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Abstract

This paper gives a brief overview of the classical
contextual pattern recognition problem. We show
that the difficulty of this problem is really associated
with the determination and use of the support of the
joint prior distribution of the category labels. We in-
dicate how the consistent labeling framework can be
used to define the support of the joint prior. Then
we show that this formulation of the problem can be

eneralized and we bring in a general propostional
ogic framework which not only defines the support
of the joint prior but which also permits a calculation
to be made evaluating the joint prior for any given set
of joint labelings. We show that this formulation is
indeed a formulation relating to the degree of belief.
We develop a formal system for the degree of belief
in terms of an operational probability meaning. The
degree of belief in a proposition is exactly the proba-
bility with which one can assert the proposition. We
then show how the classical contextual problem can
be generalized in the belief framework.

‘1 Statement of Problem

Let the universe be divided up into recognizable
and measurable pieces which we call units, Let U be

such a set of units. Each unit in U can be character-
ized by

e its relationships with other units,

e an n-tuple of measurements determined by some
local measuring process, and

e the appropriate category interpretation for the
unit.

We call each category interpretation a label. We de-
note by L the set of possible category interpretations

for a unit. . .
The Bayesian framework poses the labeling prob-

lem as follows: given the measurement n-tuple made
on each unit, and given the prior world knowledge @
which specifies allowable category interpretations for
each group of related units, determine the functional
assignment, f, f : U — L having highest probability
of being correct given the sets of measurements and
relationships. This is a pattern recognition problem
involving context. Further discussion of this problem
statement can be found in Haralick (1983).
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2 Bayesian Model

We begin our discussion of this problem by de-
scribing the general Bayesian model. Corresponding
to a unit u;, there is its assigned interpretation z;,
and its measurement n-tuple z;. Given the n-tuple
for each unit and the world model Q, we would like
to assign labels z1, ..., zpr to units uy, ..., ups respec-
tively, which maximize P(zy,...,zp|21,...,2M,Q),
the probability that the assigned labels are the true
labels given the information we have about the units.

By Bayes theorem, maximizing

PlEr; o o BBy o Epes Q)
is equivalent to maximizing
P 005 B0, B oons BM ) =

Pl ooy TR |21« 5 2000 VP (815 20| Q)
We make the following assumptions about the world
and unit measurement process. The first assumption
states that the description process is local. When the
unit u; is being examined, no characteristics from any
other unit but unit u; affects the description obtained
from unit u;. Hence:

P(z1y0 e ZM|21 ey 2M, Q) =
M
HP(:,-|z1,...,zM,Q).
i=1

The second assumption states that the n-tuple
measurement of unit u; depends only on the interpre-
tation associated with unit u; and does not depend
upon any relationships unit u; may have with other
units or upon the interpretations associated with any
other unit. Thus,

P(l‘.“Z]_, ey M, Q) = P(zilzi)'
Hence, the optimal decision rule determines interpre-
tations zy,...,zpy for umits u;,...,uy which maxi-
mize
P(Zl,.. 3 ZM,T1, ,:CM!Q) =

M
P(z,...,2m1Q) [ [ P(z:lz).
i=1
The assumption often made in pattern recognition

without context is that the units themselves are in-
dependent. The interpretation given to any one unit



does not constrain the interpretation given to any
other unit. In this case:

M
P(z,...,2u|Q) = [] P())
i=1

and the best decision procedure is to give inter-
pretation z; to unit u; where label z; maximizes

p(zilz) P(z):
P(m,-lz;)P(z‘-) > P(.’E"lz)P(Z) Yz.

This assumption is clearly inappropriate in pattern
recognition problems which have a rich context.

A weaker assumption is the Markov assumption
used when the units are linearly ordered and the in-
terpretation of any unit depends only on the inter-
pretation of the previous unit in the order. That is:

P(z,—]zl, - .,.2‘,'_1) = P(z,—|z.-._1) Vi,
Then using the identity
Plris » i2ig)y = Plasrrg - op-1) ¥
P(zM__1|z1,...,zM_g) X
e X P(Zglll)P(Zl)
we obtain

M
Plzsy -vwtir] = |1 Pl

i=1

In this case, the best decision proceedure chooses in-
terpretations 2y, ..., zp which satisfy the maximality
condition:

M M
[1 P(=ilz)P(zilzie1) > 1 P(=ils)P(2'i-1)

i=1
V(Z’l, ey Z’M).

