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ABSTRACT

This paper presents an application that uses vector
quantization (VQ) to speed up the process of gradient
magnitude edge detection for image sequences. Be-
cause image VQ and this type of edge detection operate
on block-based neighborhoods, it is possible to use VQ
to perform the edge detection. The image is encoded
with a VQ for which the edge/no edge decision has al-
ready been made for each block. The process of edge
detection becomes a simple lookup of this information.
The algorithm behaves as a “trainable edge detector”
which has the advantage of having lower computation-
al complexity than the facet edge detector. For a VQ
with an average rate of 6 bits per vector, our method
requires 55% of the multiplications and and 62% of the
additions of the conventional facet edge detector. It al-
so enhances the quality of the output by rejecting low
contrast, high frequency texture edges.

1. INTRODUCTION

Vector quantization algorithms have been used with
much success for image compression [3]. VQ is the ex-
tension of scalar quantization to a higher dimensional
space and is able to exploit memory or correlation be-
tween neighboring samples of an image. More recently,
VQ has been used to achieve computational speed-up
in signal and image processing [4, 5]. The VQ code-
book can be designed specifically for image processing
operations such as inverse transforming, histogram e-
qualization, or halftoning. This is done by performing
the processing operation on each codeword at VQ de-
sign time and storing the results with the codeword.
The input image is encoded with this codebook and
the processed image is output. It is possible to achieve
computational speed-up if the complexity of the encod-
ing process is less than that of the image processing op-
eration by itself. In this paper, we apply this concept
to the process of gradient magnitude edge detection.
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The following section describes the facet model and
its use for edge detection. The use of VQ to perform
edge detection is discussed in Section 3. A comparison
of the computational complexity of the algorithm de-
scribed in this paper and conventional facet model edge
detection is given in Section 4. We describe the results
obtained when our approach is applied to a sample se-
quence of images in Section 5and conclude in Section 6.

2. FACET MODEL EDGE DETECTION

The gradient magnitude edge detector that we study
is the Second Directional Derivative edge detector de-
scribed in [6, 7]. The edge detector uses the facet model
to estimate the gradient magnitude at each pixel loca-
tion in the image. The facet model models a digital
image as being derived by sampling a continuous un-
derlying graytone intensity surface. This surface can
be represented by a low-degree (usually quadratic or
cubic) bivariate (in row and column coordinates r and
c respectively) polynomial. In the cubic case, the poly-
nomial or “facet” is:

flrye) = ky + kar + kac + kar® + ksrc + kgc? + kyrd
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The first step in the edge detection sequence is the
computation of the polynomial coefficients {k;} by per-
forming a local surface fit over a neighborhood centered
around each pixel in the image. We choose P,(r, c), the
set of Chebyshev polynomials, as basis polynomials and
then compute the coefficients {a;} to minimize:
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where I(r, c) is the pixel intensity at coordinate (r,c),
and H and W are the set of row and column coordi-
nates (respectively) that belong to the neighborhood.



The gradient direction is given in terms of the polyno-
mial coefficients as arctan(%3) and the gradient mag-
nitude is given by \/kg + k2. The second directional
derivative in the direction of the gradient and the con-
trast can also be obtained in terms of the facet poly-
nomial coefficients [6]. The center pixel of the block
is labeled as an edge pixel if the second directional
derivative in the direction of the gradient has a neg-
atively sloped zero crossing within a threshold radius
of the center of the pixel and if the edge contrast ex-
ceeds a threshold value. That is, an edge is detected
at (r,c) if (a) f'((r,¢)) # 0, (b) f’{(r,¢)) =0, and (c)
f"((r,e)) < 0, where f’, f" and f" denote the first,
second, and third directional derivatives of the facet
polynomial.

3. USING VQ FOR EDGE DETECTION

Because both VQ and gradient magnitude edge de-
tectors operate on blocks of an image, VQ can be used
for edge detection. For each M x M vector in the code-
book, we determine if the center pixel is an edge pixel
using the process described in Section 2.and store the
edge/no edge decision with the vector. Images are en-
coded using the VQ and the process of edge detection
becomes a simple lookup operation. If the complexity
of the encoding process is less than that of the gradient
edge detector, then the process of edge detection can
be sped up. We use an unbalanced tree-structured vec-
tor quantizer (TSVQ) to lower the complexity of the
encoding process [1, 2].

The overall process consists of the following:

e VQ Codebook Design: The training set is formed
from all overlapping M x M blocks of the first
image of a motion sequence. It is then used to
design an unbalanced TSVQ.

e Facet Edge Detection on the VQ Codebook: For
each vector in the codebook, the facet parameters
are computed. Second directional derivative edge
detection is then performed on each of the code-
words and the edge/no edge decision for the center
pixel is stored with the codeword.

e Fast Facet Edge Detection: Later images in the se-
quence are encoded using the VQ and the edge/no
edge decision is output for each center pixel. .

4. COMPUTATIONAL COMPLEXITY

In this section we present an analysis of the computa-
tional complexity of the two approaches. We show un-
der what conditions the approach proposed in this pa-
per has lower complexity than conventional facet edge
detection.

Let us assume that the codewords have dimension
M x M. At each node of the tree, the VQ performs
the following hyperplane test:

(x - y2)P(x - y1) < (x - y&)T (x - yR).

