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Abstract

In this paper, we first describe an au-
tomatic technique to efficiently generate a
large amount of accurate ground truth data
sustable for the development of document
layout analysis algorithms. Then we de-
scribe a new word segmentation algorithm
that is based on the recursive morphological
closing transform. The algorithm is train-
able for any given document image popula-
tion and is capable of detecting all the words
on a document itmage simultaneously. We
discuss an experimental protocol to train
and evaluate the word segmentation algo-
rithm. The ezperimental results demon-
strate that under the optimal algorithm pa-
rameter settings, the dominant correct word
detection percentage is about 95% on both
the training and testing image populations.

1 Introduction

Document image analysis decomposes an
input document image into its various com-
ponents, i.e. its content, layout structure

and logical structure. The content is the
informational part of the document, such
as the text strings. The layout structure
specifies the physical embodiment of the
content on the document image, such as
its appearance and location. The logical
structure names the content-bearing parts
of the document and specifies their logi-
cal relationships, such as the reading order.
The three levels of decomposition are usu-
ally done separately through the processes
of optical character recognition (OCR), lay-
out analysis, and logical analysis.

This paper focuses on the document lay-
out analysis process, which identifies vari-
ous objects of interest on a document image
and describes their spatial relations. In our
context, an object is defined as a homoge-
neous rectangular region that corresponds
to one type: character, word, text line,
paragraph, text column, or non-textual re-
gion.

Earlier work on document layout anal-
ysis can be categorically divided into two
groups. One group employs the top-down



or model-driven approach [2] [3]. It starts
at the global image level and successively
decomposes the image into smaller regions.
Each region has one type: character, word,
text line, paragraph, text column, or non-
textual region. Nagy [2] and Srihari (3]
employ an X-Y tree as the representation
of a document layout structure. The X-Y
tree is a nested decomposition of rectangu-
lar blocks into smaller rectangular blocks.
Each node in the X-Y tree corresponds to
a rectangular block. The root node is the
largest rectangular block, i.e. the input
document image. At each level, the de-
composition is induced by partitions only
in one direction (horizontal or vertical), but
a block may have an arbitrary number of
children. In the process of partitioning,
a block is segmented into sub-blocks by
making cuts in the horizontal profile cor-
responding to troughs of depth and width
greater than some threshold. Each result-
ing sub-block has a vertical projection pro-
file that can be similarly partitioned for ver-
tical segmentation. The segmentation pro-
cess may be carried out recursively to any
desired depth with alternating horizontal
and vertical subdivisions.

The main problems associated with this
approach are: 1) At each step of the succes-
sive decompositions, the system has to se-
lect the correct decomposition model since
the models for the text column, paragraph,
text line, word, or character decomposition
are inherently different. On the other hand,
there are occasions when such model se-
lections are not the direct correspondences
between the object types and the levels of
decomposition. 2) Some popular top-down
decomposition schemes, such as the above
mentioned recursive X-Y cut technique, do
not work for certain types of document lay-
out topology. This is especially the case
when there is noise present on the docu-
ment image.

The other approach is bottom-up or
data-driven [4] [5]. It starts by syn-

thesizing evidence at the black-and-white
pixel level and then merges pixels into char-
acters, characters into words, words into
lines, lines into paragraphs, and paragraphs
into columns, etc., until the whole docu-
ment is completely labeled [4]. The tech-
nique is based on a connected component
analysis. A connected component is a set
of binary one (zero) pixels in a binary
image which are either 4-connected or 8-
connected. The algorithm assumes that
each connected component in the image
corresponds to one text character or one
non-textual object. It starts by extracting
all the connected components in the input
image. A Hough transform is applied to
the centroid of the enclosing rectangles of
the connected components to find collinear
components. Positional relationships be-
tween collinear components, an interchar-
acter gap threshold, and an interword gap
threshold are then used to group the com-
ponents into text strings. One drawback of
the method is that it is sensitive to touching
characters and fragmented characters be-
cause the underlying connectivity assump-
tions are violated. For some types of docu-
ment images where texts are printed in the
dot matrix form, the algorithm breaks down
completely.

Besides the above shortcomings, most
of the earlier techniques were developed on
a trial-and-error method. Little effort was
placed on systematically evaluating the per-
formance of the document layout analysis
algorithms. The main reason is the lack
of accurate document layout ground truth
data to train and test the algorithms.

Section 2 describes a technique to auto-
matically create a large amount of accurate
ground truth data suitable for the devel-
opment of document layout analysis algo-
rithms. Section 3 describes a word segmen-
tation algorithm using the recursive mor-
phological closing transform. Section 4 dis-
cusses one experimental protocol to train
and evaluate the word segmentation algo-
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rithm given a ground-truthed document im-
age population. Finally, Section 5, de-
scribes our experimental results.