The choice of zi,...,2zp satisfying the maximality
condition is a dynamic programming problem (Bell-
man and Dreyfus, 1963, Forney, 1973). For most pat-
tern recognition problems with context, this too is an
inappropriate assumption.

Problems with context require a more sen-
sitive way of handling the prior probability
P(z1,...,2m|@Q). To this end, Duda and Hart (1963
), implicitly assumed that the global interpretation
(21,-- ., 2pm) for units (uy, ..., up) is either allowable
or not allowable and all allowable global interpreta-
tions have equal probability. This is an equal prob-
ability of ignorance assumption. But it is one that
applies to the entire context and not to each unit in-
dividually. This kind of methodology is often used
(it is the lexicon or the dictionary) to improve the
performance of OCR.. Thus, if A C LM is the set of
allowable global interpretations, we have:

if (21,...
if (21, ‘e

i=1

,ZM)EA

1
P(zl,...,leQ)={§“’ L om) ¢ A.

106

Under the context equal probability of ignorance as-
sumption, the optimal decision rule determines in-

‘terpretations zj,...,zp for units uy,...,up which
maximnuze
P(z1,...,2M, 21, ..., 2 |Q) =

M
P(z1, .., 241Q) [ | P(=il=)
i=1

= { ?&Hlep(zflzf)s if(zl"-"zM) €A
0, otherwise.

The brute force algorithm to solve this optimization
problem must then go sequentially through all con-
sistent interpretations M-tuples (z1,...,za) of A and

for each one evaluate Hfil P(z;|2) to find that con-

sistent labeling which maximizes []}%, P(zi|z).

In order to use such a proceedure, we must have
an easy way to determine whether or not a label-
ing (21,...,2m) belongs to A. For this purpose we
employ a model involving unit to unit relationships.
Two units may be related or not related. If they are
related then the possible interpretations for one may
constrain or restrict the possible label interpretations
for the other. We denote by T the set of all pairs of
units which constrain one another; T C U x U. We

call T the unit constraint relation. )
e must next represent the label constraints for

those units which do constrain one another; We do

this by the relation R C (U x L)z. Category inter-
pretations m and n for units u and v are legal if and
only if (u,m,v,n,) € R. We call R the unit-label

constraint relation, . .
If it is appropriate for the unit constraint to be

higher order than binary, we can let T C UY and R C
(U x L)N. In either the binary or the general higher
order case, we can represent the set A as consisting
of all M-tuples (f(u1), ..., f(unm)) of labels such that
if (v1,...,un) € T, then (v, f(v1),...,vn, f{un)) €
R. We call A the set of all (T, R) - consistent label-
ings. See Haralick and Shapiro (1979, 1980) for more
details on the posing of consistent labeling problems

and their solution. . o
he brute force algorithm for optimizing

P(z1,...,2M,%1, .., 2p|Q) is surely computationally
expensive because of the exponentially large number
of consistent labelings we expect to find in A. Modi-
fying the algorithm to a branch and bound search is
helpful, but perhaps not enough.

One way of reducing the computational problem is
to solve a suboptimal problem rather than the opti-
mal problem. For example, we could limit the legal
label interpretations for unit u; to only those inter-
pretations z; satisfying P(z;|z;) > ;. We can set 0;
to always accept a given number of interpretations.
In this case we can define R by:

R {(us, 2wz, 2;) € (U x L)?|

(2, 2;) is legal for (ui,u;)
{P(relzs') > 0
P(zjl2) 2 6;



ause the unit-label constraint relation R defined
t e;?; way has a smaller number of tuples, the number

of (T, R) consistent labelings must be smaller too.
Thus, we expect that going through all the labelings
in the set A defined with the modified R should be

easier task. . . L
an'[‘hm:e are other ways in which a relation like R can

come about. Each tuple (v1,¢1,...,Un,cN) In a gen-
eralized R has the meaning that units (viy..-,UN)
can have labels (cy,...,cn) If we let g be the s-
tatement label ¢, is legal for unit v, then the tuple
(v1,¢1,- ..,UN,cN) in R just means the assertion qi
and g and ... and gy is a possible assertion to use
in constructing a labeling. If an assertion is possible
to use, then it can be considered as a piece of evi-
dence. The unit-relation constraint R then is just a
set of possible assertions which exist in the body of
evidence. Assertions in the body of evidence need not
be conjunctions. For example the assertion g — g;
can also be an assertion in a body of evidence. In the
next section we develop this idea, contrasting it with
the Dempster-Shafer (Shafer,1981) evidential reason-
ing.

