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Abstract—We present a regularization technique based on
the minimum description length (MDL) principle for the linear
manifold clustering. We suggest an inexact minimum description
length method based on describing the data structure as linear
manifold clusters. We examine the behavior of the proposed
method and compare it performance against simulated clustering
results of various dimensionality and structure. Finally, we
empirically evaluate the proposed technique on a climate data.

I. INTRODUCTION

Minimum Description Length (MDL) can be understood to
be a technical specification or formalization of the Occam’s
razor principle to understand a data set. One way to pose the
general problem is given a data set, define a language in which
to represent the data set so that the data set described in the
language is a meaningful description and the number of bits for
the representation in the language is minimal. This is different
from data compression in the sense that data compression only
uses information theoretic methods to minimize the number
of bits to represent the data set, but the representation in
itself is not meaningful. It does not give any insight into the
structure of the data. If there are multiple possible languages
for describing the data, minimum description length can be
the principle for deciding which is the best language.

Our description language is the language of linear mani-
folds. Each linear manifold cluster consists of the description
of the linear manifold and the coding of the data associated
with the linear manifold is given by encoding the orthogonal
projection of each data point onto its manifold and the encod-
ing of the difference between its position off the manifold and
its orthogonal projection on the manifold. The inexactness of
the description arises because the description of the position
of each data point off the manifold is described not exactly,
but with some controlled error.

Section II is a literature review. Section III is a technical
description of the linear manifold clustering stochastic search
technique. Section IV describes how the MDL principle is
used to determine whether to accept a cluster or not. Section
V discusses our results and section VI concludes the paper.

II. LITERATURE REVIEW

Subspace clustering [1] is a special case of linear manifold
clustering, where the basis vector set for each cluster is a

subset of the natural basis vectors of the space. Data can be
well approximated by a mixture of linear manifolds (linear
or affine subspaces). Haralick and Harpaz [2] presented a
linear manifold clustering algorithm (LMCLUS) which is a
strict partitioning clustering algorithm that performs stochastic
search on the dataset in order to find best possible location of
the linear manifold clusters. Kak [3] used a linear manifold
representation of a fixed number of clusters, obtained by
sampling the original dataset and minimizing the reconstruc-
tion error from point assignments to cluster prototypes. Peng
et al. [4] constructed linear manifold cluster prototypes by
performing spectral decomposition of small random samples
with subsequent assignment of the rest of the dataset points
to a nearest subspace cluster prototype. Wang et al. [5] used
a mixture of probabilistic PCAs to form a collection of linear
manifolds on the dataset.

Moreover, many linear methods fail to provide good perfor-
mance when applied to nonlinear structures. On the other hand,
nonlinear methods, such as nonlinear dimensionality reduction
techniques, can be naturally used on linear manifolds [6]–[8].

Rissanen at al. [9] presented an approach where data and
noise are separated, and the code length of the model is
restricted by a parameter. The hypothesis selected by MDL
captures all the structure inherent in the data. Given the
hypothesis, the data cannot be distinguished from random
noise.

III. LINEAR MANIFOLD CLUSTERING

The cluster ideal in Linear Manifold Clustering is a linear
manifold. A linear manifold of dimension zero is a point. A
linear manifold of dimension 1 is a line. A linear manifold
of dimension 2 is a plane. In general, a linear manifold is
a translated subspace. The dimension of the linear manifold
is the dimension of the subspace. K-means is a special case
of linear manifold clustering where the linear manifold has
dimension zero.

Linear manifold clustering is appropriate in the case that
there are linear dependencies among the variables, each clus-
ter having a different number and different kinds of linear
dependencies. Let us take an example to make this clear.
Suppose that we are in a three dimensional space with three
clusters. The first two clusters have one linear dependency.



Their linear manifolds are planes. In our example the planes
are parallel. The third cluster has two linear dependencies.
Its linear manifold is a line. The observed data points can be
thought of as points whose ideals are on their manifolds, but
were slightly perturbed off their manifolds, see Fig. 1.
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Fig. 1. Example of points forming three linear manifold clusters. The green
cluster is one dimensional. The blue and red clusters are two dimensional and
parallel [2].