2 Document layout ground
truth generation

Document layout analysis algorithms typ-
ically decompose a document image into
zones. A zone may correspond to a text
block (usually a paragraph) or a figure. A
text zone may contain a list of text lines;
a text line may include a sequence of de-
tached words; and a word may in turn con-
sist of a string of characters. Therefore, the
document layout ground truth data that
are used for the training and testing of the
document layout analysis algorithms should
specify this hierarchy.

The “UW English Document Image
Database (I)” [8] is a data set for OCR
and document image understanding algo-
rithm development and evaluation. The
database has software to convert a DVI file
from the IATEX document processing sys-
tem into bitmap images [10]. The database
provides a population of 168 such synthet-
ically generated bitmap images. These im-
ages are manually segmented into rectan-
gular zones. The row and column coordi-
nates of the zone box corners are recorded.
The same software also generates a so-called
character ground truth file for each of the
document images. The file contains the
bounding box coordinates, the type and size
of the font, and the ASCII code for every
individual character in the image.

In the following sections, we will de-
scribe a system that takes the character
ground truth file and the zone box delin-
eations of a synthetic document image and
creates a tree representation of the layout
structure of the document image. The root
node represents the whole document im-
age. The nodes in succeeding levels repre-
sent zones, text lines, words and characters,

respectively. Each node in the tree is spec-
ified by its bounding box.

2.1 Notation and assumption

Let a document image be denoted as Z.
Let Z = {21,23, -, 2} denote the set of
zones in the document image 7, where k is
the total number of zones. Let the charac-
ter ground truth file be modeled as a se-
quence of character bounding boxes C =
{c1,¢2, - *,cn}, where n is the total num-
ber of characters.

Our assumption on the character
bounding box sequence C is that it follows
the same order as the logical reading order
of the characters on the document image.
We assume that spacings between two ad-
jacent characters follow different probabil-
ity distributions for the character breaks,
the word breaks and the text line breaks.
Normally, the character break spacings are
smaller than the word break spacings, and
the word break spacings are smaller than
the text line break spacings.

2.2 Algorithm

The following procedure describes the algo-
rithm for extracting ground truth layout in-
formation from the character ground truth

files.

1. Compute spacings between any two
adjacent characters in the bounding
box sequence C. The distance measure
is defined as follows:

plei, Cit1) = po(Ci, Ci+1)+wa(ci, Cit1)

where ¢ = 1,2,---,n — 1. pg(ei,€cit1)
and py(ci, ¢i+1) are the minimum hor-
izontal and vertical distance between
the edges of the two bounding boxes,
respectively. The pg(c;, ¢iy1) is zero
when ¢;, c¢;y1 overlap horizontally.
Likewise, the py(c;, ci+1) is zero when
¢i, ¢iy1 overlap verticallyy. w is a
weight with a typical value of w = 2.0.
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2. Compute the histogram of the
p(ci,y cit1). Normally, it contains three
peaks: one for character breaks, one
for word breaks and the other for text
line breaks. The first two peaks are
relatively stronger (more populated).

3. Text line segmentation: If p(c,cit1)
> T5, then the break between ¢; and
cit1 is a text line break. Tp = S,
where S is the dominant character
font size and « is a constant with a
typical value of @ = 10.0. The bound-
ing box of a text line is calculated
by finding the minimum bounding box
that includes all the character bound-
ing boxes within the two adjacent text
line breaks.

4. Word segmentation: If p(e¢;,¢i41) <
T:, then the break between ¢; and
¢i+1 is a character break. If T3 <
p(ci,cir1) < Ta, then the break be-
tween ¢; and ¢;41 is a word break.
The bounding box of a word is calcu-
lated by finding the minimum bound-
ing box that encloses all the character
bounding boxes within the two adja-
cent word breaks. All the enclosing
character bounding boxes constitute
the descendents of the word bounding
box. To estimate the threshold 77 on
the fly, we employ a modified Kittler
automatic thresholding algorithm [15].
Furthermore, the word to text line cor-
respondence is established by finding
all the word bounding boxes that are
enclosed between two succeeding text
line breaks.

5. Find zone correspondence: Each text
line and all its descending word and
character boxes are assigned to a
unique zone z; that has the maxi-
mum overlap with the text line bound-
ing boxes. Since in the UW English
Document Image Database (I), a zone
bounding box is not necessarily the

minimum zone bounding box that en-
closes the content of the zone, we mod-
ify the zone bounding box so that it is
the minimum bounding box that en-
closes all the text lines assigned to the
zone. O

2.3 Example document layout
ground truth data

We tested our algorithm on the 168 syn-
thetic images from the “UW English Doc-
ument Image Database (I)” [8]. The al-
gorithm performed well on all the images
except on some of the displayed math for-
mula zones where the placement of subse-
quent symbols violates our underlying as-
sumptions (Section 2.1). In this situation,
the usual definitions of text lines and words
are no longer valid. But since it is not our
purpose to provide accurate layout ground
truth for displayed math zones, we ignore
these cases. For the 168 synthetic images,
there are a total of 1366 text zones and 243
displayed math zones. There are a total
about 10,000 text lines and 60,000 words.

