Inexact MDL for Linear Manifold Clustering

Robert M. Haralick

Computer Science, Graduate Center City University of New York

< D > < P > < E >

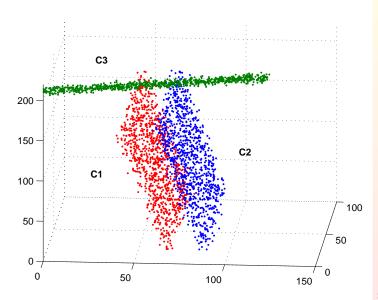
Structure and Dependency

Clustering

- Population has multiple subpopulations
- Observe a Sample of Measurements from the Population
- Identify the subpopulations (Structure)
- For each subpopulation
 - Determine its Center which Serves as the Origin
 - Characterize the relationships among the variables (Dependency)
 - Characterize the Region in Measurement Space Associated with Measurements from each Subpopulation (Structure)
- For any new measurement tuple
 - Determine the Subpopulation to Which It Belongs
 - Adapt the cluster description to new data points

- The cluster mean is the center
- There are no dependencies between variables
- A new measurement is associated with the cluster having the closest center
- Its fitted value is the cluster center

Linear Manifold Clusters



ヨー つへで

Linear Manifold Clustering

- The cluster mean is the center
- K-Dimensional Linear Manifold
 - The columns of $B^{N \times K}$ are the basis of the linear manifold
 - $x^{N \times 1} = \mu^{N \times 1} + B^{N \times K} \alpha^{K \times 1}$ for some α
 - α is a random vector with large covariance
- Dependencies
 - The columns of $\bar{B}^{N\times N-K}$ are the basis of the orthogonal complement space
 - $\bar{B}'(x-\mu) = \beta$
 - β is a random vector with small covariance
- A new measurement is associated with cluster *C_m*, having the closest manifold

•
$$\rho(x, C_m) = || \bar{B}'_m(x - \mu) ||^2$$
 is minimum over all clusters

•
$$\rho(\mathbf{x}, \mathbf{C}_m) \leq \theta$$

Linear Manifold Clustering Dependencies

1-D Manifold

 $\boldsymbol{\lambda}$ is the coordinate relative to the Linear Manifold

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_N \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{pmatrix}$$

If x_1 is given, then

$$\lambda = \frac{x_1 - \mu_1}{b_1}$$

$$k_n = \mu_n + \lambda b_n$$

$$= \mu_n + \frac{x_1 - \mu_1}{b_1} b_n$$

$$= \mu_n - \mu_1 \frac{b_n}{b_1} + x_1 \frac{b_n}{b_1}$$

Description Length Model

- Represent the Manifold
- Represent the relative coordinates of a vector in the Manifold
 - Project the vector onto the Manifold
- Represent the distribution of projections on each basis vector of the orthogonal complement space
- Alternative
 - Approximately represent the Manifold orthogonal complement of a vector
 - Project the vector onto the orthogonal complement
 - Represent it approximately

The Linear Manifold

- Linear Manifold has dimension M
- Let the columns of *B^{N×M}* be the orthonormal basis of the Manifold

イロン 不得 とくほ とくほとう

• Relative coordinate projection of x onto the manifold

• $B'(x-\mu)$

N-space coordinate projection of x onto the manifold

•
$$\mu + BB'(x - \mu)$$

The Manifold Orthogonal Complement

- Let the columns of $\bar{B}^{N \times N-M}$ be the orthonormal basis of the Manifold Orthogonal Complement
- Relative coordinates of projection of *x* onto the manifold orthogonal complement space

•
$$\bar{B}'(x-\mu)$$

 N-space coordinate of projection of x onto the manifold orthogonal complement space

イロト イポト イヨト イヨト

•
$$\bar{B}\bar{B}'(x-\mu)$$

Model Encoding

- N-dimensional space
- μ
- N numbers
- B and B
 - N² numbers
 - Constraints
 - Norm 1 N constraints
 - Orthogonal N(N 1)/2 constraints
 - $N^2 N N(N-1)/2 = N(N-1)/2$
- Total N + N(N-1)/2 = N(N+1)/2
- Precision is number of bits
- Precision *P_M* for all numbers of manifold basis

イロト 不得 とくほ とくほとう

• Total Bits $P_M N(N+1)/2$

Data Encoding

- J data points
- Precision P_D for coordinates on the Manifold
- $P_D < P_M$
- Manifold has dimension M
 - JMP_D Bits
- All squared errors will be less than ϵ^2
- S(c) bits on the Manifold Orthogonal Complement
 JS(c) bits

