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Dependency and Structure

Pattern Classification
Dependency between observations and classes

Prediction
Dependency between the independent variables and the
response variable

Compact Representations
Dimensionality Reduction
Manifold Learning



Characterizing Dependency

Measuring Strength of Dependency between/among
Variables
Determining the Dependency Constraint

Probabilistic Dependency
Coherence: Between Values



Kinds of Dependencies

Graphics from Jason Noble, University of Southampton



Simple Example

For some values of X , Y has multiple values
Y is not a function of X

For some values of Y , X has multiple values
Y is not a function of X

There are two non-linear disconnected manifolds



Texture

Any patch of an image that shows a texture is a region having a
stochastic dependency among the pixel values of the patch.

Gray level co-occurrence matrix
Distance
Angle

Functionals of the co-occurrence matrix can be used as
features in distinguishing one texture from another



r − 1, c + 1r − 1, cr − 1, c − 1

r , c + 1r , cr , c − 1

r + 1, c + 1r + 1, cr + 1, c − 1

N1 = {((r , c), (u, v)) ∈ (R × C)2
| (u, v) = (r − 1, c + 1) or (u, v) = (r + 1, c − 1)}

N2 = {((r , c), (u, v)) ∈ (R × C)2
| (u, v) = (r , c + 1) or (u, v) = (r , c − 1)}

N3 = {((r , c), (u, v)) ∈ (R × C)2
| (u, v) = (r − 1, c − 1) or (u, v) = (r + 1, c + 1)}

N4 = {((r , c), (u, v)) ∈ (R × C)2
| (u, v) = (r − 1, c) or (u, v) = (r + 1, c)}



Gray Level Cooccurrence: Major Diagonal

r − 1, c + 1r − 1, cr − 1, c − 1

r , c + 1r , cr , c − 1

r + 1, c + 1r + 1, cr + 1, c − 1

N1 = {((r , c), (u, v)) ∈ (R × C)2
| (u, v) = (r − 1, c + 1) or (u, v) = (r + 1, c − 1)}

P1(i , j) =
#{((r , c), (u, v)) ∈ N1 | I(r , c) = i and I(u, v) = j}

#N1



Gray Level Cooccurrence: Left-Right

r − 1, c + 1r − 1, cr − 1, c − 1

r , c + 1r , cr , c − 1

r + 1, c + 1r + 1, cr + 1, c − 1

N2 = {((r , c), (u, v)) ∈ (R × C)2
| (u, v) = (r , c + 1) or (u, v) = (r , c − 1)}

P2(i , j) =
#{((r , c), (u, v)) ∈ N2 | I(r , c) = i and I(u, v) = j}

#N2



Gray Level Cooccurrence: Minor Diagonal

r − 1, c + 1r − 1, cr − 1, c − 1

r , c + 1r , cr , c − 1

r + 1, c + 1r + 1, cr + 1, c − 1

N3 = {((r , c), (u, v)) ∈ (R × C)2
| (u, v) = (r − 1, c − 1) or (u, v) = (r + 1, c + 1)}

P3(i , j) =
#{((r , c), (u, v)) ∈ N3 | I(r , c) = i and I(u, v) = j}

#N3



Gray Level Cooccurrence: Top Bottom

r − 1, c + 1r − 1, cr − 1, c − 1

r , c + 1r , cr , c − 1

r + 1, c + 1r + 1, cr + 1, c − 1

N4 = {((r , c), (u, v)) ∈ (R × C)2
| (u, v) = (r − 1, c) or (u, v) = (r + 1, c)}

P4(i , j) =
#{((r , c), (u, v)) ∈ N4 | I(r , c) = i and I(u, v) = j}

#N4



Local Neighborhoods

N1(r , c) = {(u, v) ∈ R × C | ((r , c), (u, v)) ∈ N1}

N2(r , c) = {(u, v) ∈ R × C | ((r , c), (u, v)) ∈ N2}

N3(r , c) = {(u, v) ∈ R × C | ((r , c), (u, v)) ∈ N3}

N4(r , c) = {(u, v) ∈ R × C | ((r , c), (u, v)) ∈ N4}

r − 1, c + 1r − 1, cr − 1, c − 1

r , c + 1r , cr , c − 1

r + 1, c + 1r + 1, cr + 1, c − 1



Correlation Feature
Because of the symmetry, Pk (i , j) = Pk (j , i) and I = J

P{k ,row}(i) =

J∑
j=1

Pk (i , j)

P{k ,col}(j) =

I∑
i=1

Pk (i , j)