To ensure that the above automatic pro-
cedure works correctly on all the 168 syn-
thetic images, we actually displayed each
document image overlaid with the zone,
text line and word bounding boxes and
checked if there were any errors. On all
the images, we found 4 or 5 locations where
two adjacent text lines are merged together.
The scenarios were that the next text line
started immediately below the end of the
previous text line. After giving a larger
weight to the vertical distance parameter,
the algorithm generated the correct seg-
mentation automatically.

As an example, Figure 1 illustrates one
of the synthetic document images. Figure 2
gives the generated zone, text line, word
and character layout ground truth data.

In conclusion, the technique described
here provides an efficient and automatic
way of creating a large amount of accu-
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rately ground truthed layout ground truth
data for the development and evaluation of
document layout analysis algorithms. The
rest of this paper will use the ground truth
generated by this technique to to develop,
train, and test a word segmentation algo-
rithm that is capable of determining the
bounding boxes for all words on a document
image.

3 Word segmentation
using recursive closing
transform

Our approach to document word segmenta-
tion is based on the recursive closing trans-
form. The recursive closing transform pro-
vides an efficient way of computing the bi-
nary morphological closings with respect
to all sized structuring elements simulta-
neously. It is a very powerful morphologi-
cal tool for image shape analysis, especially
when the scale of the shape is a factor. It is
extremely useful in areas where the choice
of the size of the structuring element needs
to be determined after a morphological ex-
amination of the content of the image. Sec-
tion 3.1 contains a short overview of the
transform. For details, please refer to [12]
[13].

The prominent characteristics of the
current word segmentation algorithm are
summarized as follows:

e Most of the top-down or bottom up
approaches derive the objects of inter-
est in a recursive fashion. Our word
segmentation is a one step and simul-
taneous process.

e The algorithm is not sensitive to text
skew because only local shape infor-
mation is used. Texts can be laid out
in both the horizontal and the vertical
directions at the same time.

e The algorithm is robust under sub-
tractive noise. Therefore, character
fragmentation will not affect the per-
formance of the algorithm. The algo-
rithm is also tolerant to some forms of
additive noise.

e The algorithm is trainable to any
given document image population.

e The same methodology for the word
segmentation is directly applicable to
both the text line and the character
segmentations.

3.1 Recursive closing transform

The closing transform of a set I with re-
spect to a structuring element K generates
a grayscale image where the gray level of
each pixel z € Z? is defined as the smallest
positive integer n so that z € I ¢ (B,-1 K).
If no such n exists, where z ¢ ] ¢ (®r_1 K)
for all n, then the closing transform at
z € Z? is defined to be zero.

Definition 1 The closing transform of a
set I C Z? by a structuring element K C

Z? is denoted by CT[I, K] and is defined
as:

CT[I,K](z) =

min{n |z € Ie(®n-1K)} if3In,z€ o (Bn_1K)
0 V.o g Ie(®n1K).

In [13], an efficient recursive closing
transform (RCT) was developed to com-
pute in constant time per pixel the closing
transform of a binary image.

3.2 System overview

In this section, an algorithm for the word
segmentation on document images is de-
scribed. The algorithm first sub-samples
the input document image and then de-
tects the block areas that correspond to
words. The word block detection is based
on the recursive closing transform described
in [12] [13]. Each of the detected word block
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areas is then modeled as an 8-connected
connected component. The bounding box
of each of the connected components is com-
puted. As a final step, the algorithm per-
forms a hypothesis test on the heights of
the detected word blocks to handle merged
words from adjacent text lines. The vari-
ous components of the word segmentation
algorithm are described next:

Sub-Sampling

Assume that our input document images
are scan-digitized at a spatial resolution of
300dpi. For a standard page, this is equiv-
alent to an input document image size of
3300 x 2550. To process such an image, it
will take more memory and processing time.
Our strategy to overcome this problem is to
use a 2:1 sub-sampling and process a 150dpi
image.