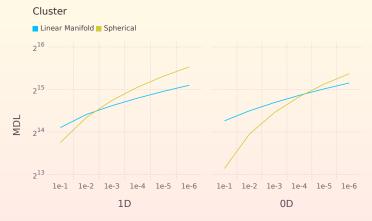
< □ > < □ > < □ > < □ > <

• Total is $J(MP_D + S(\epsilon))$

- *K* = *N M* components need to be encoded
- $[-A_k/2, A_k/2]$ range of values for the kth component
- Equal interval quantize with N_k bins
- Each interval has width A_k/N_k
- Assume uniform distribution in each of the N_k intervals
- Variance of the distribution in each interval is $\frac{1}{12} \left(\frac{A_k}{N_k}\right)^2$
- Require $N_k, k = 1, ..., K$ to satisfy $\frac{1}{12} \sum_{k=1}^{K} \left(\frac{A_k}{N_k} \right)^2 \le \epsilon^2$
- Probability p_{nk} for interval n of component k

•
$$S(\epsilon) = -\sum_{k=1}^{K} \left[\sum_{n=1}^{N_k} p_{nk} \log p_{nk} \right]$$

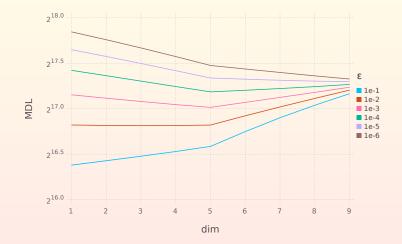
K-means vs MDL



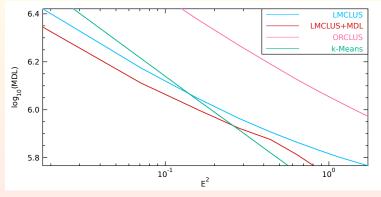
ε **by** MDL_Type

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

5D Cluster in 10D space



Comparison



LMCLUS+MDL is better than K-Means for smaller errors

- Temperature and Precipitation have different scales
- Each field is normalized

 $\frac{x - x_{mean}}{x_{max} - x_{min}}$

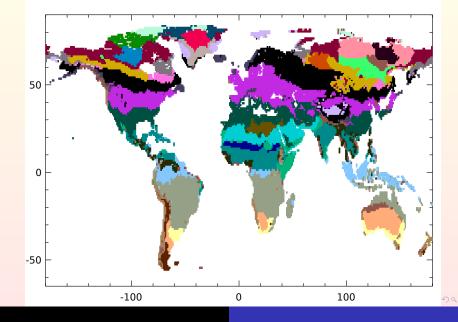
イロト イポト イヨト イヨト

3

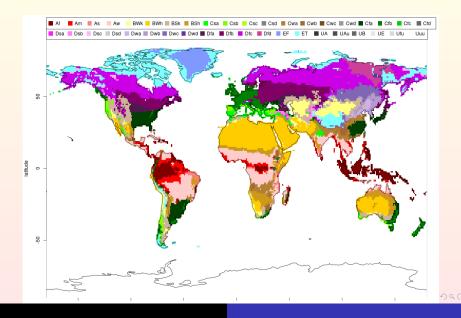
24D Climate Data

- *ϵ* = .001
- 1951-1980
- Resolution 1° × 1°
- CRU 3.22 data set
 - Monthly Surface Temperature Averages
- Global Precipitation Climatology Centre
 - Monthly Precipitation Averages
- 12 Monthly Temperatures Averaged over 30 years
- 12 Monthly Precipitation Averaged over 30 years

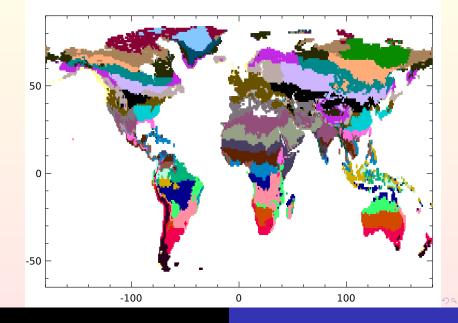
MDL Linear Manifold Clusters



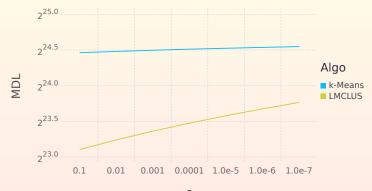
Koeppen-Geiger Map



K-Means Clusters



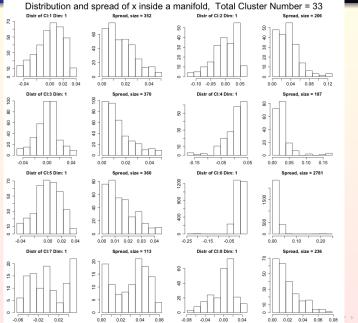
Description Length Comparison



ε

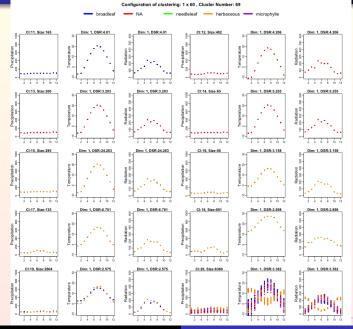
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Within Cluster Distribution



Ð.

Within Cluster Distribution



► <u></u> = •) <