Linear manifold clusters [2] can be found by a stochastic
search procedure, beginning with the one dimensional linear
manifold clusters and proceeding to higher dimensional clus-
ters. A one dimensional linear manifold is determined by two
points. The stochastic search samples two points from the data
set, forms the manifold, and then the distances from all points
to the discovered manifold are calculated. If the manifold is
indeed one that has many data points close to it, the distance
histogram will have a peak close to 0 distance followed by a
valley and then a rise to a long fat tail or another peak far
from the origin, see Fig. 2.
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Fig. 2. Example of a distance to manifold histogram that shows that a linear
manifold cluster can be formed from the test manifold [2].

If this happens, then a suitable threshold can be found that
separates the data points that are near to the manifold from
those data points that are far away from the manifold. The data
points that are near the manifold are collected together and

are used to make a good statistical estimate for the manifold
basis and offset. The manifold basis is given by the first M
principal components of the cluster data points, where M is
the dimension of the manifold. The offset can simply be the
mean of the data points in the cluster. Manifolds that do not
have the right shaped distance to manifold histograms do not
get the chance to form clusters.

Our linear manifold clusters must satisfy two criteria. First,
the goodness of a separation between the mode near zero
and rest of the point-to-manifold distance histogram modes
should be larger then the user specified. This criterion is fully
explained in [2]. Second, the cluster compression ratio, defined
as the ratio between the linear manifold cluster description
length and the uncompressed description length of the cluster,
should be larger then the user defined threshold. This criterion,
in effect, acts as an internal validation the cluster goodness-
of-fit, and it is a new addition to the algorithm described in
[2].

IV. MDL LINEAR MANIFOLD CLUSTER DESCRIPTION

First we determine the number of bits it takes to encode
the translational offset of the linear manifold and then the
orthonormal basis vectors spanning the linear manifold. Then
we determine the number of bits it takes to encode the points of
the candidate linear manifold cluster to within a given squared
error.

Let X = {xj ∈ RN | j = 1, . . . , J} be the points associated
with the M -dimensional linear manifold cluster M. It is
described by a set of orthonormal basis vectors, that span
the linear manifold, B = {bm ∈ RN |m = 1, . . . ,M} and
a translation vector µ ∈ RN .

a) Model Encoding: The encoding of the translation
vector µ requires N numbers.

To represent any vector x, after its translation, we need the
basis vectors spanning the manifold and we need the basis
vectors orthogonal to the manifold. From the basis vectors
spanning the manifold we can determine the relative coordi-
nates of the orthogonal projection of x to the manifold and
from the basis vectors spanning the orthogonal complement
space, we can determine the orthogonal projection of x to the
complement space.

Since the basis vectors of the linear manifold and its orthog-
onal compliment space are orthonormal, we can represent the
basis vectors in less than N2 numbers. We can use a decoding
schema that uses the orthonormal constraints in recovering the
N basis vectors. Each basis vector has norm 1. This constitutes
N constraints. The orthonormality constraints specify another
N(N − 1)/2 constraints. The total number of orthonormality
constraints is then N(N + 1)/2.

To describe the linear manifold requires N numbers for the
offset of the manifold from the origin plus N2−N(N + 1)/2
numbers for basis vectors. Letting Pm be the number of bits
used for encoding each component of the offset and each of
the numbers required to calculate the basis vectors. Then the
total number of bits, L(H), required to specify the structure
of a linear manifold and its orthogonal complement space is



L(H) = Pm[N +N(N − 1)/2)] = PmN(N + 1)/2 (1)

b) Data Encoding: Let BN×M be a matrix whose
columns are the orthonormal basis vectors spanning the linear
manifold. Then the relative coordinates of the orthogonal
projection of a vector x − µ to the manifold is given by
BT (x − µ). This is a vector of dimension M × 1. Each of
the M components of this vector will be encoded with Pd

bits.
Let B̄N×N−M be a matrix whose columns are the basis vec-

tors spanning the orthogonal complement space. The relative
coordinates of the orthogonal projection of a vector x− µ to
the complement space of the manifold is given by B̄T (x−µ).
This is a vector having N−M components. The reconstruction
of that part of x that lies in the orthogonal complement space
is given by B̄(B̄T (x− µ)).

The total number of bits required to encode data D given
a model H is

L(D|H) = J [PdM + S(ε)] (2)

where J is number of points in the linear manifold cluster,
S is the entropy of the distribution of cluster points, in the
orthogonal compliment subspace to the linear manifold of the
cluster, calculated to be correct within the fitting error ε.