3 Probabilistic Basis for Belief

In this section we describe an operational proba-
bilistic basis for belief: what we believe, we make use
of; what we do not believe we make no use of. Hence
the degree of belief associated with a proposition in
a body of evidence is related to the chance proba-
bility that an inference mechanism has access to the
proposition for use in making an inference. In this
model, propositions in a body of evidence are treated
as random propositions. A random proposition has

two states: assertable and not assertable. A random
proposition whose chance state 1s assertable 1s avail-

able for making inferences. A random proposition

whose chance state is not assertable is not available
for making inferences. An assertable proposition 1s

considered to be true. A proposition which is not

asserted is neither considered to be true or false. A
proposition whose chance state is not assertable is

just considered to not exist. The degree of belief ina
proposition in a body of evidence is then the chance
probability that it is assertable. The degree of belief
in a proposition inferable from a body of evidence
is the conditional probability that a logical inference
mechanism is able to semantically infer the proposi-
tion from the conjunction of chance suppositions in
the body of evidence, given that the conjunction of
assertions is not self—contradictory.

The operational probabilistic model for belief de-
scribed here is then simultaneously a generalization of
Shafer’s theory of evidence and a Bayesian approach
to belief. To understand this, note that Shafer’s
frame of discernment contains a set of possibilities,
exactly one of which corresponds to the truth. Our
body of evidence contains a set of atomic proposi-
tions as well as possibly other well-formed formulas
of propositions. There is no requirement that the
propositions correspond to a set of possibiliites, ex-
actly one of which is true. Shafer uses Dempster’s rule
of combination which is a generalization of Bernoul-
li’s rule of combination as the mechanism to pool and

combine evidence. We will demonstrate how Demp-
ster’s rule of combination is a specialization of the
natural cembination rule when belief in a proposi-
tion is considered as the chance probability that the
proposition is semantically implied from a set of non-
contradictory premises.

We begin our development by considering a model
of the legal system, one of whose essential functions
is to facilitate the establishment of evidence and the

combining of evidence to help a jury decide what to
believe. We conclude from this analysis that condi-
tional probability of hypothesis given evidence cannot
be used as the basis of a belief system calculus.

3.1 The Legal Court Paradigm

There is an argument or question about k. In order
for a court to make a judgment about whether h is
true or false, there are two attorneys A and B, a jury
to make the judgment, and a judge to administer and
make sure that the jury is provided fair and relevant
information. Attorney A is paid to uncover, orga-
nize, and present all evidence and inferences which
are supportive of h. Attorney B is paid to uncov-
er, organize, and present all evidence and inferences
which are supportive of h, the negation of h.

Evidence consists of physically observed facts and
statements made by witnesses in response to the ques-
tions by the attorneys. The jury listens to all the
evidence and all inferences made by the attorneys
based on the evidence. In addition, the jury may
make inferences from the evidence not stated by the
attorneys. Then the jury collectively determines the
weight of evidence in favor of h and the weight of ev-
idence in favor of h and makes a judgment of h or h
accordingly.

What is happening here? The cases made by the
two attorneys correspond to the establishment of a
set of elementary propositions which constitute the
evidence. Associated with each elementary proposi-
tion in the evidence, the jury collectively associates
an elementary or initial belief. In our model, this
initial degree of belief is the probability with which
the elementary proposition is asserted and, therefore,
available for use in an inference process.

Attorney A organizes an argument from a select-
ed consistent subset of the body of evidence to show
that h can be semantically implied from the body of
evidence. Attorney B organizes an argument from a
different selected subset of the body of evidence to
show that h can be semantically implied from the
body of evidence.

The attorneys’ job is not just to present and selec-
t evidence, but to present and select jury-believable
evidence. Evidence, for example, which is second-
hand is considered hearsay. Juries should not find
it believable. Therefore, it is legally inadmissable.
Statements which cannot be inferred from the evi-

dence 1s jury-unbelievable. Therefore, the attorneys
must present all the evidence relative to the inferences
which they would like to make.

