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Abstract: A new multispectral image context clas-
sification, which is based on a stochastic relaxa-
tion algorithm and Markov-Gibbs Random Field, is
presented. The implementation of the relaxation
algorithm is related to a form of optimization pro-
gramming using annealing.

In this paper we first motivate a Bayesian context
decision rule, and introduce a Markov-Gibbs model
for the original LANDSAT MSS image, and then develop
a new contextual classification algorithm, in which
maximizing the a posterior probability (MAP) is
based on the stochastic relaxation and annealing
method. Finally, we present experimental results
which are based on simulated and real multispectral
remote sensing image to show how classification ac-
curacy is greatly improved. The algorithm is highly
parallel and exploits the equivalence between Gibbs
distributions and Markov Random Fields (MRF).

(I) INTRODUCTION:

Conventional automatic classification techniques,
in particular for remote sensing data, classify each
pixel independently. This type of classification can
only exploit spectral or, in some cases, spectral
and temporal information. Using coherent spatial
information for classification efficiency and accu-
racy in Remote Sensing application has long been
desired. In recent yedars, sSome researchers have
discussed this realization. A spatial stochastic
recursive contextual classification was proposed by
T.8.Yu and K.S.Fu [4]; an estimation method of the
context function was discussed by J.C.Tilton, S.B
Vardenman and P.H Swain [5] [6] [8]; a recursive
context classification using dynamic programming was
presented by Haralick and M.C. Zhang[2].

In this paper we develop a new context classifica-
tion approach, which is based on a stochastic re-
laxation algorithm and Gibbs distribution. These
are not new concepts, as they have been used in
statistical physics for many years. There, the
problem of analysing the macroscopic properties of

a physical system is translated into one of analys-
ing the global properties of random fields with a
given local structure. However, only Geman[3] has
introduced these concepts into image restoration,
and he has given a few simple results using syn-
thetic images. In this paper we use them in context
classification, and we make an analogy between image
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and statistical mechanics systems. Pixel gray lev-
els and labels are viewed as states of atoms or
molecules in a lattice-like physical system. The
assignment of energy functions in a physical system
determines its Gibbs distribution Because of the
Gibbs distribution-Markov random field (MRF) equiv-
alence, this assignment also determines a MRF image
model.

In this paper we first motivate a Bayesian context
decision rule, and introduce a Markov-Gibbs model
for the original LANDSAT MSS image, and then develop
a4 new contextual classification algorithm, in which
maximizing the a posteriori probability (MAP) is
based on stochastic relaxation and annealing method.
Finally, we present experimental results with both
simulated and real multispectral remote sensing data
to show how classification accuracy is greatly im-
proved. The algorithm is highly parallel and ex-
ploits the equivalence between Gibbs distributions
and Markov Random Fields (MRF).

(II) Motivation and Proposed Approach:

The context information, which we would like to
study, is a form of correlation existing among the
succesive pattern classes in the two-dimensional
image. Every pixel in the image can be considered
as having one random variable associated with a 2-D
markov Random Field. Two pixels in spatial proxim-
ity to one another are unconditionally correlated,
with the degree of correlation decreasing as the
distance between them increases. All the spatial
correlations among "site-variables" on a lattice can
be extracted by the specified spatial process. The
most important quantity in the context Bayes' deci-
sion problem is the joint density function of all
site-variables within the specified contextual
neighborhood. 8o the best way to incorporate these
correlations statistically is to estimate the joint
probability density function of all the site-
variables involved.

For practical reasons most of the previous studies
deal with some specific cases, in which the
4-neighborhood assumption is invariably utilized in
the context algorithms, and the contextual informa-
tion is incorporated by considering the posterior

class probabilities of pixel(i,j) given not only
pixel(i,j) but also its neighbors,

These approaches are certainly based on a realistic
premise but it is computationally feasible only for
first order neighborhoods. The new contextual deci-
sion rule to be introduced in this section improves



this by using a larger context.

Before presenting this rule, we must first give the
notation, and assume that each pixel of the multi-
band image considered in the paper has a N-tuple of
finite gray tone values, and each component of it
takes one value from the set D ={ 0,...,255 } .

(II-1) Notation:

(1) Mr: designates row size of an image.
(2) M. designates column size of an image.

(3) I: designates the row index set of an image.