We assume that each of the K = N − M components
of that part of x that lies in the orthogonal complement
space is uniformly distributed, but that the interval of the
uniform distribution is different for each component. For
component k, we let the uniform distribution be defined on
the interval [−Ak/2, Ak/2]. We will quantize the interval
[−Ak/2, Ak/2] into Nk equal length quantizing intervals and
encode component k by the index of the quantizing interval
into which it lies. Since the intervals are all equal length,
knowing the index of the subinterval into which a value falls,
permits the value of to be approximated by the mean of the
subinterval into which it falls. The squared error is then the
variance of a uniform distribution over the subinterval.

Set the log of the total number of quantized choices in the
K-dimensional space equal to a given C =

∑K
k=1 logNk.

From this it follows that the integer value of Nk can be
taken to be the smallest integer Nk satisfying

Nk(C) = dAke
(C−

∑K
j=1 logAj)/Ke (3)

The interval lengths A1, . . . , AK are given and fixed. The
values of N1, . . . , NK are each dependent on the value of C.
So we can write the squared error E2 as the variance of a
uniform distribution over all subintervals of the K quantized
components,

E2(C) =
1

12

K∑
k=1

(
Ak

Nk(C)

)2

(4)

If we operate under the protocol that the quantizing must be
done fine enough, such that for the user specified quantization
error bound ε, the value of C is small enough to satisfy

E2(C) < ε2 (5)

then is not hard to show that the value C is defined over
the interval

[0,K logNmax] +

K∑
j=1

logAj −min
k

logAk

We can find the optimal number of quantization intervals
Nk with a given user defined precision value ε by performing
a search for appropriate value of C in the above interval such
that it would satisfy condition (5).

Given the value C that satisfies (5), we can calculate
the number of bits required to encode the position of the
cluster point in the orthogonal complement space of the linear
manifold cluster. The value C corresponds to the entropy S of
a distribution of cluster points in the orthogonal compliment
space, that is required in (2). Since the logarithms are to base
e, C does not have the meaning of bits. But

C

log 2
=

K∑
k=1

log2Nk

does have the meaning of bits.
Using the above descriptions of model (1) and data message

(2) length, the total length of the message for linear manifold
cluster (LMC) is calculated as

L(ε) = PmN(N + 1)/2 + J(PdM + S(ε)) (6)

From (6), we can see that two factors affect description
length - the precision constants and the entropy. If simple mod-
els of the linear manifold cluster are favored then the entropy
and the precision parameters should be proportionate. It would
allow stable growth of the description length with respect to
the size and the dimensionality of the linear manifold cluster.

If we want to determine a optimal clustering parameters,
it is important to use the encoding that does not calculate
the data points in the clusters, but the distribution of the
data points in each of the clusters. The difference is this: to
characterize the data points in the cluster, the number of bits
required will increase with the number of data points. However
the characterization of the distribution does not depend on
the particular number of points: it depends on representing
the various parameters of each of the clusters so that from
the representation a sample of data points can be generated
that would be indistinguishable from the original sample. Or
to say this another way, the clustering is to characterize the
population from which the observed data has been sampled.

We use model encoding schema as given in (1), as for data
encoding is determined based on a the spread of the data on
the manifold and as well in the orthogonal complement space.

For an M -dimensional manifold, we can use the first M
eigenvalues as the variance of the spread on the manifold.



Since this is from a principal components, the covariance ma-
trix is diagonal. The distribution of the data on the manifold,
then can be described as a Normal distribution with the mean
being given by the translation vector and the covariance matrix
being diagonal with the diagonal entries coming from the first
M eigenvalues of the principal components.

For the orthogonal complement subspace, we assume a more
general model that allows for a description that is accurate
to within a user specified error. We model the distribution
based on the quantization of orthogonal complement subspace
N−M dimensions. Each of these dimensions has an observed
minimum value, a maximum value and number of quantized
bins as determined by the entropy calculation and the user
specified error. As well, each of the bins has a probability. To
generate points in the orthogonal complement space, for each
of its dimensions, we can choose a bin in accordance with the
bin probabilities and within a bin choose a value uniformly
distributed between the quantizing boundaries of the bin.

The M coordinates generated from the manifold and the
N −M coordinates chosen from the orthogonal complement
space then can be used as coefficients of their respective basis
vectors to produce a vector in the N -dimensional space.

L(D|H) = Pd

(
N + 2

N∑
m=M+1

Qm

)
(7)

where Qm is the number of quantized levels for orthogonal
complement dimension m.