µk =

I∑
i=1

iP{k ,row}(i) =
J∑

j=1

jP{k ,col}(j)

σ2
k =

I∑
i=1

(i − µk )
2P{k ,row}(i) =

J∑
j=1

(j − µk )
2P{k ,col}(j)

ρk =

I∑
i=1

J∑
j=1

(i − µk )(j − µk )

σ2
k

Pk (i , j)

ρ =

4∑
k=1

ρkθk



Entropy Texture Features

E1k =

I∑
i=1

J∑
j=1

P2
k (i , j)

E2k = −

K∑
i=1

J∑
j=1

Pk (i , j) log Pk (i , j)

E1 =

K∑
k=1

E1kθk

E2 =

K∑
k=1

E2kθk

Robert Haralick, K. Shanmugam, and I. Dinstein,"Textural Features for Image Classification", IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-3, No. 6,1973, pp. 610-621.



Varieties of Entropy

Let α > 0 and α , 1, then

Hα(p1, . . . ,pN) =
1

1 − α
log

 N∑
n=1

pαn


satisfies the entropy postulates. And

lim
α→1

Hα(p1, . . . ,pN) = −

N∑
n=1

pn log pn

Alfrèd Rènyi, “On Measures of Entropy and Information”, Fourth Berkley Symposium on Mathematical Statistics
and Probability, University of California Press, 1961, pp 547-561.



Correlation and Maximal Correlation

ρ(X ,Y ) = E
[
(X − µx)

σx

(Y − µy )

σy

]
If E [X ] = E [Y ] = 0; and V [X ] = V [Y ] = 1 then

ρ(X ,Y ) = E [XY ]

Let

F = {f : R→ R | E [f (X )] = 0;V [f (X )] = 1}
G = {g : R→ R | E [g(Y )] = 0;V [g(Y )] = 1}

Define Maximal Correlation ρmax by

ρmax(X ,Y ) = sup
f∈F ,g∈G

E [f (X )g(Y )]

H. Gebelein, “Das Statistische Problem der Korrelation als Variations- und Eigenwert-problem und sein
Zusammenhang mit der Ausgleichungsrechnung”, Zeitschrift für Angewwandte Mathematik und Mechanik, Vol
21, 1941, pp. 364-379.
A. O. Hirschfeld, “A Connection Between Correlation and Contingency”, Proceedings Cambridge Philosophical
Society, Vol 31, Issue 4, 1935, pp. 520-524.



Maximal Correlation Feature

The normalized joint probability matrix Qk = (qk (i , j))

qk (i , j) =
Pk (i , j)√

P{k ,row}(i)
√

P{k ,col}(j)

The second singular value of Qk : λk ,2

The maximal correlation coefficient: ρ{max ,k } = λk ,2

Robert Haralick, K. Shanmugam, and I. Dinstein,"Textural Features for Image Classification", IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-3, No. 6,1973, pp. 610-621.



Contrast and Inverse Contrast

ck =

I∑
i=1

J∑
j=1

|i − j |βPk (i , j)

dk =

I∑
i=1

J∑
j=1

1
1 + α|i − j |

Pk (i , j)

Robert Haralick, K. Shanmugam, and I. Dinstein,"Textural Features for Image Classification", IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-3, No. 6,1973, pp. 610-621.



Resolution Preserving Textural Transform Image

I Input Image
Pk , k = 1,2,3,4 Cooccurrence Probabilities
Nk , k = 1,2,3,4 Local Neighborhoods
J Output Image

J(r , c) =

4∑
k=1

∑
(u,v)∈Nk (r ,c)

Pk (I(r , c),I(u, v))θk

A Resolution Preserving Textural Transform for Images, Proceedings of the IEEE Computer Society Conference
on Computer Graphics, Pattern Recognition, and Data Structure, San Diego, CA, May 14–16, 1975, pp. 51-61.