= =y woeeon P Mr >
(4) J: designates the column index set of an image.
R o , M >
c
(5) (i,j) : designates an image position
(i,j) e I X J
(6) dij an N-tuple observed measurement
vector from pixel (i,]j).
(7N DN : the collection of all measurement
vectors in the neighborhood.
(8) C assigned category labels in the
neighorhood.
(9) c® assigned category labels in the

neighborhood, excluding the central
pixel of the neighborhood.
(10) ZNI+1: designates row size of an neighbor-

hood.
(1) ZNC+1: designates column size of neighbor-

hood.

(12) L: designates the local row index set of

neighborhood.
L=<-N, ....... , N>
T r
(13) K: designates the local column index set of
neighborhood.
K=< -N, ....... , N >
r c
(14) (1,k) designates a local position in
neighborhood.

(1,k) ¢ L X K.
(15) €1’ assigned category labels of
pixel (l,k) in neighborhood.
(16) 9={w1,w2,....wn} the collection of all

categories.
(17) © : designate a pattern configuration of as-
signed labels in neighborhoed.

0 =< le eQ, (1,k) et LXK >

(II-2) BAYESIAN CONTEXT CLASSIFICATION MODEL:

From the Bayesian Model[Haralick,l], the context
classification problem can be stated as: to assign
labels c to the pixels in the neighborhood of pixel
(i,3) which minimizes the expected loss

£ L(c,cT)pc|D,Q) 2.1)
L3

&
where P[CJ|D,Q) is the probability that the as-
signed labels are the true labels given i) the

measurements of the pixels in the neighborhood of
pixel (i,j) ii) the prior information Q we have

400

%
about pixel dependencies. And where L(C,C ) is the
loos incurred for the assignment of interpretation
C to the pixels in the neighborhood of pixel (i,j),

¥
when the true interpretation are C .

We use the most common zero-one loss function for
our study problem. There is no loss for a correct
joint assignment and unit loss for any incorrect
joint assignment. Here, correct assignment means
that each pixel in the neighborhood assigned inter-
pretations are correct. Thus, there is no dis-
tinction in loss between an incorrect assignment in
which only one pixel is incorrectly assigned or an
incorrect assignment in which all pixels are incor-
rectly assigned.
Such a loss function is defined by

*

0 where C = C

(2.2)
1 otherwise

L(C,C) =

There are two assumptions about the would and pixel
measurement process which can simplify the expected
loss expression (2.1). The first assumption states
that the description process is local. When the
pixel (4i,j) is being examined, no characteristics
from any other pixel, but pixel (i,j) affect the
description obtained from pixel (i,j). Hence,

JE NI S JCH AR
(i,i) e LXK
(2.3)

The second assumption states that the n-tupe meas-
urement of pixel (i,j) depends only upon the true

interpretation.c‘ associated with any other pixel.
Hence

P(d

| €,Q)=P@Wd [C )
ij ij

iy 1]
(i,j e Q

Under these assumptions, the optimal decision rule
determines

interpretations C for the pixels in the neighbor-
hood which minimize:

L W o
I L(C,c) T PB(d |ec ) B(C )/P(D)
o (i,3)  ij i}
(2.4)

With the loss function defined by (4.2), the best
decision procedure chooses interpretation C which
satisfy the maximally condition

I P(d |C )P(C) >= I PB(d

12 )P(2)
(i,3) i3 4] (i,3) j

ij
(2.5)

ij

for all Z.. € R
1]

The choice of C satisfying this maximally condition
cannot be independently done pixel by pixel.



(III) Markov Random Fields and Gibbs states with
nearest neighbor assumption:

It is clear that any efficient computer algorithm
for image analysis, classification, and processing
can only be done using the framework of a proper
image model. The Markov Random field and Gibbs
model, which is pervasive in the image processing
literature, constitute a promising natural way to
capture context assumptions in classification.

Preston [17] or Spritser [21] give the basic theory
of Markov Randem Fields, and show that the Markov
Random Field should enjoy the same wide variety of
applications that Markov chains have. They make the
material available to people outside of mathematics,
as well as to discuss certain of its applications
to other areas. On the use of the Markov Random
Field for image processing and pattern recognition
see Abend [15],Dobrushin[16]}, Wong , Kanal. More
recent results are due to Martin [22], Laveen, Kanal
[23], Chellappa [24].

Consistent with the two-dimensional(2-D) discrete
Markov random field for multispectial image proc-
essing applications, we assume a random observation
vector Xij’ whose component take one gray tone

value from the set D={0,...,255}, and the pixel po-
sition (i,j) is defined on the two dimensional fi-
nite integer set of size I X J.