We can assume that because of the MDL in the clustering,
regardless of the value of the input parameters that the user
set, the clustering gives an appropriate characterization of the
distribution of the population from which the observed data
set was sampled. The best characterization of the population
is the characterization that has fewest bits and calculated as

L(ε) = PmN(N + 1)/2 + Pd

(
N + 2

N∑
m=M+1

Qm(ε)

)
(8)

V. RESULTS

Finally, we would like to understand how well MDL eval-
uates the goodness of a linear manifold cluster. Suppose, we
have a 2D linear manifold cluster in 3D space, how can we
guarantee that the particular cluster is actually a 2D cluster?
What if this cluster is a 1D linear manifold cluster with wide
bounds? What will be the criteria which would provide a
distinctive answer on correctness of a structure description of
some linear manifold cluster. We claim that MDL value of
a linear manifold cluster, calculated with correct assumptions
about its structure would yield a minimal value.

In order to test above assumption, we generated a 5D linear
manifold cluster in a 10D space, following a similar cluster
generation schema as in above experiments. We generated
coordinate values of the cluster points from a normal distri-
bution, where for the primary dimensions of the LM cluster,
the variance is set 1.0, and for dimensions in the orthogonal

complement to the linear manifold, the variance is set to 0.1.
The encoding precision constants for a model and data are 24
and 16.

We calculated the MDL value of this cluster as if its
dimension is unknown to us, as it happens during a selection
of the cluster candidate manifold in LMCLUS algorithm. We
specify during the MDL value calculation that our 5D cluster
has dimension in range from 1 to 9. Moreover, we use various
quantization errors during this experiment to understand how
the precision of the cluster description affects the goodness of
the selected cluster structure.
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Fig. 3. MDL values, calculated with various cluster dimensionality parameters
and quantization error εfor a cluster that is actually a 5D LM cluster in a 10D
space.

Figure 3 shows that MDL value calculated with the cor-
rect structural parameters of the examined linear manifold
cluster has a minimum value when the dimension parameter
corresponds to the cluster dimensionality. Low values of the
quantization error ε will result in a high cluster MDL value.
High values of ε will result in a low cluster MDL value. If
the quantization error ε is set to a small value, the cluster
MDL value will decrease monotonically with the dimension
of cluster. If the quantization error ε is set to a large value,
the cluster MDL value will increase monotonically with the
dimension of cluster. If the quantization error ε is set correctly,
the cluster MDL value will decrease until the right number of
dimensions is selected after which MDL value increases with
increasing number of dimension parameter.

A. MDL of a Zero-Dimensional Manifold Cluster

An interesting case arises when we try to calculate the MDL
of a zero-dimensional manifold cluster. Given that a zero-
dimensional (ZD) manifold is a point, any cluster characterized
only by its center point is considered as a zero-dimensional
manifold or spherical cluster . Many clustering algorithms, e.g.
k-means, produce zero-dimensional manifold clusters [10].

Any zero-dimensional manifold cluster is a special case of
the linear manifold cluster, thus we can use encoding (6) to
calculate the MDL value of the cluster given that dimension
of the manifold is zero, M = 0. Thus, (6) is simplified as
follows

L(ε) = PmN + JS(ε) (9)



Georgieva et al. [11] took a similar approach in describing
the MDL of zero-dimensional clusters, produced by the k-
means algorithm. However, instead of using the entropy of
the quantized distribution of the point positions in particular
dimensions, the projection distances to the point were encoded
in MDL as follows

L = L(H) + L(D|H) = PN +

J∑
i=1

N∑
p=1

log(dpi + 1) (10)

where dpi corresponds to the projection of the distance di of the
i-th point to the p-th dimension. Such a description does not
provide an informative encoding of coordinates when distances
to the center in the cluster are near zero. In such a case,
distance is encoded with less than one bit on the average.

We will compare the degenerate case of the inexact en-
coding of zero-dimensional manifold cluster calculated by
(9) on synthetically generated linear manifold and spherical
clusters. Such an approach will provide a common ground for
comparison between linear manifold and spherical clusters. We
also compare the MDL value of a linear manifold clustering
with a cumulative MDL of a clustering constructed from zero-
dimensional clusters which is a more natural representation
of linearly shaped data from the perspective of spherical
clustering algorithms.

We used a synthetically generated dataset which has a form
of a 1D linear manifold cluster, an elongated dataset along the
one axis, in 2D full space. Cluster generation procedure was
described above. We performed the MDL value calculation for
the 1D manifold following MDL formula (6) and then the 0D
manifold case defined by (9) for various quantization errors.