Neighborhood Joint Probability

r − 1, c + 1r − 1, cr − 1, c − 1

r , c + 1r , cr , c − 1

r + 1, c + 1r + 1, cr + 1, c − 1

N(r , c) = {(r , c)} ∪
4⋃

k=1

Nk (r , c)

Neighborhood Joint Probability: P(I(u, v) : (u, v) ∈ N(r , c))



Neighborhood Joint Probability

r − 1, c + 1r − 1, cr − 1, c − 1

r , c + 1r , cr , c − 1

r + 1, c + 1r + 1, cr + 1, c − 1

P(I(u, v) : (u, v) ∈ N(r , c)) = P(I(r , c))
∏

(u,v)∈N1(r ,c)

P1(I(u, v) | I(r , c))
∏

(u,v)∈N2(r ,c)

P2(I(u, v) | I(r , c))∏
(u,v)∈N3(r ,c)

P3(I(u, v) | I(r , c))
∏

(u,v)∈N4(r ,c)

P4(I(u, v) | I(r , c))



Neighborhood Joint Probability

P(I(r , c), I(u, v) : (u, v) ∈ N(r , c)) = P(I(r , c))
∏

(u,v)∈N1(r ,c)

P1(I(u, v) | I(r , c))
∏

(u,v)∈N2(r ,c)

P2(I(u, v) | I(r , c))∏
(u,v)∈N3(r ,c)

P3(I(u, v) | I(r , c))
∏

(u,v)∈N4(r ,c)

P4(I(u, v) | I(r , c))

J(r , c) = log(P(I(u, v) : (u, v) ∈ N(r , c))) = log(P(I(r , c))) +∑
(u,v)∈N1(r ,c)

log(P1(I(u, v) | I(r , c))) +∑
(u,v)∈N2(r ,c)

log(P2(I(u, v) | I(r , c))) +∑
(u,v)∈N3(r ,c)

log(P3(I(u, v) | I(r , c))) +∑
(u,v)∈N4(r ,c)

log(P4(I(u, v) | I(r , c)))



Cooccurrence Distance 2 Relations

r − 2, c + 2r − 2, c + 1r − 2, cr − 2, c − 1r − 2, c − 2

r − 1, c + 1r − 1, cr − 1, c − 1

r , c + 1r , cr , c − 1

r + 1, c + 1r + 1, cr + 1, c − 1

r + 2, c + 2r + 2, c + 1r + 2, cr + 2, c − 1r + 2, c − 2

r − 1, c + 2

r , c + 2

r + 1, c + 2

r − 1, c − 2

r , c − 2

r + 1, c − 2



Neighborhood Joint Probability

N2(r , c) = {(u, v) | (u, v) = (r , c) + (i , j), i , j ∈ {−2,−1,0,1,2}}

P(I(r , c), I(u, v) : (u, v) ∈ N2(r , c)) = P(I(r , c))
∏

(u,v)∈N2
1 (r ,c)

P1(I(u, v) | I(r , c))
∏

(u,v)∈N2
2 (r ,c)

P2(I(u, v) | I(r , c))

∏
(u,v)∈N2

3 (r ,c)

P3(I(u, v) | I(r , c))
∏

(u,v)∈N2
4 (r ,c)

P4(I(u, v) | I(r , c))

J(r , c) = log(P(I(u, v) : (u, v) ∈ N2(r , c))) = log(P(I(r , c))) +∑
(u,v)∈N2

1 (r ,c)

log(P1(I(u, v) | I(r , c))) +

∑
(u,v)∈N2

2 (r ,c)

log(P2(I(u, v) | I(r , c))) +

∑
(u,v)∈N2

3 (r ,c)

log(P3(I(u, v) | I(r , c))) +

∑
(u,v)∈N2

4 (r ,c)

log(P4(I(u, v) | I(r , c)))



A Texture Image



The Joint Probability Transform

(a) Gray Level Permuted (b) Joint Probability Transform

Visual Coherence is lost in gray level permuted image.
Probability dependency is the same.
White means the gray level configuration in a 5x5 window in the
original image has a high joint probability.



The Joint Probability Transform: Lena

(c) Original (d) Joint Probability Transform

White means the gray level configuration in a 5x5 window in the
original image has a high joint probability.



The Joint Probability Transform: Brodatz

(e) Original (f) Joint Probability Transform

When the scale of the texture and size of window are
comparable, the joint probability is about the same for each
window.



The Joint Probability Transform: Brodatz

(g) Texture Mosaic (h) Joint Probability Transform

Within each uniform texture area, the joint probability in a
window is nearly the same when the texture scale and the
window size are similar.



The Joint Probability Transform: Brodatz

(i) Texture (j) Joint Probability Transform

If the texture scale is larger than the windowsize, the joint
probability in each window will be low around boundaries.



A Gray Level Permuted Image: Brodatz

Visual Coherence is lost. Probability Dependency is the same.



The Joint Probability Transform: Brodatz

(k) Gray Level Permuted (l) Joint Probability Transform

Within each uniform texture area, the joint probability in a
window is nearly the same when the texture scale and the
window size are similar.