Since h and A are contradictory, there must obvi-

ously be inconsistencies between the selected subset-
s of propositions in support of h and h7 Both sub-
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sets cannot be simultaneously believed. Indeed, the
dependencies of each subset on the other influence
the degree of belief in each subset and the inferences
which might be drawn from each subset.

A theory for evidential reasoning, if it follows the
pattern of the legal paradigm, must then have the
following five features:

e Each piece of evidence is a proposition.
e The question to be decided is a proposition.

e Each proposition in the body of evidence has
associated with it a measure of its assertability.

o There must be a logic calculus for inferring
propositions from conjunctions of other propo-
sitions.

e There must be a belief calculus for computing a
degree of belief

for each proposition the inference calculus is able to
infer. The degree of belief in an inferred proposition
will depend on the measure of assertability for the
proposition in the body of evidence.

It is natural that the logic calculus be based on
symbolic logic. A proposition r can be inferred from
proposition gy, ..., gn if and only if r is semantically
implied by the proposition gy, ..., gy. It is also natu-
ral that the degree of belief in a proposition g should
be equal to the degree of belief in a proposition r if q
and r are logically equivalent.

The commitment to these two constraints has an
important consequence: the mechanism which com-

putes a measure of belief for any inferred proposition
cannot use conditional probability as its degree of be-
lief in the proposntlon g — r. For belief in ¢ — r, must
be equal to belief in ¥ — G, since the two are loglcally
equivalent. Yet P(r|g) is independent of P(g[F).

To insure consistency in belief values, belief in g —
r must be taken to be belief in gvr which is the logical
definition of ¢ — r. How to compute beliefin gV r is
discussed in the next sections on the belief calculus.

3.2 The Belief Calculus

The belief calculus is a set of rules from which the
degree of belief in any inferred proposition can be

computed from the measure of assertability of propo-
sitions in the body of evidence. Our definition for
degree of belief is that the degree of belief in our
inferred proposition is the conditional probability of
the chance inference of the proposition given a chance
state of non-contradictory propositional assertions.
The key to understanding the belief calculus then re-
volves around the meaning of chance state of propo-
sitional assertions and the way to compute its prob-
ability.

We found the belief calculus on the following s-
tochastic model. Each proposition in the body of

evidence can either be in the state of asserted or the
state of non-asserted. The probability with which a

proposition in the body of evidence can be asserted is

what we have earlier called its measure of assertabil-
ity. The body of evidence itself consists of the sets of
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its propositions each associated with its probability of
being asserted. A state of assertion for £ is given by
a subset S of E. The propositions in the subset S are
considered to be asserted and the propositions in the
subset K — S are considered to be non-asserted. We
consider that the propositions in F are mutually in-
dependent insofar as their assertability is concerned.
The probability for the chance state of assertion S
can then be computed by

II m@ ][ [1-m().

geS reE-S

As there are 2#F gsubsets of E, there are 2#F chance

states of assertions. Each chance state of assertion
S contains propositions which are considered to be

asserted. Let C be the collection of those states of
assertions from which the contradiction cannot be in-
ferred. Let H be the collection of those states of as-
sertions from which the proposition  can be inferred.

Then the degree of belief in h is defined by

Bel (h) = ﬂ}rﬁf_g{ll

o I0 m@ I t-m)

__ SEHNC g€S regE-5S

2, Ime [ 1-m(r)

SEC €S reE-S

We now go through a variety of examples to con-
cretely illustrate this calculation so that we can fully
appreciate its meaning and consequences.

3.2.1 Examples

First, we consider the case where the body of
evidence consists only of the propositions ¢ and
g — 7. There are four possible states of assertion:

T
A =>r
A NA
NA A
NA NA

where we use A to designate the state “asserted” and
N A to designate the state “not asserted.” Note again
that a proposition whose state is “not asserted” is
not a proposition which is denied. For a proposition
which is denied is one whose negation is asserted. To
be not asserted just means that it is unavaliable to
the inference mechanism.

The only subset of E = {q, ¢ — r} from which

the inference r can be made is S = {g, ¢ — r}. Since
no subset of F is contradictory, we can compute
Bel (r) = m(q) m(g — r).
Next suppose that the question is the proposition
g and the entire body of evidence consists of the con-
junction ¢gr; E = {qr}.
gr
A = g
NA

Again, the only subset of £ = {gr} from which the
inference r can be made is S = {¢r} and since S is
non-contradictory, we have

Bel (r) = Bel (gqr).