The sub-sampling algorithm that we
have implemented is as follows: let the hori-
zontal and vertical sub-sampling ratio be H
and V, respectively. Given an input R x C
bi-level image, the algorithm generates an
output bi-level image with a dimension of
|R/V| x |C/H], where the operation |z]
returns the greatest integral value less than
or equal to “z”. Each pixel in the out-
put image corresponds to a non-overlapping
V x H window in the input image. If the
number of binary one pixels in the input
V x H window is greater than or equal to a
pre-specified threshold T, its corresponding
output pixel is set to binary one; otherwise,
it is set to binary zero. To obtain a 150dpi
sub-sampled image, we select H =2,V =2
and T = 2. Figure 3 (a) illustrates one seg-
ment of the sub-sampled 150dpi image.

‘Word Block Detection

The word block detection is based on the
recursive closing transform. The recur-
sive closing transform is useful in extracting
shape information in the image background

(white-space). Maragos [16] indicated that
image shapes can be characterized through
the pattern spectrum. The recursive clos-
ing transform provides an efficient way to
calculate the pattern spectrum of the image
background. The pattern spectrum is noth-
ing more than the histogram of the closing
transform.

Let K1, Ky, -+, K, denote n structur-
ing elements. Let y; = CT[I, Ki](z), y2 =
CT[I, Kz](z), oy yn = CTII, K,,](a:) de-
note the values of the closing transform
at pixel ¢ € I with respect to the struc-
turing elements Ki, Ky, -+, K,. Let y =
(¥1,%2,* - *,¥n). Then each pixel in the im-
age I is modeled as a random observation
data vector Y = y. Furthermore, each pixel
has an associated label £ = I. For the word
block detection, the label could be either
word (£ = 1) or non-word (£ = 0, white-
space). A pixel is defined to be a word pixel
if and only if it is on or inside the bounding
box of a word. A pixel is defined to be a
non-word pixel if it is outside the bounding
boxes of all words.

The word block detection algorithm first
assigns a posterior probability P(£L = 1 |
Y = y) to each pixel. The output of this
step is a posterior probability map image.
The posterior probability functions are esti-
mated during the initial experimental stage.
In the experiment, we choose n = 3 and K;
to be a horizontal 1 x 2 structuring element,
K, to be a vertical 2x1 structuring element,
and K3 to be a 2 X 2 square structuring el-
ement.

To introduce the correlation among the
neighboring pixels in the probability map
image, we morphologically close and then
open the map image by a zero-height flat
structuring element S. We select S to be a
2 X 2 square structuring element. Figure 3
(b) illustrates one segment of the correlated
posterior probability map image.

Finally, the correlated probability map
image is thresholded to output the binary
word block image. Input pixels that have
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values greater than or equal to T}, output
a binary one value. A reasonable range for
the threshold T, is between 0.5 and 1.0. A
low threshold T}, value tends to merge sev-
eral words into one block and a high thresh-
old T}, value tends to split a word into many
blocks. Figure 3 (c) illustrates one segment
of the detected word block image, where
Tp = 0.96.

Word Bounding Box Extraction

Each detected word block is modeled as
an 8-connected connected component. The
connected component labeling procedure
described in [15] is performed on the binary
word block image. The bounding box of
each of the connected components is calcu-
lated. Figure 3 (d) illustrates one segment
of the sub-sampled image overlaid with the
extracted word bounding boxes.

Hypothesis Test on Word Height

The presence of the character ascenders and
descenders sometimes causes the merging
of word blocks from two or more adjacent
text lines into one big block. In order to
automatically detect such cases and conse-
quently split the merged word blocks into
their corresponding correct words, we de-
veloped a simple post-processing procedure
to perform hypothesis testing on the height
of the word blocks and test if further divi-
sions are needed.

Let W, denote the dominant word
height of a given document image popula-
tion. Then the procedure hypothesizes that
all the detected word blocks whose heights
exceed SW; could be split further, where 8
is a real constant and has a default value
of 8 = 2.0. For each word block which is
hypothesized to be divided further, the al-
gorithm will verify it by computing all pos-
sible cut points in the projection profile of
the posterior probability map image along
the height direction and within the bound-

ing box of the dubious word block.

Let H and W denote the height and
width of the word block. Let P[h,w] rep-
resent the posterior probability map im-
age inside the word block window, where
l1<h< Handl <w < W. Let f(h)
denote the calculated probability projec-
tion profile. Then f(h) = 3 Yooey Plh, w],
where 1 < h < H. The cut points of the
projection profile f(h) are defined as the
local minimums of f(h) in a neighborhood
of size W), and whose values are less than
or equal to a cut-point threshold T, where
0.0 < T, < 1.0 and T, has a default value
of 0.5. If the number of such detected cut
points other than the two end-points (h =1
and h = H) is greater than zero, then the
word block needs to be split further. The
following algorithm describes the procedure
to compute the cut points in the projection

profile f(h):
Algorithm:

1. Morphologically open the projection
profile f(h) by a zero-height flat struc-
turing element of size Wj/2, denoted
by k1. This will remove the narrow up-
shoot spikes in f(h). Let fi = f o k.