The Joint Probability Transform

(m) Texture Mosaic (n) Joint Probability Transform

Within each uniform texture area, the joint probability in a
window is nearly the same when the texture scale and the
window size are similar.



Dependence and Conditional Independence

Conditional Independences
Bound

The Dependencies



Semi-graphoid

Definition
Let I be an index set containing the indexes of all the random
variables. Let G be a collection of triples each of whose
components are subsets of the index set I. We write A y B | C
if and only if the triple (A,B,C) ∈ G.
G is called a Semi-graphoid if and only if

Mutual Exclusivity: (A,B,C) ∈ G implies
A ∩ B = ∅, A ∩ C = ∅, B ∩ C = ∅

Symmetry: A y B | C if and only if B y A | C
Decomposition: A y B ∪ D | C implies A y B | C
Weak Union: A y B ∪ C | D implies A y B | C ∪ D
Contraction: A y B | C ∪ D and A y C | D, imply
A y B ∪ C | D

A.P. Dawid, “Conditional Independence in Statistical Theory”, Journal of the Royal Statistical Society, Vol. 41B,
1979, pp. 1-31
Judea Pearl and Azaria Paz, “Graphoids: A Graph-Based Logic for Reasoning About Relevance Relations”,
University of California, Los Angeles, Computer Science Department, CSD-850038, 1985.



Graphoid

Definition
Let I be an index set containing the indexes of all the random
variables. Let G be a collection of triples each of whose
components are subsets of the index set I. We write A y B | C
if and only if the triple (A,B,C) ∈ G.
G is called a Graphoid if and only if

Mutual Exclusivity: (A,B,C) ∈ G implies
A ∩ B = ∅, A ∩ C = ∅, B ∩ C = ∅

Symmetry: A y B | C if and only if B y A | C
Decomposition: A y B ∪ D | C implies A y B | C
Weak Union: A y B ∪ C | D implies A y B | C ∪ D
Contraction: A y B | C ∪ D and A y C | D, imply
A y B ∪ C | D
Intersection: A y B | C ∪ D and A y C | B ∪ D imply
A y B ∪ C |D



Conditional Probabilities and Graphoids

I is an index set of all the random variables
P(Xi : i ∈ I) > 0
G is a collection of triples each of whose components are
subsets of the index set I

G =

{
(A,B,C) ∈ P(I)3

∣∣∣∣∣


A,B , ∅
A,B,C are disjoint
A y B | C

}
Then G is a graphoid



Conditional Independence Graph: Definition

Definition
A graph (N ,E) is called a Conditional Independence Graph of a
random variable set X = {X1, . . . ,XM } if and only if
N = {1, . . . ,M}, the index set for the variables in X, and

Ec = {{i , j} | Xi y Xj | X − {Xi ,Xj }}

{i , j} not in the edge set means Xi y Xj | X − {Xi ,Xj }

Steffen Lauritzen, Graphical Models, Clarendon Press, Oxford, 1996.



Separation

Proposition

P(x) > 0
G = (N ,E) is a conditional independence graph
A,B,C are disjoint subsets of N
A,B,C , ∅

If B separates A from C, then A y C | B

Steffen Lauritzen, Graphical Models, Clarendon Press, Oxford, 1996.



Conditional Independence: Joint Probability Image

Proposition

(u, v), (a,b) ∈ N2(r , c)
L is the unique path from (u, v) to (a,b)
(m,n) ∈ L − {(u, v), (a,b)}
I(u, v) is a random variable indexed by (u, v)
I(a,b) is a random variable indexed by (a,b)
I(m,n) is a random variable indexed by (m,n)

Then

I(u, v) y I(a,b) | I(m,n)



Triangulated Graphs

Theorem
If a graph G is triangulated graph and C1, . . . ,CK are the
cliques of G put in running intersection order with separators
S2, . . . ,SK ,

Sk = Ck

⋂k−1⋃
i=1

Ci

 , k = 2, . . . ,K

then

P(x1, . . . , xN) =

∏K
k=1 P(xi : i ∈ Ck )∏K
k=2 P(xi : i ∈ Sk )

Steffen Lauritzen, Graphical Models, Clarendon Press, Oxford, 1996.



N-Tuple Method

Developed For Printed Character Recognition
Each character is contained in an image of M × N pixels
Each pixel is a binary 1 or a binary 0
Designed for table lookup hardware

W.W. Bledsoe and I. Browning, “Pattern Recognition and Reading by Machine”, Proceeding Eastern Joint
Computer Conference, Boston, 1959, pp. 232-255.