The Markov random field medel may be defined as
below:

Let < Xij’ (i,j) e 1 X J > be an cbservation from

an image, and I, J and (i,]) are shown in the section
I-2. It is postulated that this is generated by an
appropriate 2-D ( non causal) Markov Random Field
model. The model characterizes the statistical de-
pendency among pixels by requiring that

P(Xij| an: (m,n) e I XJ s (1L,K)YE(4,3)) =
P( Xijl an (m,n) ¢ Nij)
(3.1)

Where N is the appropriate symmetric neighbor set.
For instance N = {[0,1),(0,—1),(-1,0),(1,0) } cor-
responds to taking the simplest Markov model and by
including more neighbors we can construct a higher
order of Markov model.

It is unlike the 1-D discrete time series, where
the existence of a preferred direction is inherently
assumed, no such preferred ordering of the discrete
neighborhood appropriate. In other words, the notion
of "past” and "future" as understood in a unilateral
1-D Markov process is restrictive in 2-D as it im-
plies a particular ordering in which the observa-
tions are scanned top down and left to right. It is
quite possible that an observation at a pixel p may
be dependent on surrounding observations in all di-
rections.

(III-1) Three Markov Properties:

Before describing the relaxation algorithm, we
first discuss three Markov properties for a random
field studied in this paper [15-17]: i) the nearest
neighbor property, ii) the Markov property, and iii)
factorizability property characteristic to. Gibbs
states with nearest neighbor potentials.

For information on title, please contact author.

The factorizability property is theoretical base
of decomposing the potential functions by cliques.
It is very useful for us to find the canonical po-
tential form in our problem.

The facterlization property also can be stated as
below:

Suppose that the graph G has several connected
components GSl’ Gsz.... If (X<P) has one of the

properties given by nearest neighborhood, Markov
Random Field or facterization function on the graph
G. The each subgraph ( X g7 PSi ) has the same

property on the subgraph Gsi’ i=1,2,.... . Also
if (X,P) has Markov property on G, them P is the
product measure

P=P % Peuan (3.5)

s1° “s2

Form above, we see that the facterlization property
quarantine to decompose the complex potential func-
tion into summation of simple potential functions
of each clique over the neighborhood. This is key
point of our algorithm.

(1IV) THE MARKOV-GIBBS MODEL FOR BAYES' CONTEXT
CLASSIFICATION:

In this section, we will show how the Markov-Gibbs
model is incorporated with the Bayes' context clas-
sification, and how the optimal decision rule de-
termines interperetation C for the pixels in the
neighorhood of pixel (i,j) which satisfy the
maximality condition (2.2).

Recall, the joint probability P(D,C) is a Gibbs
distribution over neighborhood, with corresponding
energy function U and potentials Ve, and can be ex-
pressed as following:

P(D,C) = 1/2 exp(-U(D,C)/KT)
(4.1)
U(D,C) = % V(D ,0)
LiE W

From (2.3 ), we know that with the zero-one loss
function, the best decision procedure choses lable
C which satisfy the maximality condition

I P(dijlcij)P(c) >

T PG, lz;,)P(2)
(i,5) e LXK

(i,j) e LXK
(4.2)

The Gibbs distribution, with corresponding energy
function U(C) is formed as below

PCC) =1/2 exp ( - U(C)/KT )
(4.3)

Z and K are constants and U is the energy functioen,
which have the form

u(c) = E

L.eW
1

VLi(c)

(4.4)



W denote the set of cliques on the graph G. Each

VLiis function on G with the property that VLi(C)

depends only on those coordinates of and assigned

labels of pixel (i,j), for which locate in the
clique. Such a family { VLi’ Li £ W } is called a
potential Z is the normalizing constant
Z= I exp ( - UL (C)/KT )
1,
L.e W
i

(4.5)

T, stands for "temperature'; for our purposes, T
controls the degree of '"peak' in the '"demsity".
Choosing T "small" exaggrates the models, making
them easier to find by sampling; this is the prin-
ciple of annealing, and will be applied to our late
procedure.