2. Morphologically close fi(h) by a zero-
height flat structuring element of size
D,,, denoted by k;. This will bridge
the narrow valleys in fi;(h) and en-
sure that the cut points are at least
D,, pixels wide. We select the default
Dm = 5. Let f2 = f1 .kz.

3. Morphologically erode f2(h) by a zero-
height flat structuring element of size
Wh, denoted by k3. Let f3 = fo © ks.
Then the set of possible cut points
is defined as {h € [1,H] | fa(h) <
T. and fo(h) = fa(h)}, which is the
set of local minimums of fz(h) in a
neighborhood of size W), and whose
values are less than or equal to the
cut-point threshold T. O
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Once the cut points are located, the in-
put word block is split at the cut points and
the bounding boxes of the sub-word blocks
are re-computed.

Figure 4 plots the word height and
width probability distributions among the
168 document images described in Sec-
tion 2.3. The document images were sub-
sampled at a spatial resolution of 150dpi.
From the figure, we observed that the dom-
inant word height is W), = 15, which is
equivalent to a word height of about 7-8
points (1 point ~ 1/72 of an inch).

4 Experimental protocol

In the previous section, we outlined a word
segmentation algorithm. The algorithm re-
quires the posterior probability P(L =1 |
Y = y) to be estimated. Also, to make
the word segmentation algorithm fully au-
tomatic, we need to develop a procedure to
estimate the optimal threshold parameter
Tp on a per image basis.

4.1 Posterior probability distribu-
tion estimation

The estimation of the posterior probabil-
ity distribution is based on the 168 syn-
thetic document images. The process to
create the ground truth layout structures
for these images is described in Section 2.
To compute the posterior probability dis-
tribution, we first generate a word mask
image for each of the 168 document im-
ages. The word mask image is bi-level and
has a binary one pixel if and only if the
pixel is a word pixel. Each document im-
age and its corresponding word mask image
are then rotated at various degrees of 0°,
+0.2°, +0.4°, +0.6°, using a nearest neigh-
bor interpolation algorithm. The range of
rotation angles is selected because our skew
estimation algorithm is capable of detecting
text skew angles on document images which
are within 0.5° of the true text skew angles

at a probability of 99% [11]. This generates
a total input training image population of
1176 = 168 x 7 images. Each image is of

size 1650 x 1275.
We adopt a rather brute-force method

to estimate the posterior probability P(L£ =
1Y =y):

PL=1[Y=y)
P(L=1Y=y)
P(Y=y)
P(L=1,Y=4y)
P(L=0,Y=y)+P(L=1,Y=y)

The joint probability distributions can
be substituted with the frequency counts
#(L = 0,Y = y) and #(L = 1,Y =
y). The counting processes are simplified
in our case because the observation vec-
tors ¥ = (v1,¥2,¥3) are integer vectors
and bounded within the 3-dimensional cube
[0, N] x [0,N] x [0, N], where N is the al-
lowed maximum output integer value of the
closing transform [13]. For word segmenta-
tion, we choose N = 63.

In this paper, we further assume that
P(L =1 | Y = y) is symmetric with re-
spect to the first two coordinates of Y, i.e.
PL=1|Y=(y,92,93)|=P[L=1]Y=
(v2,%1,¥3)]. This will permit the posterior
probability distribution to characterize text
words laid out in both the horizontal and
the vertical directions. Therefore, we esti-
mate P(L = 0,Y = y) from the frequency
count #(£ = 0,Y = (v1,92,93)) + #(L =
0,y = (?/2,?/1:?/3)) and P(E =LY = ?/)
from the frequency count #(£ = 1,Y =
(y1,92,93)) + #(L = 1, ¥V = (2,91, 93))-

4.2 Word segmentation algorithm
evaluation

The output of the word segmentation algo-
rithm is a set of word bounding boxes. To
evaluate its performance, we need to com-
pare the output word bounding boxes with
the ground truth word bounding boxes pro-
vided through the procedure given in Sec-
tion 2. Let ¢ = {G1,Ga2, - -, GN} Tepresent
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the total of N ground truth word bounding
boxes and let P = {D;,Dj,---,Dp} de-
note the total of M detected word bound-
ing boxes from the word segmentation al-
gorithm. The evaluation problem can be
formally stated as follows:

Given two sets of bounding bozes G and
D. FEstablish the element mappings be-
tween the two sets and report the numbers of
miss detections (1-0 mappings), false detec-
tions (0-1 mappings), correct detections (1-
1 mappings) and splitting detections (1-m
mappings), merging detections (m-1 map-
pings) and spurious detections (m-m map-
pings).

