of the world 
of ideal images, a description of a random perturbation model by which non­
ideal images arise, a description of a random perturbation process which char­
acterizes the output random perturbation as a function of the parameters of 
the input random perturbation and a specification of the criterion function by 
which the difference between the ideal output and the computed output aris­
ing from the imperfect input can be quantified. The experimental component 
describes the experiments performed under which the data relative to the per­
formance characterization can be gathered. The analysis component describes 
what analysis must be done on the experimentally observed data to determine 
the performance characterization. 

3.1 Input Image Population 

This part of the protocol describes how, in accordance with the specified model, 
a suitably random, independent, and representative set of images from the pop­
ulation of ideals is to be acquired or generated to constitute the sampled set of 
images. This acquisition can be done by taking real images under the specified 
conditions or by generating synthetic images. If the population includes, for 
example, a range of sizes of the object of interest or if the object of interest 
can appear in a variety of situations, or if the object shape can have a range of 
variations, then the sampling mechanism must assure that a reasonable num­
ber of images are sampled with the object appearing in sizes, orientations, and 
shape variations throughout its permissible range. Similarly, if the object to be 
recognized or measured can appear in a variety of different lighting conditions 
which create a similar variety in shadowing, then the sampling must assure 
that images are acquired with the lighting and shadowing varying throughout 
its permissible range. 

Some of the variables used in the image generation process are ones whose 
values will be estimated by the computer vision algorithm. We denote these 
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variables by z1 , ••. , ZK. Other of these variables are nuisance variables. Their 
values provide for variation. The performance characterization is averaged 
over their values. We denote these variables by w 11 ••• , WM. Other of the 
variables specify the parameters of the random perturbation and noise process 
against which the performance is to he characterized. We denote these variables 
by Y1, ... , YJ. The generation of the images in the population can then he 
described by N = J + K + M variables. If these N variables having to do 
with the kind of lighting, light position, object position, object orientation, 
permissible object shape variations, undesired object occlusion, environmental 
clutter, distortion, noise etc., have respective range sets R1, ..• , RN, then the 
sampling design must assure that images are selected from the domain R1 x R2 x 
... x RN in a representative way. Since the number of images sampled is likely to 
he a relatively small fraction of the number of possibilities in R1 x R2 x ... x RN, 
the experimental design may have to make judicious use of a Latin square 
layout. 

3.2 Random Perturbation and Noise 

Specification of random perturbation and noise is not easy because the more 
complex the data unit, the more complex the specification of the random per­
turbation and noise. Each specification of randomness has two potential com­
ponents. One component is a small perturbation component which affects all 
data units. It is often reasonable to model this by an additive Gaussian noise 
process on the ideal values of the data units. This can he considered to he the 
small variation of the ideal data values combined with observation or measure­
ment noise. The other component is a large perturbation component which 
affects only a small fraction of the data units. For simple data units it is rea­
sonable to model this by replacing its value by a value having nothing to do 
with its true value. Large perturbation noise on more complex data units can 
he modeled by fractionating the unit into pieces and giving values to most of 
the pieces which would follow from the values the parent data unit had and 
giving values to the remaining pieces which have nothing to do with the values 
the original data unit had. 

This kind of large random perturbation affecting a small fraction of units 
is replacement noise. It can he considered to he due to random occlusion, 
linking, grouping, or segmenting errors. Algorithms which work near perfectly 
on small amounts of random perturbation on all data units, often fall apart 
with large random perturbation on a small fraction of the data units. ·Much 
of the performance characterization of a complete algorithm will he specified 
in terms of how much of this replacement kind of random perturbation the 
algorithm can tolerate and still give reasonable results. Algorithms which have 
good performance even with large random perturbation on a small fraction of 
data units can he said to he robust. 

3.3 Performance Characterization 

Some of the variables used in the image generation are those whose values are 
to he estimated by the machine vision algorithm. Object kind, location, and 
orientation are prime examples. The values of such variables do not make the 
recognition and estimation much easier or harder, although they may have some 



5 

minor effect. For example, an estimate of the surface normal of a planar object 
viewed at a high slant angle will tend to have higher variance than an estimate 
produced by the planar object viewed at a near normal angle. The performance 
characterization of an image analysis algorithm is not with respect to this set 
of variables. From the point of view of what is to be calculated, this set of 
variables is crucial. From the point of view of performance characterization, 
the values for the variables in this set as well as the values in the nuisance set 
are the ones over which the performance is averaged. 

Another set of variables characterize the extent of random perturbations 
which distort the ideal input data to produce the imperfect input data. These 
variables represent variations which degrade the information in the image, 
thereby increasing the uncertainty of the estimates produced, by the algorithm. 
Such variables may characterize object contrast, noise, extent of occlusion, com­
plexity of background clutter, and a multitude of other factors which instead 
of being modeled explicitly are modeled implicitly by the inclusion of random 
shape perturbations applied to the set of ideal model shapes. 