From the previous
P(dijECiJ)P(C) also

section, we know the B(C,D) =1
is a Gibbs distribution:

B( C,D )= 1/Z exp (-UA/KT)
(4.6)

Since P( dlkl Clk) = exp (log F(dlkl Clk))

P(d;, ) = exp(log p(d;,))
and
P(C) = 1/Z exp ( - Uy(C)/KT)
(4.7)
So the UA can be expressed as below.
UA = - L log P(dlkLclk) + UC(C)
(4.8)
The assign category, in the sense of Baysian in-
ference, is determined by maximizing (&4.6). The

probability is maximized when energy is minimized=-
this analogous to the situation of thermal equilib-
rium in statistical physics, where the most probable
molecular configurations occur at the lowest ener-
gies. For the case of Bayes context classification,
the most probable label occurs when the negative
exponent power is minimized. Using conventional
gradient techniques, maximizing posterior probabil-
ity is virtually impossible for all but the first
order Markov Random Field models, because of the
existence of many local extrma. However mew
multivariate or combinatorial optimization (finding
the minimum of a given function depending on many
parameters) - stochastic relaxation, which is de-
veloped by Kirkpatrick et al [19], offers a practi-
cal solution .

After creating the Gibbs models for Bayes' context
classificati >, the problem now is to find U(Cc) or
VC . The Vc functions represent contributions to

(singleton
and so

the total energy from external fields
cliques), pair interactions ( doubletons),
forth.

Typically, several free parameters are involved in
the specification of U, and Z is then a function of
those parameters.

The most general form of U is that
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Uu(e) = z V[i’j}(xij) + E

Ve, . G 591 a5, 71 Ve, ), 0, 5e0)

Fiy4s, 5400

(4.9)
where the summation is over all (i,j) & N, and N
denotes the nearest-neighbor. The Ising model

(1925), which is the earliest and best-known lattice
system , can be thought of the special case of (4.9)
in which X is binary ( L=2), homogeneous ( = strictly
stationary) and isotopie ( = rotational invariant);
Its potential function is

= {3 + +F + *
V(w) =a I Xij BC E Xij Xi+1,j Exij Xi,j+l)
(4.10)
for some parameters o and B, which measure, re-
spectively, the external field and bonding
strengths.

For our contextual classification case, the poten-
tial U(c) is a function of pattern configurationms,
the linear combination expression of coordinates as
(4.10) is not suitable. But we still assume that the
image is homogeneous and isotopic.

Before we derive the canonical potential fer general
case, we first give definitions of Gibbs ensemble
as below[15-17]:

The random field is a Gibbs ensemble if there exists
a potential V such that

p(0) =2t

exp ( P VLi( Bk) )

L.e W
1

where the summation is over all subsets of the
cliques Li’ and Z is chosen to make £ P(8) =1 , for

6 e0

G.R. Grimmett[16] gave a useful theorem of potential
function:

The randoem field is a Gibbs ensemble if and only
if it is a Markov field. If the random field is a
Markov field, then its potential function is given

by
vy =t (-1 B eg pe,)
L.e W
1
(4.11)
where the summation is over all subsets of the
clique Li’ and u = (-1) |45 is Mobius function,

and |A-B| is the number of elements in A - B.

From above theorem we see that given a Markov random
field on a finite graph, the local characteristics
( see III-1) do uniquely determine this potential
function and then the canonical potential can be
determined from these local characteristics.

The problem in this paper can be stated ,that the
assigned category is determined by minimizing the
following expression:

A
+ 2% log P{cijtci+1’j)} + 2%L log P{CijIC

(4.12)

V, = L log P(dij\cij) + I log P(Cij}

i+157?



These formulas can be motivated from the
factorization property of Markov Random Field and
neighboring clique assumption. We kept the the model
as simple as possible, indeed, only cliques of size
are involved in the above expressiomn.

Because of the existence of many local extrema, the
computation cost of maximizing posterior probability
for Bayes classification is usually computational
high. TFor example, a MSS image has N class catego-
ries and M X M lattice , the number of configurations

2
is at least NM . Hence, the identification of even
near-optimal solutions is surprisingly difficult for
such a relatively complex function. In the next
section we present the implementation of stachastic
relaxation context classification, which can re-
markably overcome the computational difficulty.