To establish the element mappings,
we first define the similarity between two
bounding boxes A and B, denoted by
s(A, B):

Area(AN B)

s(4,8) = Area(A)

where A N B denotes the region where A
and B overlap. The similarity defines the
percentage area coverage of A by B.

Then based on the similarity measure,
we define two mappings ¢ : G — D and
d:D—G:

9(Gi) =
d(D;) =

where g(G;) denotes the set of D; € D that
has the highest percentage area coverage by
G; among all other boxes in G. and d(D,)
denotes the set of G; € G that has the high-
est percentage area coverage by D; among
all other boxes in D. Therefore, we estab-
lish links from G; to g(G;) and from D; to
d(D;).

Based on the two functions ¢ : G — D
and d: D — G, we can establish mappings
between the elements of G and D. The rules
are described as follows:

{D; € D|G; =arg maxs(D ,X)}

{Gi€G|D;=arg Elggp(é‘(G;,X)}

1. If there exists a G; such that
8(Gy,Dj) = 0 for all j = 1,2,---, M,

then the G; is counted as a miss de-
tection (1-0 mapping).

2. If there exists a D; such that
s(D;,G;) =0foral i = 1,2,.--, N,
then the D; is counted as a false de-
tection (0-1 mapping).

3. There is a correct detection (1-1 map-
ping) between G; and Dj if and only
if g(G;) = {D;} and d(D;) = {Gi}.

4. There is a splitting detection (1-m
mapping) between G; and {D,,, Dj,,,
-+, Dj 1} if and only if, 1) ¢(G;) =
{Dj,,Dj,,---,Dj.}; 2) there exists
one Dy € g¢(G;) such that d(Dg) =
{G;} and for all D € g(G;) but D #
Do, d(D) = 8; 3) for all D ¢ ¢(Gy),
G; ¢ d(D).

5. There is a merging detection (m-
1 mapping) between {Gi,, Gi,, -,
G;.}and D;if and only if, 1) d(D;) =
{G,,Giy, - +,Gi}; 2) there exists
one Go € d(Dj) such that g(Go) =
{D;} and for all G € d(D;) but G #
Go, 9(G) = 0; 3) for all G ¢ d(D;),
D, ¢ 4(G).

6. Any other detections are counted as
spurious detections (m-m mappings).
O

Once the element mappings between G
and D has been established, we count the
numbers of miss, false, correct, splitting,
merging and spurious detections. Let Ny,
Np1 and Nq; be the numbers of miss, false
and correct detections, respectively. Let
N{ ., N2, and N, denote the numbers of
words in the G that have the 1-m, m-1 and
m-m ma.ppings with words in the D. Sim-
ilarly, let N&., N&, and N2 _ denote the
numbers of words in the D tha.t have the
1-m, m-1 and m-m mappings with words in
the G. Then the following relations satisfy:
1) N = Nyo+ Ny1 + N{,, + N2, + Ng

mi 2)
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M = Noy + Ny + NE, + N3, + N2 5 3)
N]!.,m < N‘fm; 4) Ngtl 2 Ngtl

The performance of the word segmenta-
tion algorithm can be measured through a
goodness function. Let it be denoted as x.
It is defined by:

k = min(Ky, K2)
where

(70N1o + 111 N1 +
‘Ylmem + Ym1 N':‘Ll + ‘YmmN'g‘Lm)/N

xi =

K2 =

(vo1No1 +v11 Nu1 +
'YlmN;[dm F Yma N:,,l + ‘YmmN-,‘im)/M

and the 710, Yo1, Y11, Y1ims ¥m1 and Ymm
are economic gain coefficients for the miss,
false, correct, splitting, merging and spu-
rious detections. The larger the goodness
measure k, the better the performance of
the word segmentation algorithm. In the
experiment, we choose the economic gain
coefficients as in Table 1.

4.3 Optimal threshold deter-
mination

In the word segmentation algorithm, there
is a threshold value T, that needs to be com-
puted on a per image basis. Therefore, it is
necessary to develop an automatic proce-
dure to predict the optimal threshold value
on the fly. Our approach to this problem
is to first determine the optimal threshold
values for each of the training document im-
ages and then construct a regression func-
tion to predict the optimal threshold value
given the histogram of the posterior proba-
bility map image [11].

Given an input document image, « is
a function of the threshold value T}, i.e.
k = k(Tp). The optimal T}, is defined as the
value that produces the best word segmen-
tation goodness measure. Let TgP* denote
the optimal threshold value. Then,

T = arg [ max k(7).

Figure 5 illustrates the probability dis-
tributions of the optimal threshold values
T;,’Pt and the corresponding goodness mea-
sures for the 1176 training document im-
ages. The cumulative probability is defined
as the Problk > Kg], i.e. the probability
that the goodness measure « is no less than
Ko. We observe that the optimal thresh-
old values lie approximately in the range of
[0.5,1.0].