The vector x is an M x M dimensional row ordered
vector of the input block and y; and yg are M x M
dimensional row vectors of the centroids of the left and
right child of the node under consideration. The op-
eration (.)7 denotes the transpose of the vector. This
computation can be simplified to yield the expression:

(yiye — YRYR) < 2x7(yL — yR).

This requires M2 multiplications and M? — 1 addition-
s. A simple algorithm for the hyperplane test requires
1 difference computation followed by a check of the
most significant bit of the result. A conservative esti-
mate for this is 2 additions. Let R be the average rate
(height of the tree) of the unbalanced TSVQ. Then the
computational complexity is RM? multiplications and
R(M? + 1) additions. In the case of M = 5 (which we
use in the illustrative example of Section 5), this is 25R
multiplications and 26 R additions.

We now analyze the computational complexity of
the facet edge detector for the case of a cubic facet
(with 10 coefficients) computed over a M x M neigh-
borhood centered at each pixel. Each of the 10 facet
polynomial coefficients can be computed as a convo-
lution with a precomputed M x M mask. This re-
quires 10M? multiplications and 10(M? — 1) addition-
s. The gradient magnitude is computed in terms of
the facet polynomial coefficients as shown in Section 2.
The sine and cosine of the gradient direction are given
by k2/+/kZ + k2 (2 multiplications, 1 addition, and 1
division) and k3/+/kZ + k2 respectively (2 multiplica-
tions, 1 addition, and 1 division). The second direc-
tional derivative in the direction of the gradient f”, is
given by (k4sin 6+ ks cos 6) sin 6 + ke cos? 8 (5 multipli-
cations and 2 additions) where 6 is the gradient direc-
tion. The third directional derivative in the direction of
the gradient f’”, is given by (k7 sin 6 + kg cos ) sin? 6 +
(kg sin f+k1o cos §) cos? @ (8 multiplications and 3 addi-
tions). The distance to the negatively sloped zero cross-
ing of the second directional derivative in the direction
of the gradient (if it exists) is given by | — f//3f"|
(1 multiplication and 1 division). In addition we also
have three tests to determine if (a) the gradient mag-
nitude exceeds the threshold, (b) f < 0, and (c) the
distance to the negatively sloped zero crossing of the
second directional derivative in the direction of the gra-
dient is less than the radius threshold (2 additions and
3 most significant bit tests which can be conservatively



estimated by 2 additions). If we assume that square
roots and divisions are computationally equivalent to a
multiplication (a very conservative assumption!), then
the total computational load of the conventional facet
edge detector is 10M? + 21 multiplications and 102
additions. Thus, the approach proposed in this pa-
per would have a lower computational complexity than
conventional facet edge detection if the encoding rate
R is such that RM? multiplications and R(M? + 1)
additions are less than 10M? + 21 muitiplications and
10M? additions. In our case of M = 5, this would be
R < 9.6.

5. RESULTS

Frame 1, the first image of a motion sequence ob-
tained from a camera mounted on a mobile robot in
an outdoor environment (Figure 1), was used as the
training image. Figure 2 shows Frame 2, the first test
image, and Figure 3 shows the results of applying the
second directional derivative edge detector directly to
the original test image (no encoding is done). The edge
image obtained with our technique when the designed
encoder has an average rate of 6.0 bits per vector (here-
after referred to as R = 6.0) is shown in Figure 4. Com-
paring to Figure 3, we can see that all dominant edges
in the image are detected at this rate and the algorith-
m enhances the edge image by rejecting texture edges.
Figure 5 shows the edge image for R=10.0. This figure
shows that increasing the rate results in the detection
of high frequency texture edges; this is because the
higher rate coder can reproduce the image more faith-
fully, even if this is not the desired effect. We obtained
the best edge detection results at R=6.0 which only re-
quires an average of 6 hyperplane tests for the encoding
(150 muitiplications and 156 additions).

Since Frame 1 is taken at a time that is very close
to the training frame, we expect that the performance
of the algorithm will be better than if the frame were
acquired at a much later time (the later image has less
correlation with the training image). Figures 6- 9 show
the results obtained when the algorithm is applied to
the 22nd frame in the sequence. The anticipated dete-
rioration in performance can be seen quite readily, but
the quality of the output has far fewer texture edges
compared to applying the facet edge detector directly
to the uncoded image.

6. CONCLUSIONS

We have used unbalanced TSVQ for gradient mag-
nitude edge detection At R=6.0, the complexity of the
TSVQ for each 5 x & vector is 156 additions and 150
multiplications versus 271 multiplications and 250 ad-
ditions for the conventional edge detector. Further-
more, the VQ-based edge detector outperformed the

Figure 1: Frame 1 - the Training Image

standard edge detector by rejecting high frequency
edges.
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Figure 2: Original Image of Frame 2

Figure 3: Direct Application of Edge Detector to Frame Figure 7: Direct Application of Edge Detector to Frame
2 (No Encoding is Done) 22

Figure 4: VQ-based Edge Detector at Rate 6 bits per Figure 8: VQ-based Edge Detector at Rate 6 bits per
vector for Frame 2 vector for Frame 22

Figure 5: VQ-based Edge Detector at Rate 10 bits per Figure 9: VQ-based Edge Detector at Rate 10 bits per
vector for Frame 2 vector for Frame 22