(V) Implementation of the stochastic relaxation
context classification:

The method used in the stochastic relaxation con-
text classification is essentially a variant of a
Monte Carlo procedure duo to Metropolis et al.
[20]. The Metropolis procedure is that samples are
randomly generated from a Gibbs distribution at
constant temperature, thereby used to simulate the
behavior of a physical system in thermal equilib-
rium. The algorithm is briefly distributed as below.
For each state Dij of a model D a random perturbation

is made, and the change in energy, AU is computed.
If AU<=0, the perturbation is accepted, if AU is
positive then the perturbation is accepted with
probability

P(AU) = exp(-4AU/T) (5.1)

This conditional acceptance is easily implemented
by choosing a random number R uniformly distributed
between 0 and 1. If R <= P(AE) then the perturbation

is accepted; otherwise the existing model is re-
tained. Random perturbation according to these rules
eventually causes the system to reach equilibrium,
or the configuration 8 corresponding to maximum
probability. The technique used here slowly lowers
the temperature T during execution of the iterative
procedure. If the system is cooled sufficiently
slowly and equilibrium conditions are maintained,
the model converges to a state with minimum energy,
or maximum a posterior probability. This fact was
proved by Geman [3]. Geman also pointed out that the
most important aspect of any cooling function is
that it be slow, especially near the critical tem-
perature where convergence is rapid. The successful
choice of an annealing schedule requires experience;
ideally, the procedure would be interactive. As T
decrease, samples from the distribution are forced
towards the minimal energy configurations. The tem-
perature T(k) used by Geman satisfies the bound

T(k) > =

C/log(1+k) (5.2)

It is employed in executing the Kth

ment (i.e. the K classified labels in the iter-
ation scheme). For every k, C is a constant
independent of k. Then with probability converging
(as k * = ) the configurations generated by the al-
gorithm will be those of minimal energy.

, Site replace-

(VI) summary of the stochastic relaxation context
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classification procedure:

In summary, the stochstic relaxation context clas-
sification procedure can be implemented as follows:
(i) Evaluate training statistics, this includes the
mean vector and convariance requred for the Gaussian
class conditional distribution.

(ii) Preclassify the image using a pixel independ-
ent or context free Bayes classification technique.
(iii) Evaluate the transition probability :

P(Cij[ci,j-l’ci-l,j) from the preclassification

results. See M. C. Zhang [18].
(iv) Using equation (4.22),(5.1) +(5.2) perform the
stochastic relaxation context classification.

(VII)Improved Scheme:

Now we have a desirable stochastic relaxation pro-
cedure, in which ) samples are randomly generated
from a Gibbs distribution at a controlled temper-
ature T. As T changes, samples from the distribution
are forced towards the minimal energy configuration.
Geman [3] proved the convergence properties of this
algorithm, and showed how to markedly reduce the
computational difficulty. As we mentioned before,
for an MSS image which has N class categories and a

M X M neighborhood, the number of configuration is
st MZ

at least N In his scheme the pattern samples are
randomly collected from a huge pattern configuration
space. In contrast to our proposed method, his
method had nothing to do with reducing the pattern
configuration space. Experimental results showed
that for a significant improvement of context clas-
sification results the number of iterations was
still sizeable.

In order to further reduce the computational com-
plexity, it is important to reduce the size of the
huge pattern configuration space or to give some
constraints on the pattern generation procedure.

We now describe how we can use the homogeneous as-
sumption to control the pattern configuration sam-
pling procedure.

Most Landasat and aerial photograph images are di-
vided into a number of elementary regions at the
classification stage. Each region is finite, fairly
homogenous, and has similar spectral properties over
its entire ground surface. These homogeneous regions
are correspond uniform objects ( categories ) on the
earth's surface. We believe that some smooth or
homogenous pattern configurations are much more
probable than others, and some irregular patterns
have very low probabilities.

This fact gives us a stage the iterative procedure
in that we may use these most probable homogenous
patterns at the beginning of the iteration proce-
dure. After that we randomly generate the pattern
configuration, and skip irregular patterns which
have low probability.

We should note that the global procedure is still
random; we only set special pattern configurations
into initial states, and give some constraints on
the iterative procedure. Therefore this scheme is
still a stochastic relaxatien procedure.,

First we assume that uniform pattern configurations
have higher occurring probabilities, and they are
generated and tested at the beginning of the itera-
tive procedure.

The assignment of these uniform labels is based on
the labels in the neighborhood assigned at the
classification stage.



So the number of these uniform pattern configura-
tions is equal to the number of categories in the
neighborhood.

Subsequent to the above testing we assume that some
simple pattern configurations (Figure 1) also have
higher occurring probabilities. Theses are assigned
and tested again.

The pattern in Figure 1 a has upper and lower parts,
and the assignment of these labels in each part is
also based labels in each part is also based on the
labels in that part assigned at the preclassifica-
tion stage. Similarly, Figures 1-b,c and d show
three other simple patterns.

After these steps a random pattern generator is
intreduced in this relaxation procedure.