5 Experimental results

5.1 Performance on the training
image population

To benchmark the optimal performance of
our word segmentation algorithm, we tested
the algorithm on the 1176 training docu-
ment images described in Section 4.1 un-
der the optimal threshold setting T, = Tg?*.
Table 2 and Table 3 illustrate the percent-
ages of miss, false, correct, splitting, merg-
ing and spurious detections with respect to
the ground truth as well as the algorithm
output. The word boxes from displayed
math zones are excluded during the evalu-
ation because the ground truth word boxes
for mathematical formula (displayed or in-
line) are not accurate (Section 2.3). Of the
429,338 ground truth words, 95.2026% of
them are correctly detected. 1.9658% and
2.5530% of the words are split or merged,
respectively. The total miss and spurious
detections account for about 0.3% of the
total ground truth words. On the other
hand, of the 434,390 words detected by
the algorithm, 94.0954% of them are cor-
rectly detected as the ground truth words.
There are 4.4191% and 1.1372% of the de-
tected words are derived from either split
or merged ground truth words, respectively.
The total false and spurious detections ac-
count for about 0.3% of the total algorithm
output.

Perfect Document Layout Ground Truth Generation and Simultaneous Word Segmentation



5.2 Performance on the testing
image population

To assess the optimal performance of the al-
gorithm on other document image popula-
tion, we first prepared a new set of 96 IATEX
document pages, and then created the cor-
responding TIFF images and the ground
truth word bounding boxes using the pro-
grams described in Section 2. Each of the
96 document images and its corresponding
ground truth word bounding boxes are fur-
ther rotated at various degrees of 0°, £0.2°,
10.4°, +0.6°. This generates a total of 672
testing document images.

Under the optimal threshold settings
(T, = TgP'), Table 4 and Table 5 illus-
trate the percentages of miss, false, correct,
splitting, merging and spurious detections
with respect to the ground truth as well
as the algorithm output. Of the 258,328
ground truth words, 95.0667% of them are
correctly detected. There are 1.6015% and
2.7573% of the words are split or merged,
respectively. The total miss and spurious
detections account for less than 0.6% of the
total ground truth words. On the other
hand, of the 258,802 words detected by
the algorithm, 94.8926% of them are cor-
rectly detected as the ground truth words.
There are 3.5896% and 1.1441% of the de-
tected words are derived from either split
or merged ground truth words, respectively.
The total false and spurious detections ac-
count for less than 0.4% of the total al-
gorithm output. The evaluation does not
exclude the word boxes from the displayed
mathematical formula. This explains the
slight changes in the percentages for the
split, merged and spurious detections. But
otherwise, the performance of the word seg-
mentation algorithm on the testing docu-
ment images is not significantly different
from that on the training document images
because the training set is sufficiently large.

Figure 6 and Figure 7 illustrate two ex-
amples of the word segmentation results.

From the images, we observe that the word
segmentation algorithm performs almost
equally well on synthetic and real document
images. The whole process takes about 30
seconds per image on a Sun Sparc 10 work-
station.

6 Conclusions and
future work

We presented an automatic method for gen-
erating a large amount of accurate docu-
ment layout ground truth data from BRTEX
files. The generated layout ground truth
data is then used to train and evaluate a
word segmentation algorithm which is ca-
pable of simultaneously detecting all the
words on a document image and is trainable
to any given document image population.
We described an experimental protocol on
how to train and evaluate the word segmen-
tation algorithm. The experimental results
demonstrate that under the optimal algo-
rithm parameter settings, the correct word
detection percentage is about 95% on both
training and testing document images (a to-
tal of about 600,000 words). We achieve
this performance even with the presence of
some small amount of skews.

We are currently developing procedures
to make the word segmentation algorithm
fully automatic so that it is capable of pre-
dicting the optimal threshold parameter T},
on a per image basis. A regression tree
function can be constructed to predict the
TPt given the histogram of the posterior
probability map image, similar to the pro-
cess described in [11]. Our future work will
also include extending the current word seg-
mentation technique to the text line and
zone segmentation.
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Figure 1:
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Abatract

The epening transformation on N-dimenrional dis-
crete apace Z¥ G dircussed. The irenaform is off
cient o compute the binary opening (closing) with any
sised siractaring elemeni J also provides a quich way
10 calcalole the paliera speciram of an image. The
patiern rpecirem i Jound o be sathing mors thew ¥
Mstogram of the opraing transform. An efficient twe-
Pass recrsiva opening tremaform slgorithm is deval
oped and implemented. Tha eorrecimess of ihe alge-
itk is proven end some esperimental revslis are giv-
en. The resudts have shown that (he execulion time of
the algorithm is & Linear function of n, where 1 s the
product of the member of binary one pimels in the inpui
binary image and the numiber of goints is the stractan
ing slemend. When (e inpul binary imege sive is 256
X 258 and 50% of the image ia covered by the dine-
ry ome pinels, il takes appromimataly 250 milkiseconds
10 do an erbitrary sited Koe opeming wnd it takes ap-
provimately 500 vuillisersnds ia do en srbitrary sissd
ot spening on (he Sun/Sparc Il worksiation (with C
compiler optimisation flag on).