Now suppose that the question is the proposition
qV r and the entire body of evidence consists of the
propositions ¢,r; E = {q,r}.

) S

=qVr
A NA =gqvr
NA A =gqvr
NA NA

The subsets from which the inference ¢ V r can be
made are 51 = {¢}, Sz = {r}, and S3 = {¢,r}. S
ince each of these is non-contradictory, the chance
 probability that ¢ V r can be inferred is

Bel (qV r) = m(q) + m(r) — m(q) m(r).

This is not unlike Bernoulli’s rule of combination.
Some evidence can be supportive of other evi-

dence. Consider the case where the evidence consists
of ¢q,7,¢ V r. The question 1s the proposition ¢ V r.

Again, there are no states of assertion which are con-
tradictory and the only state of assertion from which
the inference ¢ V r cannot be drawn is @. Hence,

1 =

(1 =m(g)][t — m(r)][1 — m(gVvr)]
m(g) +m(r) — m(g) m(r) +

{1 = [m(g) + m(r) — m(q) m(r)]} x
m(gVr).

Bel (V)

This is clearly greater than what the degree of be-
liefin ¢ V r would be if the supporting evidence ¢V r
were not present.

The simplest case where the body of evidence con-
tains two conflicting propositions is where E = {q, g}.
Consider the case where the question is q. The sub-
gets from which the inference ¢ can be made is on-
ly the subset {¢}. The non—contradictory subsets are
{g}, {7} and 8. Letting a = m(q)[1—m(g)]+m(g)[1-
m(g)] + [1 — m(g)][1 — m(g)] we obtain

m(g)[1 — m(g)]
m(g)[1 — m(3)]
1 —m(g)m(q)

This form is like Demptster’s rule of combination.
The numerator is the sum of products of the chance
probability of non—contradictory assertions which se-
mantically imply the proposition g and the denomina-
tor is one minus the product of the chance probability
of assertions which are contradictory. By rearranging
there results

Bel (¢) = m(q) — m(f)i“ff()q[; ;(n;§Q)]'

Thus conflicting evidence can make a belief of an in-
ferred proposition have a lower value than the prob-
ability of its assertability.

Next we consider a case where there is a more com-
plex conflict gependency among the propositions of
the evidence. Suppose the body of evidence consists

Bel (q)
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oqu,r, and ¢ — 7. The question is the proposition
gvr.

;]1 r qg—T
A A =f

A A NA =gqVr
A NA A =S qVr
A NA NA =gqVr
NA A A =qVr
NA A NA =gqVvr
NA NA A

NA NA NA

There are five non—contradictory states of asser-
tions from which p V r can be inferred. They are

{e:r}, {e9— 7}, {a}, {r,g = 7}, {r}. The contra-
dictory state is {¢,r,¢ — 7}. Hence we have

Bel (¢ v r) = {m(g)m(r)[1 — m(q — 7)]+
m(q)[1 — m(r)lm(g — 7) +
m(g)[1 — m(r)][1 — m(g — 7)] +
(1 = m(g)]lm(r)m(q — 7) +
[1 — m(g)Im(r)[1 — m(¢ — 7))}
(1= m(g)m(r)m(q — 7)]
{m(g) + m(r) = m(g)m(r)[L + m(q — 7)]}
(1 - m(g)m(r)m(g — 7)]
m(q) +m(r) — m(g)m(r) —

[1 — [m(g) + m(r) — m(g)m(r)]]m(g)m(r)m(q — )

T— m(g)m(rm(g — 1)

This shows again that when conflicting relevant
evidence exists, the degree of belief in a proposition
will be less than what it would be if the conflicting

evidence did not exist. .
For our next example where there is a case of con-

flict, suppose the evidence
E={g,¢q—rq—7}

and the question is r.

g g-rr g—=F

A A A =f
A A NA =4
A NA A

A NA NA

NA A A

NA A NA

NA NA A

NA NA NA

Here we have
m(g) m(g — r)[l —m(q — 7)]
1—m(q) m(g —r) m(qg —F)

From the form of the above relation, we can see
that if the degree of assertablility for ¢ — 7 is one,
then the belief in » must be zero. And this happens
even if the degree of belief in ¢ — r is also one. The
largest Bel (r) can be is Bel (¢)Bel (g — r).