In order to restrict irregular patterns, we defi-
nite a measure of the irregularity as follows:

number of pixels in the neighborhood
number of classes in the neighborhood

After we give a threshold, the irregularity meas-
urement of each pattern is calculated, and compared
with the threshold. If the measurement is larger
than the threshold, this pattern is too irregular,
and the procedure will skip testing and generate the
next pattern instead.

Figure [6] shows the experiment results of proved
schemes under 30 iterations. For same improvement
of context classification results the proved scheme
reduces number of iterations from about 600 to 30.

(VIII) Experimental results:

In order to show the accuracy improvement of con-
text classification several experimental results
based on both simulated and real multispectral re-
mote sensing data are illustrated.

(VIII-1) Simulated data experiments:

Because classification accuracy can vary with dif-
ferent kinds of original input data set, use of some
simple simulated data set to evaluate the effec-
tiveness of the classification technique is very
desirable. In this subsection we illustrate a sim-
ulated data experiment method, which is generated
from the ground truth of a real remote sensing im-
age.

The simulated data generating method proposed by
P.H. Swain [6,8 | as follows:

Using the ground truth ( or classification map )
and associated estimated mean vectors and
contrivance matrices of the classes (developed in
performing the no-context classification), new data
vectors are produced by a Gaussian random number
generator and composed into a new data set. Thus the
new data had the following characteristics:

(1)Each pixel in the simulated data set represents
the same class as in the ground truth data.

(2)All classes have multivariate Gaussian distrib-
utions with parameters typical of those found in the
ground truth data.

(3)A11 pixels are class-conditionally independent
of adjacent pixels.

(4)There are no mixture pixels.

Data simulated in this manner consistent somewhat
of an idealization of real remote sensing data, but
the spatial organization of the simulated data is
consistent with a real world scene, and the overall

characteristics of the data are consistent with the
contextual classifier assumption.

(VIII-2) experiment results:

The technique is first illustrated using a simy-
lated image, which is generated from a digital re-
mote sensing data collected by the Landsat MSS. The
experimental data, which was a subset of the 13
April 1976 MSS scene of Roanoke, VA, was selecteq
as the first study area.It was classified by a cop-
ventional context free method in order to compare
the results. The following ground cover classes are
used:

(1) Class 1: Urban or Built-up Land;
(2) Class 2: Agricultural Land;

(3) Class 3: Rangeland;

(4) Class 4: Forest land;

(5) Class 5: Water;

(6) Class 6: Wetland;

(7) Class 7: Barren land;

(8) Class 8: Tundra;

Because the study area was selected from the
Roanocke, VA mountainous region (longitude from 79
52' to 80 00 W; latitude from 37 15' to 37 23' N),
the land cover of this region is a complex pattern
of diverse spectral classes presented in small par-
cels. The most easily classified of this land cover
class--open water--is not represented in this test
area. Thus, this area is a difficult area for con-
ventional classification. The accuracy of context
free classification with real remote sensing image,
including Bayesian classifiers, 60%; AMOEBA (Bryznt,
1979), and ISODATA (Duda and Hart, 1973), are not
unusual for scenes of this complexity,

The test image has four bands of digital, multi-
spectral data. The mean vectors m, and the

covariance matrices Zi for each class i is calcu-

lated. Then a simulated image having the approximate
characteristics can be generated by the Gaussian
Model.

As mentiongd before, the key step of the contextual
classification scheme we presented in this paper is
minimizing the expression (4.12)

The probability of each class P(wk) is directed
¢#lculated from preclassification result. The tran-
sition probability P(cijlcij-l’ci-lj} can get from
maximum likelihood estimation or robust estimation
(See Zhang 18). The P(dij|Cij) is the class condi-

tional distribution, which is estimated from the
training sets and ground truth. In this experiment
means and covarience matrices of each category were
calculated from ground truth data. The class con-
ditional probability P(dijlcij) are assumed multi-

dimensional normal:

POy, | C;y
1 1 T -1
S T EXP(---(d -m ) I (d -m))
(2my M2 | g (12 2 ij k ij k
(9.1)

where n is the dimension of the feature space.