1 Introduction

‘The mathematical morphology has drawn mach at-
tention in the computer visim community since the
imitial wark by Serrs. [1). The tochnique i proven Lo
be a very powerful tool in shepe snalysin. There is
& large body of Héerature addreasing the theoretical
aspecte of the morphological aperatory [2] as well as
their various applications [3].

However, one of the chalkugizg probleme remain.
Ing in this ares b to develop efficient algorithme to
perform the marphological operetions. This kind of
devalopmaat will bave & grest impact on many reak
tlme vision syatems where the morphological opets-
tlons are computationally inteusive, repecially whea
e sise of the structuring elememia becomes lacge.

Illustrates an

Oue way out of this dilemma Is to develop recarsive
morphological fillers. The recursive morphological op-
erator is ane type of morphological operatar whose
output depends Dot cnly on the input pixels which
are covered by the domain of the stracturing clement,
but also on one or more previowsly corgruted output
valurs The recursive fillers are generally computs-
tionally mare efficient than thelr nan-recuralvs coun-
terparts. Basalick (5] end Bertrand [6] described one
such type of  fiker, the generalised distance trans-
form (GDT) which s a generalisation of the distance
tranaform it developed by Rosenfeld aod Plaks [4].
The GDT i wery efficient in performing the bivary
erosion with an arbitrary sised structuring element.
For a N-point strurturing element, the required max-
imum pumber of operalions per pixel i N + 2.

In this paper, we will first review pome of the mor-
phological operations and the GDT. Then we will in-
Wroduce the concept of the opening tramsform (OT)
and show how it can bo used to cakculate the bioacy
opening with an arhitrary sived siructoring elomen-
1. The opening transform abo provides & quick way
to compute the pattera spectrum of an image. It i
found that the paiters specirum i aothing mote than
» bistogram of the opening tzansform (3} Az efi-
cient two-pass recursive opening transform algorithm
requiring sbout 14N operations per pixsl for an N-
point structuring element is described in detail. The
theoretical proof of the alogrithm is not given dne 1o
the lack of space. Finally, some experimental reauhts
are

2 Definitions and Notations

In thie section, some of the morpbological opera-
Uons and the geoeralised distance tramsform are re-
viewed. Let A, K are sl in Z¥.

Definition 1: The dilation of A by & sructusiag cle-
ment K I denoted by AGK sad is deflaed by ABK =

example document
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Figure 2: Illustrates the hierarchical layout representation of the example

document page. (a) Zone bounding boxes; (b) Line bounding boxes; (¢) Word
bounding boxes; (d) Character bounding boxes.
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Figure 3: Illustrates the word segmentation process. (a) sub-sampled 150dpi
image; (b) correlated posterior probability map image; (c) thresholded word
block image; (d) word bounding boxes.
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Figure 5: Illustrates the probability distributions of the optimal threshold
values TP and the corresponding goodness measures for the training document
images.
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Table 1: Economic Gain Coefficients

Table 2: Algorithm performance with respect to the ground truth on the train-

ing image set.

Y10 | Yo1

Y11

Yim

Ym1

Ymm

0.0 | 0.0

1.0

0.5

0.5

0.0

Total Ground Truth Words Correct Splitting Merging Miss | Spurious
429338 408741 8440 10961 376 820
(95.2026%) | (1.9658%) | (2.5530%) | (0.0876%) | (0.1910%)

Table 3: Algorithm performance with respect to the algorithm

training image set.

output on the

Total Detected Words Correct Splitting Merging False | Spurious
434390 408741 19196 4940 763 750
(94.0954%) | (4.4191%) | (1.1372%) | (0.1756%) | (0.1727%)

Table 4: Algorithm performance with respect to the ground truth on the testing

image set.

Total Ground Truth Words Correct Splitting Merging Miss Spurious
258328 245584 4137 7123 846 638
(95.0667%) | (1.6015%) | (2.7573%) | (0.3275%) | (0.2470%)

Table 5: Algorithm performance with respect to the algorithm

testing image set.

output on the

Total Detected Words Correct Splitting Merging False | Spurious
258802 245584 9290 2961 313 654
(94.8926%) | (3.5896%) | (1.1441%) | (0.1209%) | (0.2527%)
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Figure 7: Illustrates a real document image overlaid with the extracted word
bounding boxes.
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