N-Tuple Method



N-Tuple Method

Small number of pixel positions are randomly selected
Each of these positions has a binary 0 or a binary 1
Concatenate all the binary values to form a binary number
Use this number to form an address in memory
Have as many memory arrays as character classes
Have multiple sets of such randomly selected pixel
positions



N-Tuple Method

M pattern sets of randomly selected pixel positions
K character classes
Tmk lookup table for pattern set m and class k
Tmk (bm) holds a binary 1 if a character in the training set of
class k has the binary number bm for the mth pattern set
A printed character produces M binary numbers b1, . . . ,bM

Compute
fk = minM

m=1 Tmk (bm)

fk =
∑M

m=1 Tmk (bm)

Assign the character to unique class ck , if there is one, for
which fk > 0 is highest
Otherwise reserve decision



Relations

Each of the possible pixel positions is a variable
Let X1, . . . ,XN be the N variables
Let Ln be the possible values variable Xn can take
Let R be the training set for one class

R ⊆
N�

n=1

Ln



N-ary Relation

Definition
If I is an index set and R ⊆

�
i∈I Li , then we say (I,R) is an

Indexed N-ary Relation on the range sets indexed by I.



Relation Join

Definition
Let I, J ,K be index sets with K = I ∪ J. Let R ⊂

�
i∈I Li and

S ⊂
�

j∈J Lj Then the Relation Join of (I,R) with (J ,S) is
denoted by (I,R) ⊗ (J ,S) = (K ,T ) where

T = {t ∈
�
k∈K

Lk | πI(K , t) ∈ (I,R) and

πJ(K , t) ∈ (J ,S)}



N-Tuple Method

The set of measurement tuples that could be assigned to a
class c, is the relation join of the tables associated with class c.

Theorem

{([N], x) | πJm
([N], x) ∈ (Jm,Tmc),m = 1, . . . ,M} = ⊗M

m=1(Jm,Tmc)

(Jm,Tmc) is an indexed relation
Defined on index set Jm associated with pattern set m
Tmc Contains all binary tuples from pattern set m that were
class c



N-Tuple Method

M pattern sets of randomly selected pixel positions
K character classes
Tmk lookup table for pattern set m and class k
Tmk (bm) holds the fraction of times a character in the
training set of class k has the binary number bm for the mth

pattern set
A printed character produces M binary numbers b1, . . . ,bM

Compute
1 fk = minM

m=1 Tmk (bm)
2 fk =

∑M
m=1 logTmk (bm)

For (1) Assign the character to unique class ck , if there is
one, for which fk > 0
For (2) Assign the character to unique class ck , if there is
one, for which fk > −∞
Otherwise reserve decision



N-Tuple Method Sum of Logs

fk =

M∑
m=1

logTmk (bm)

This is equivalent to

log Pc(x1, . . . , xN) =

K∑
k=1

log Pc(xi : i ∈ Ck )

The class conditional independence assumption assumed here
is surely wrong.



N-Tuple Method Using Graphical Model

Pc(x1, . . . , xN) =

∏K
k=1 Pc(xi : i ∈ Ck )∏K
k=2 Pc(xi : i ∈ Sk )

= Pc(xi : i ∈ C1)

K∏
k=2

Pc(xi : i ∈ Ck − Sk | xj : j ∈ Sk )

log Pc(x1, . . . , xN) = log Pc(xi : i ∈ C1) +

K∑
k=2

log Pc(xi : i ∈ Ck − Sk | xj : j ∈ Sk )



Dependence and Conditional No Influence

Conditional No Influences
Bound

The Dependencies



Conditional No Influence

L1 = {a1,a2,a3}

L2 = {c1, c2}

L3 = {b1,b2,b3}

I = {1,2,3}
R ⊂
�

i∈I Li

1 2 3
a1 c1 b1
a1 c1 b2
a1 c1 b3
a2 c1 b1
a2 c1 b2
a2 c1 b3

a1 c2 b4
a1 c2 b5
a3 c2 b4
a3 c2 b5

1 has no influence on 3 given 2



Conditional No Influence

L1 = {a1,a2,a3}

L2 = {c1, c2}

L3 = {b1,b2,b3}

I = {1,2,3}
J = {1,2}
K = {2,3}
(I,R) = πJ(I,R) ⊗ πK (I,R)

J − K y K − J | J ∩ K

Theorem

Let G = {(A,B,C) ∈ P3(I) | A y B | C}. Then G is a
Semi-graphoid.