The context free and context classification results



with both simulated and real multispectral remote
sensing data are shown in Figure 2-14. The contin-
gency tables for classification resuits are in table
1-2. The contingency table and classification im-
ages lead us to a conclusion that the stochastic
relaxation context classification result, in most
cases, provide results as good as the recursive
context classification algorithm in [ 2]. By vis-
vally examining these results, one can easily tell
how good the performances are within each class, and
also along the boundaries between classes. At first
sight, we see that the Bayesian classifiers results
are quite noisy. The Markov context classification
seems to 'clean up ' the picture significantly. It
can be seen that many small isolated pixels were
eliminated, and each area was much more homogeneous
in the contextual classification results. Bounda-
ries remained accurately placed. The MSS four band
image, ground truth map, which had been classified
by professional analysts, are given in Figure 2 and
Figure 3, respectively. The above comparison and
Fig 6 indicated that a 5 to 10% improvement of ac-
curacy was obtained by the context classification

method. So in addition to the visual improvement,
the context classification scheme improves the
classification accuracy as well.

The second study area is Califorria. Three MSS

classification results where sizes of subsets are
130 X 90, 101 X 70, 130 X 60 respectively, are shown
in Figure § to 12. These results show that the al-
gorithm was effective in several different areas
with varied categories and preclassification accu-
racies (these areas had about 90% preclassification
accuracy) .

The third study area is crop field at Clarke, Orgon.
The Landsat MSS image is 12 band data set( Landsat
MSS bands &4-7 from three dates). Thomas <1982>
showed the accuracy of maximum likelihood classi-
fication and his canonical analysis method in the
same study area is about 75%. Our context classi-
fication scheme raise the classification accuracy
to 80.8%.

In order to study the effects of noise, independent

zero-mean Gaussian noise N(O,oz) is added to the
4-bands MSS simulated image at three different noise
standard deviation 1, 2 and 3. Then, the noisy image
is classified by Bayes classification, Dynamic
progrmming approach for context classification, and
context classification by stochastic relaxation, The
orerall classification accuracy is measured as the
ratic of the number of corectly classified pixels
to the number of total classified pixels and is
plotted as a function of the noise standard devi-
ation in Figure 16

1t can be see that the context free classification
(Bayes classifer) is very sensitive to random noise,
and context classification by stochastic relaxation
is superior to any other classifier.

(IX) Algorithm in parallel:

Although, the computational cost of the stochastic
relaxation scheme is much more expensive than con-
ventional context free classification methods, it
is highly parallel in the sense that it is imple-
mented by simple and alike neighbor operator.

Performance of the each neighbor operator is inde-
pendent with other neighbors in the entire image.
The amount of time required for each iterative of
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entire image is only direct proportion with number
of pixels in the image.

This important property allows the algorithm to run
in full parallel version, which will require ex-
tremely sophisticated new hardware.

A more modest degree of parallelism was noted by
Geman [3]. Since the convergence theorems are inde-
pendent of the details of the site replacement
scheme nl,n2,... the graph associated with the MRF
can be divided into collections of sites with each
collection assigned to an independently running(
asynchronous) processor. Each such processor would
execute a raster scan updatary of its assigned
sites. Communication requirements will be small if
the division of the graph respects natural topology
of the scene, provided of course that the neighbor-
hood systems are reasonably local. Such an imple-
mentation with five or ten micro- or mini-computer,

represents a straightforward application of avail-
able technology.

(X) Summary

We have developed a new multispectral image context
classification with Markov Random Field, where re-
motely sensed data are more efficiently and more
accurately classified compared to traditional cop-
text free classifiers. This new approach of multi-
spectral image context classification is based on a
stochastic relaxation algorithm and Markov=Gibbs
Random Field. The implementation of the relaxation
algorithm is on a form of optimization using
annealing. In this paper we have first motivated a
Bayesian context decision rule, and introduced a
Markov-Gibbs model for the original LANDSAT MSS im-
age, and then develop a new contextual classifica-
tion algorithm, in which maximizing the a posterior
probability (MAP) is based on the stochastic relax-
ation and annealing method. Ap improved algorithm
has been presented to speed the stochastic relaxa-
tion procedure. It has greatly reduced the number
of iteration by using some special pattern config-
urations at the beginning of the iterative proce-
dure. Finally, we have present experimental results
which are based on simulated and real multispectral
remote sensing image to show how classification ac-
curacy is greatly improved. The algorithm is highly
parallel and exploits the equivalence between Gibbs
distributions and Markov Random Fields (MRF).
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Figure 1. Foure simple pattern configura-

tions for im proved scheme,
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Figure 2. First band of MSS scence of Roanoke, VA, :
Aprial 1976, image size 151 X 151.

g

Figure 3-6: Classification results of MSS Roanoke.
Left-upp(fig 3): Bayes Preclassification result.
Right-upp(fig 4): Markov contextual classification.
Left-Bottom(fig 5): Stochastic relaxation contextual
classifcation result.