* Fora final example where there is a case of conflict,

suppose E = {q,¢ — r,s,5 — 7} and the question is
qg— 3.

Bel (r) =



|

= 8§

.g A A A =f
A A A NA

A A NA A >g—3
A A NA NA

A NA A A

A NA A NA

A NA NA A

A NA NA NA

NA A A A > q—5
NA A A NA

NA A NA A =>qg—3
NA A NA NA

NA NA A A

NA NA A NA

NA NA NA A

NA NA NA NA

A NA NA A

Here we have
m(q — r)ym(s — 7)[1 — m(qg)m(s)]
1—m(q — r)m(s)m(g)m(s — 7) ’

Bel (g — §) =

So if, for example, m(s) = .9, m(q) = .2, m(g —
r)=.8, m(s — 7) =.9, then

8(.9)[L — .2(.9)]

Bel (¢—38) = 1= (:8)(:9)(:2)(.9)
_ 5904 6783
T 7

while if the probability of the assertability of ¢ is
raised to .7 so that m(2) = .9, m(q) = .7, m(qg —
r) = .8, and m(s — r) = .9, then

8(9)[1 - .7(.9)]

Bel (g — 3) 1-.8(.9)(.7)(.9)
2664
g = 1876

These conflict examples illustrate that the degree
of belief in an inferred proposition is not just a func-
tion of the degree of the assertability of the propo-

sition, from which the inference stems. It is also a
function of the context of those propositions in the

body of evidence.

4 Putting It All Together

We started with a statement of the pattern recogn-
tion contextual decision making problem, showing
that its solution depended on how the support of
the joint prior P(zy,...,zp) was represented. We
discussed representing this support in the unit-label
constraint relation of the consistent labeling problem.
There we saw that tuples in the unit-label constraint
relation were just statements which were conjuncions
whose terms were of the form “it is legal for unit v
to take label ¢”. No probability was associated with
this conjunction. Then we generalized the kinds of
assertions that might be consistent with the support
of P(z1,...,2p), allowing any kind of proposition-
al form. In addition we associated with each such
proposition a probability. The probability had the
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meaning that it was the frequency with which the
proposition could be used. We then argued that this
was indeed the meaning of degree of belief.

This generalization permitted us to actually gener-
alize the contextual decision making problem. Each
proposition of the form “label ¢ is legal for unit u,,”
constitutes a piece of evidence with an associated be-
lief value P(zm|2zm) which depends on the locally ob-
served data associated with unit u,,. Contextual in-
formation, global world knowledge, consists of a set
of propositions each one of which is formed by the
rules of logic from the elementary propositions “label
c is legal for unit u,,” Each such contextual propo-
sition is also a piece of evidence and has associated
with it a degree of belief which does not depend on
any locally observed data.

One important component to the generalized con-
textual decision making problem then is to deter-
mine the probability with which any given propo-
sition formed from the elementary propositions and
other propositions in the body of evidence can be
asserted. We have argued that the probability with
which it can be asserted is the degree of belief we have
in the proposition. The contextual pattern recogni-
tion problem with which we started only considered
propositions of a complete conjunctive form of the
simple propositions in the body of evidence. Com-
plete here means that each unit u has associated with
it some term of the form “label ¢ is legal for unit u”in
the conjunction.

So we have been able to layout a mechanism for de-
termining the probability of any complex proposition
about the labels for the units given the observed data.
And we showed how this probability can be interpret-
ed as a degree of belief arising from the probabilities
P(zm|c) associated with the simple statements ‘la-
bel c is legal for unit u,,” and all the other contex-
tual probabilities of more complex statements about
what labels are legal for various subsets of units, If
we now want to explain the observed data by mak-
ing some statements about the labels of the units, we
can do that in a form which does not necessarily have
to involve all the units. We can explain that part of
the context we are interested in and explain it in a
more general way than simple conjunctions. Having
such great freedom about the kind of contextual s-
tatement that can be made, we must either use this
mechanism in a mode where a hypothesis is given and
the probability that the hypothesis is true must be e-
valuated, or we must find a way to generate the high
probability statements which could then be given to
a hypothesis generator.
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