ɛ by Calculation

0D MDLLMC MDL

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

2
13

2
14

2
15

2
16

M
D

L

SphericalLinear Manifold

Cluster

Fig. 4. Linear manifold (1D) and zero-dimensional (0D) MDL calculations
for 1D linear manifold and spherical 0D clusters, located in 2D space, with
various quantization errors ε.

Figure 4 shows results of linear manifold Eq. (6) and
zero-dimensional Eq. (9) MDL value calculations for various
types of manifold clusters. For large quantization errors, both
approaches to the MDL calculation produce a small MDL
value for spherical cluster. However, when the precision of the
quantization procedure increases, resulting in a more complete
and informative description of the cluster, the MDL value of
the linear manifold cluster becomes smaller than the spherical
cluster regardless of the selected method of calculation.

Because of the structural difference between linear manifold
and spherical clusters, it is hard to come with common criteria
for comparison of different types of clusters. We use the MDL
value as a measure for heterogeneous cluster comparison.
In order to test how the cluster MDL would perform as a
comparison score, we calculated MDL values of synthetically
generated clusters of different types - linear manifold and
spherical.

We generated a 1D linear manifold cluster dataset from a
bivariate normal distribution, as in previous experiments, and
used the k-means algorithm to synthesize spherical clusters
from it. We varied the number of clusters for the k-means
algorithm that allowed us to form clusters which gradually
obtain a spherical shape, as the linear manifold cluster got
partitioned into more clusters.

We perform an evaluation of the MDL value for the linear
manifold clusters by Eq. (6) and spherical cluster by Eq. (9).
When k-means generated more than one cluster from the
original dataset, we summed all the cluster MDL values in the
clustering to obtain the MDL score for the original 1D LM
cluster represented by the dataset. This is shown in Figure 5.
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Fig. 5. MDL value of k-means clusterings (K[k]) produced from the 1D
linear manifold cluster (LM), located in 2D space, under various quantization
errors ε.

We found that the division of the linear manifold on multiple
spherical clusters does not provide much difference in the
resulted MDL value. As in the previous experiment, the major
factor which affects MDL calculations is the quantization error
parameter. For a small quantization error, spherical clusters
provide a smaller MDL value for the experimental dataset.
Moreover, the MDL value of the whole dataset does not
increase significantly with the number of clusters in the k-
means clustering. However, as the quantization error decreases,
the MDL value calculated by Eq. (6) becomes significantly
smaller then the spherical cluster MDL value Eq. (9).

This result suggests that for a large quantization error a
spherical description of the linear manifold cluster provides
more compact MDL value over the linear manifold MDL
model. But while the quantization error decreases, giving
a better description of the data, the linear manifold MDL
model produces more compact encoding of the linear manifold



cluster and outperforms the spherical MDL model regardless
of cluster proximity to true spherical representation.

B. Using MDL Heuristic in Climate Data Clustering

We added the linear manifold clustering MDL heuristic into
the LMCLUS algorithm, and tested clustering performance on
climate datasets.

Our dataset comprised of subset of the CRU 3.22 dataset
of monthly global surface temperature averages, and Global
Precipitation Climatology Centre (GPCC) dataset of monthly
precipitation averages, for a 30 year period form 1951 to
1980. Original datasets have the same 1◦ × 1◦ resolution.
Both datasets are 12 dimensional, so the combined dataset has
24 dimensions. For each of group of 12 fields, a unit length
normalization was performed, by subtracting the minimum
value from every point and divided it by the field maximum
minus the minimum value. Normalization makes the scale of
the disparate temperature and precipitation fields similar.

The Köppen-Geiger (KG) climate classification system is
a widely used scheme developed by geographers to classify
climate types correlated with observed land ecosystems [12].
It is based on observed limits of these ecosystems relative
to seasonal or annual precipitation and temperature. A recent
updated version identifies 34 climate classes [13]. The system
is not perfect, so variations are often proposed. However,
on the hypothesis that ecosystem types are an expression of
the climate, the KG system offers a good benchmark for a
clustering analysis.

We perform clustering of the above climate dataset using
following algorithms: k-Means [10], ORCLUS [14], original
LMCLUS [2] and LMCLUS modified with the MDL heuristic.