Right-bottom(fig 6): Ground Truth image.

Figure 7-9: Classitication result of MSS Scence
of California. (H)

Left(fig 7): Bayes preclassification results,
Middle(fig 8): Markov contextual classification.
Right(fig 9): Stochastic relaxaticn context
classification results.

Figure 10-12: Classification results of MSS
Scence of California (I)

Left(fig 10): Bayes preclassification result.
Middle(fig 11): Markov contextual classification.
Right(fig 12): Stochastic relaxation context
classification.



TABLE 1. Cnntingency tables for classification results
of 13 April 1976 MSS scene of Roanke, VA. Scale
factoer of the number of pixels 10 +* 1. (continue)

Classification accuracy

LL Overall classification accuracy: ration of the number
correctly classified pixels to the number of total
classified pixels.

S e " URB -- Urban or built-up Land
b £ ¢ AGR -- Agri ultural Land
Figure 13-15: Classification results of MSS RAN -- Rangeland "
Scence of Cropfield at Clarke, Orgon (1982). FS RoRRAL
Left(fig 13): Bayes preclassifcation resu!t. )
middle(fig 14): Markov contextual classification, Table 2. oF tar Nt Setls Pt
Right(fig 15): Stochastic relaxation context number of pixels 10 45 1.
C]aSSiffcatToﬂ result. COL = assigned categories ROW = true categories

(A) Bayes classification result

CLASS WHT ALF PpoT CRN BNS PAS  RNG
WHT 1017 47 30 5 4 10 75
ALF 71 382 135 10 13 i2 39
PCT 40 32 522 5 19 2 32
CRN 1 5 1 65 2 [} 4
BNS 2 4 2 1 35 o 3
APL 0 1 o 1 1 aQ o A
PAS Q o] [¢] 0 0 9 2 11 81.1%
RNG 15 12 14 2 4 9 2a3s 392 85 . 4%
TOTAL 1146 483 704 89 78 7 42 490 3040 77.5%

(B) Centext classification result using dynamic pProgramming
approach

Figure 16: Uveral classifcation e - somtext | e T NPT om e am me me emi meory
3 % 3 2 WHT 1673 26 26 1 11 0 10 601 1248 90 %
curves VS noise level: Yellow Tine _context ME 83 230 as0 3 ;g ') soL o azes 58 0
classification by stochastic relaxation, Green Fot % 29 Sk 2 & ° 0 3 652 81.9%

5 . . B

Tine - Dynamic Programming approch to context BNs - o o 3 a 3§.§§
: : 3 3 = T£ 4 3 APL o 2 0 o o] o o] o 2 oy
classification Red Tine Bayes classification. St ° 1 o o o § ¢ i TP
RNG 19 16 15 1 3 0 1 339 394 86.1%

TABLE 1. Contingency tables for classification results
of 13 April 1976 MSS scene of Roanke, VA. Scale TOTAL 1681 605 777 82 58 o 23 1084 3103 a0. sy
factor of the number of pixels 10 *#+ 1 |

(C) Stochastic relaxation Context classification result

COL = assigned categories ROW = true categories

A) B classification result 1 1 0 o
(R) Bayes 1 o o o
1 3 4] Q
® 5 o o o]
AGR RNG FST TOTAL ACC(%) o] 35 ] o
c—mmmaooa s i ———— e, SeLELi . ————— i weaiam ———- B 2 o o
URB 760 512 ] 162 1437 52.8% 0 Q 0 o T
AGR 116 379 [+] 83 578 65.6% RNG 17 11 14 1 0 o it
RNG [o] o o] 0 o] -
FSN 15 28 0 210 253 B3.0% TOTAL 1643 573 787 72 47 o 1
*
TOTAL 894 919 0 455 2268 59.6%
) . : R . * Classification accuracy,
(B) Context classification result using a dynamic pProgramming " Overall classification accuracy: ration of the number
approach correctly classified Pixels to the number of total

classified pixels

WHT -~ Wheat
ALE -- Alfalfa

]
0 FOT -- Potatoes
Q 4] [ - CRN -- Corn
EST 58 28 o 167 253 66.0% BNS -~ Beans
ok APL =- Apples
+] 211 2268 67 . 8% PAS -- Pasture (irrigated)
TOTAL 1250 817 % RNG 2 Raroateny
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