Finally, there may be other variables governing parameter constants that 
must be set in the image analysis algorithm. The values of these variables may 
to a large or small extent change the performance of the algorithm. 

The variables characterizing the input random perturbation process and the 
variables which are the algorithm tuning constants constitute the set of vari­
ables in terms of which the performance characterization must be measured. 
Suppose there are I algorithm parameters z 1 , ... , ZJ, which can be set, J dif­
ferent variables Yt, ... , YJ characterizing the random perturbation process, and 
K different measurements it, ... , ZK to be made on each image. There will be 
a difference between the true ideal values z1 , ... , ZK of the measured quantities 
and the measured values it, ... , ZK themselves. The nature of this difference 
can be characterized by the parameters q1, ... , qL of the output random per­
turbation process: (qt. ... , qL) = /(zt, ... , ZJ, Yt. ... , YJ, Zt, ... , ZK)· 

The last step of a total algorithm not only has a characterization of the 
output random perturbation parameters, but also an error criterion e which is 
application and domain specific. The error criterion, e(zt, ... , ZK, it, ... , ZK ), 
must state how the comparison between the ideal values and the measured val­
ues will ·he evaluated. Its value will be a function of the I algorithm parameters 
and the J random perturbation parameters. 

An algorithm can have two different dimensions to the error criterion. To 
explain these dimensions, consider algorithms which estimate some parameter 
such as position and orientation of an object. One dimension the error criterion 
can have is reliability. An estimate can be said to be reliable if the algorithm 
is operating on data that meets certain requirements and if the difference be­
tween the estimated quantity and the true but known value is below a user 
specified tolerance. An algorithm can estimate whether the results it produces 
are reliable by making a decision on estimated quantities which relate to input 
data noise variance, output data covariance, and structural stability of calcu­
lation. Output quantity covariance can be estimated by estimating the input 
data noise variance and propagating the error introduced by the noise variance 
into the calculation of the estimated quantity. Hence the algorithm itself can 
provide an indication of whether the estimates it produces have an uncertainty 
below a given value. High uncertainties would occur if the algorithm can deter­
mine that the assumptions about the environment producing the data or the 
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assumptions required by the method are not being met by the data on which 
it is operating or if the random perturbation in the quantities estimated is too 
high to make the estimates useful. 

Characterizing this dimension can be done by two means. The first is by 
the probability that the algorithm claims reliability as a function of algorithm 
parameters and parameters describing input data random perturbations. The 
second is by misdetection false alarm operating curves. A misdetection occurs 
when the algorithm indicates it has produced a reliable enough result when in 
fact it has not produced a reliable enough result. A false alarm occurs when 
the algorithm indicates that it has not produced a reliable enough result when 
in fact it has produced a reliable enough result. A misdetection false alarm 
rate operating curve results for each different noise and random perturbation 
specification. The curve itself can be obtained by varying the algorithm tuning 
constants, one of which is the threshold by which the algorithm determines 
whether it claims the estimate it produces is reliable or not. 

The second dimension of the error criterion would be related to the difference 
between the true value of the quantity of interest and the estimated value. This 
criterion would be evaluated only for those cases where the algorithm indicates 
that it produces a reliable enough result. A scalar error criterion would weight 
both of these dimensions in an appropriate manner. 

Each estimated quantity Z/c is a random variable which is a function of 
the ideal input data, the values of the algorithm tuning parameters Z1, ... , ZJ 

and the random perturbation parameters y1 , ... , YJ characterizing the random 
perturbation process distorting the ideal input. 

Each ideal quantity z1c is a function only of the algorithm constants z 1 , ... , z 1. 

The expected value E of e(z1, ... , ZK, z1, ... , ZK) is taken over the input data 
set subpopulation consistent with z11 ••• , ZK and the random perturbation pro­
cess. It is, therefore, a function of z 1 , ..• , ZJ and Yl, ... , YJ. Performance 
characterization of the estimated quantity with respect to the error crite­
rion function then amounts to expressing in graph, table or analytic form 
E[e(zl. ... , ZK, i1. ... , ZK )] for each z1, ... , ZK as a function of z1. ... , ZJ and 
Yl, · · .,yJ. 

3.4 Experiments 

In a complete design, the values for the algorithm constants z 11 ••• , ZJ and the 
values for the random perturbation parameters y1, ... , YJ will be selected in a 
systematic and regular way. The values for z1 , ... , ZK and the values for the 
nuisance variables w11 ••• , WM will be sampled from a uniform distribution over 
the range of their permissible values. 