Robert Haralick, Ligon Liu, Evan Misshula, "Relation Decomposition: The Theory", International Conference on
Machine Learning and Data Mining, (MLDM), 2013, New York, 2013 pp. 311-324.



Relation Join Factor Properties

If a given relation is factored into a decomposition of N factor
relations, then grouping these factor relations into two possibly
overlapping groups will also factor the given relation.

Proposition

Let (M ,R) = ⊗N
n=1πMn(M ,R) and S ∪ T = {1, . . . ,N}. S,T , ∅,

Then
π∪s∈SMs(M ,R) ⊗ π∪t∈T Mt (M ,R) = (M ,R)

Robert Haralick, Ligon Liu, Evan Misshula, "Relation Decomposition: The Theory", International Conference on
Machine Learning and Data Mining, (MLDM), 2013, New York, 2013 pp. 311-324.



Relation Join Factor Properties

Corollary

Let (M ,R) = ⊗N
n=1πMn(M ,R). Define

T = {T | for some S ⊂ [N],S , ∅,T = ∪s∈SMs}, then U,V ∈ T
implies

U − V y V − U | U ∩ V

Robert Haralick, Ligon Liu, Evan Misshula, "Relation Decomposition: The Theory", International Conference on
Machine Learning and Data Mining, (MLDM), 2013, New York, 2013 pp. 311-324.



Cliques and No Influence Pair of Sets

1

2

3

4

5

6

7

8

9

M = {1,2,3,4,5,6,7,8,9}
(M,R) = ⊗8

n=1πMn(M,R)

I = {1,2}, J = {8,9}, I ∩ J = ∅

M − (I ∪ J) = {3,4,5,6,7}
I y J | M − (I ∪ J)
I ∪ (M − (I ∪ J)) = M − J
J ∪ (M − (I ∪ J)) = M − I

(M,R) = πM−I(M,R) ⊗ πM−J(M,R)

I × J ⊆ M ×M − ∪8
n=1Mn ×Mn

S = {n | Mn ⊆ M − J} = {1,2,5,6,7}
T = {n | Mn ⊆ M − I} = {3,4,6,7,8}
M − J = M1 ∪M2 ∪M5 ∪M6 ∪M7 = ∪s∈SMs

M − I = M3 ∪M4 ∪M6 ∪M7 ∪M8 = ∪t∈TMt

(o) Influence Graph

Clique M − J M − I
Symbol Cliques {1,2,3,4,5,6,7} {3,4,5,6,7,8,9}

M1 {1,2,4} 1 0
M2 {2,4,5} 1 0
M3 {5,6,9} 0 1
M4 {5,8,9} 0 1
M5 {2,3} 1 0
M6 {3,6} 1 1
M7 {4,7} 1 1
M8 {7,8} 0 1

(p) Cliques



Bach Choral BWV26

(q) Tuple 2 (r) Tuple 3 (s) Tuple 4 (t) Tuple 5

Xiuyan Ni, Ligon Liu, Robert Haralick, ”Music Generation With Relation Join”, 12th International Symposium on
Computer Music Multidisciplinary Research, São Paulo, 2016, pp. 286-296.



No Influence

R Set of 5-tuples obtained from Music Corpus
I = {1,2,3,4,5}
J = {3,4,5,6,7}
Construct the join (K ,S) = (I,R) ⊗ (J ,R)

Proposition

If (K ,S) = (I,R) ⊗ (J ,R), I − J , ∅, and J − I , ∅
Then,

I − J y J − I | I ∩ J

{1,2} y {6,7} | {3,4,5}



Joining The Tuples

I1 = {1,2,3,4,5}
I2 = {3,4,5,6,7}

...

In = {2n − 1,2n,2n + 1,2n + 2,2n + 3}
...

Construct (K ,S) = ⊗N
n=1(In,R)

Sample tuples from (K ,S) to listen to



Bach Generation By Relation Join

202 Bach Chorals Midi Files Taken from Music21
Sequence of 5 Chords and Durations Constitute A Tuple
Relation Join Requires Overlap of 3 Chords
First Chord of Join Must be the I Chord of the Key
Last Chord of the Join Must be a long duration I Chord of
the Key

A Bach Choral
Random Sample Generated Bach Choral

4 Chords and Overlap 2 generate over 24 million
sequences

Xiuyan Ni, Ligon Liu, Robert Haralick, ”Music Generation With Relation Join”, 12th International Symposium on
Computer Music Multidisciplinary Research, São Paulo, 2016, pp. 286-296.
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