The k-Means clustering assumes that the data is modeled as
a mixture of spherically shaped distributions. In this model,
the cluster ideal is a point, the cluster center, which is its
mean, and the observations are isotropically perturbed around
the mean. Because the number of clusters must be set a priori
for k-Means, with the climate data clustering, we set this
number to 34 to match the number of Koeppen-Geiger classes.
Similarly to k-Means, ORCLUS requires an exact number of
clusters as a parameter, but the resulting clusters are linear
manifolds of the dimension specified by one of the parameters.
We set ORLCUS parameters such that the algorithm would
generate 34 1D linear manifold clusters.

Linear Manifold Clustering (LMCLUS) does not have to
specify an exact number of clusters in advance, but there are
multiple parameters that affect performance of the algorithm.
We set only a small group of them, the rest of the parameters
were set to their default values. The effect of the parameters
on the clustering performance is described in the original paper
[2]. In our experiments, the following LMCLUS parameters
were set: best bound to 0.4, sampling factor to 0.1, num-
ber of clusters to 34, min cluster size to 150.

We updated LMCLUS with the MDL heuristic that allowed
a goodness evaluation of the prospective manifold cluster
before committing to the partitioning of this clusters from the
rest of the dataset. We calculated a compression ratio as a

ratio between “raw” cluster encoding, as a total number of bits
required to encode each point of the cluster with a constant
precision, and the cluster MDL encoding. If the compression
ratio is larger than a user specified threshold, the cluster is
accepted.

In order to compare the goodness of produced clusterings,
we calculated the total MDL value of the resulting clustering
for each algorithm as a sum of cluster MDL values. We
performed the total MDL calculation with various quantization
error values to understand how precision affects it.

We calculated value of the approximate MDL Eq. (6) for the
climate data clusterings, generated by various algorithms, with
the quantization error ε in the interval [0.001, 0.002, . . . , 0.01].
Because the quantization error is a parameter for the MDL
heuristic, we calculated separate clusterings for every ε value
in the specified interval. Moreover, the quantization error
affects the calculation of the compression ratio, thus the
compression ratio parameter was selected different for every
clustering calculation as well. We used the clustering, gener-
ated by the original LMCLUS algorithm, for calculation of an
average µ and a standard deviation σ of a cluster compression
ratio at every ε value. These statistics were used to bootstrap
the compression ratio parameter for the MDL heuristic. The
compression ratio set to µ − σ/2 value for corresponding ε
value.

Figure 6 shows that when MDL heuristics is enabled,
it produced clusterings that are slightly different from the
clustering generated by original method. We suspected that
Eq. (6) does not appropriately reflect the MDL value of the
the distribution of the data points in each of the clusters.
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Fig. 6. Clustering optimal quantization MDL value (6) and its squared
quantization error for ε in interval [0.001, 0.002, . . . , 0.01] and various
algorithms.

When we switched to the “population” MDL Eq. (8) calcu-
lations in our MDL heuristics, with the parameters accordingly
recalculated for this algorithm, performance of the clustering
algorithm considerably improved.

It became clear that the effect of the MDL heuristics of
resulting clustering, see Figure 7, are aligned with results
from the synthetic simulation from section V-A. Increasing
the precision of the linear manifold MDL calculation results
in better goodness-of-fit qualities of clusters and allows the
filtering of subpar cluster candidates during the LMCLUS
stochastic search, which improves the final clustering.
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Fig. 7. Clustering population MDL value (8) and its squared quantization
error for ε in interval [0.001, 0.002, . . . , 0.01] and various algorithms.

VI. CONCLUSION

We described a novel regularization technique for the linear
manifold clustering based on the idea that a linear manifold
shaped cluster allows efficient compression of the cluster
data to the degree allowed by the specified error threshold.
This intuitive criterion was formalized as the minimization
problem of the description length of a prospective cluster
and incorporated into the stochastic search of the clustering
algorithm.

In the empirical part of the work we studied the behavior of
the proposed MDL encoding, and the effect of the quantization
error on it. We confirmed that the described method produced
reasonable results for simulated datasets, as well as on the
climate data clustering task. We believe that this regularization
technique allows creation of clusters that are more informative
and comprehensive.

A comprehensive scoring of the clusters with MDL values
provides not only a criteria for cluster goodness-of-fit evalua-
tion, but as well can be viewed as a qualitative measure which
is used to explore stability of the clustering algorithm [15], or
to improve clustering performance by introducing a scoring
function for a guided stochastic search, which is left to be
explored in our future research.
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