The values for z1 , ... , ZK specify the equivalence class of ideal images. The 
values for Yl, ... , YJ characterize the random perturbations and noise which 
are randomly introduced into the ideal image andfor object(s) in the ideal 
image. In this manner, each noisy trial image is generated. The values for 
z 1 , ... , ZJ specify how to set the tuning constants required by the algorithm. 
The algorithm is then run over the trial image producing estimated values 
i1, ... ,zK for z1, .. . ,ZK. 

The data analysis plan for the characterization of the output random per-
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turbation process generates records of the form 

From an assumed model of the output random perturbation process, the data 
analysis plan will have a way of estimating the parameters q1 , ... , qL of the 
output random perturbation process from the z1 , ... , ZK, z1 , ... , ZK part of the 
records. Thus q1, ... ,qL will be a function of z 1 , . .. ,ZJ,Yb ... ,yJ,z1, ... ,ZK. 
The data analysis plan must also specify how this dependence will be deter­
mined by an estimating or fitting procedure. 

If we apply the error criterion to each record, we then produce the values 
e(zb ... , ZK, Z1, ... , ZK ). The data produced by each trial then consists of a 
record 

The data analysis plan for the error criterion describes how the set of records 
produced by the experimental trials will be processed or analyzed to compactly 
express the performance characterization. For example, an equivalence rela­
tion on the range space for y1 , ... , YJ may be defined and an hypothesis may 
be specified stating that all combinations of values of y1 , ... , YJ in the same 
equivalence class have the same expected error. The data analysis plan would 
specify the equivalence relation and give the statistical procedure by which the 
hypothesis could be tested. Performing such tests are important because they 
can reduce the number of variable combinations which have to be used to ex­
press the performance characterization. For example, the hypothesis that all 
other variables being equal, whenever YJ-1/YJ has a ratio of k, then the ex­
pected performance is identical. In this case, the performance characterization 
can be compactly given in terms of k and y1 , ... , YJ-2· 

Once all equivalence tests are complete, the data analysis plan would specify 
the kinds of graphs or tables employed to present the experimental data. It 
might specify the form of a simple regression equation by which the expected 
error, the probability of claimed reliability, the probability of misdetection, the 
probability of false alarm, and the computational complexity or execution time 
can be expressed in terms of the independent variables :1:1, •.. , z 1, Yl, ..• , YJ. 
As well it would specify how the coefficients of the regression equation could 
be calculated from the observed data. Finally, when error propagation can 
be done analytically using the parameters associated with input data noise 
variance and the ideal noiseless input data, the data analysis plan can discuss 
how to make the comparison between the expected error computed analytically 
and the observed experimental error. 

Finally, if the computer vision algorithm must meet certain performance 
requirements, the data analysis plan must state how the hypothesis that the 
algorithm meets the specified requirement will be tested. The plan must be 
supported by a theoretically developed statistical analysis which shows that 
an experiment carried out according to the experimental design and analyzed 
according to the data analysis plan will produce a statistical test itself having a 
given accuracy. That is, since the entire population of images is only sampled, 
the sampling variation will introduce a random fluctuation in the test results. 
For some fraction of experiments carried out according to the protocol, the hy­
pothesis to be tested will be accepted but the algorithm, in fact, if it were tried 
on the complete population of image variations, would not meet the specified 



8 

requirements; and for some fraction of experiments carried out according to 
the protocol, the hypothesis to be tested will be rejected but if the algorithm 
were tried on the complete population of image variation, it would meet the 
specified requirements. The specified size of these errors of false acceptance 
and missed acceptance will dictate the number of images to be in the sample 
for the test. This relation between sample size and false acceptance rate and 
missed acceptance rate of the test for the hypothesis must be determined on 
the basis of statistical theory. One would certainly expect that the sample size 
would be large enough so that the uncertainty caused by the sampling would 
be below 20%. 

For example, suppose the error rate of a quantity estimated by a machine 
vision algorithm is defined to be the fraction of time that the estimate is further 
than fo from the true value. If this error rate is to be less than 1 ~00 , then in 
order to be about 85% sure that the performance meets specific~tion, 10,000 
tests will have to be run. If the image analysis algorithm performs incorrectly 
9 or fewer times, then we can assert that with 85% probability, the machine 
vision algorithm meets specification [1]. 

4 Conclusion 

We have discussed the problem of the lack of performance evaluation in the pub­
lished literature on computer vision algorithms. This situation is causing great 
difficulties to researchers who are trying to build up on existing algorithms and 
to engineers who are designing operational systems. To remedy the situation, 
we suggested the establishment of a well-defined protocol for determining the 
performance characterization of an algorithm. Use of this kind of protocol will 
make using engineering system methodology possible as well as making possi­
ble well-founded comparisons between machine vision algorithms that perform 
the same tasks. We hope that our discussion will encourage a thorough and 
overdue dialogue in the field so that a complete engineering methodology for 
performance evaluation of machine vision algorithms can finally result. 
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