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ABSTRACT

To simulate the edge perception ability of human eyes
and detect scene edges from an image, context informa-
tion must be employed in the edge detection process.
To accomplish the optimal use of context, we introduce
an edge detection scheme which uses the context of the
whole image. The edge context for each pixel is the set of
all row monotonically increasing paths through the pixel.
The edge detector assigns a pixel that edge state having
highest edge probabilty among all the paths.

Experiments indicate the validity of the edge detec-
tor. Upon comparing the performance of the context
dependent edge detector with the context free second di-
rectional derivative zero-crossing edge operator, we find

that the context dependent edge detector is superior.

I. INTRODUCTION

Edges in a scene are the consequence of changes in
some physical and surface properties, such as illumina-
tion (shadows, for example), geometry (orientation or

depth) and reflectance. As there is a direct relationship
between the edges and physical properties of a scene,

much of the scene information can be recovered from an
edge image. Thus, edge detection plays a key step in the
early processing of a computer vision system.

Image edges occur in places of significant intensity
changes on the image. There are many kinds of intensity
changes in an image. The usual aim of edge detection
is to locate edges belonging to boundaries of objects of
interest. While the human eyes perform this task easily,
the detection of edges is a complex task to achieve. The

difficulties in edge detection are mostly caused by noise,
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blurring and quantizing effects. This results in a situation
in which not all the image edges correspond to scene edges
and vice versa. People incorporating world knowledge
and contextual information can detect edges selectively.
Minor image edges which do not correspond to main scene
edges are ignored and major scene edges are detected even
though they do not correspond perfectly to image edges.

A variety of edge detection schemes (Marr et al. 1980)
have been proposed in the past decade. Most of these
operators perform reasonably well on simple noise free
images whereas they tend to fail on the images degraded
by noise. This is because that as the noise of an image
increases, the correspondence between image edges and
scene edges becomes weaker and weaker. Thus, an edge
detector which can perform well on noisy images is most

desirable.

The solution to edge detection on noisy images should
not be image smoothing, because image smoothing alone
tends to blur edges. The best solution, we believe, is to
incorporézte world knowledge and edge context informa-

tion into the edge detection process.

The context approach described here is related to
the dynamic programming idea of Montanari (1971) and
Martelli (1976) of linking together edge segments. How-
ever, the dynamic programming, as they employed it,
is basically a postprocessing process whose performance
heavily relies on the starting points for linking which
are provided by the preprocessing. A context dependent
edge detection using relaxation labeling was described by
Zucker et. al. (1977). Their scheme is more compu-
tational expensive than ours and does not have a true

probability interpretation.
II. EDGE CONTEXT



Consider all the row monotonically increasing paths
which begin at any border pixel of the image above a
selected pixel, go through the selected pixel, and end
at some border pixel of the image below the selected
pixel. Each such path represents a context for the pixel.
Corresponding to each path and the observed pixel values
on the path, there is an associated probability of edge
state for the given pixel. Among all the paths there is
some best ‘edge’ path which assigns the current pixel as
an ‘edge’ pixel with a probability that is higher than the
probability of every other ‘edge’ path. Similarly, there is
some best ‘no-edge’ path which assigns the current pixel
as an ‘no-edge’ pixel with a probability that is higher
than the probability of every other ‘no-edge’ path.

According to Lee { 1985 ), the edge detection problem
can be formulated as a Baysian decision problem. The
solution to this problem is: for each pixel position (r,c)

of the image assign the edge state ¢, as ‘edge’ if

P(e}, =‘edge'|K) > P(e}. = ‘no — edge'|K) (1)

and assign the edge state ¢, as ‘no-edge’ otherwise. The
context information which appears in equation (1) is de-

noted by K which is the facet model representation of
each pixel’s local neighborhood ( Haralick et al. 1980 )

of the whole image. In line with equation (1), the con-
text dependent scheme assigns a pixel edge state ‘edge’
if the edge probability of the best ‘edge’ path is higher
than the average no-edge probability of the best ‘no-edge’

paths and assigns a pixel ‘no-edge’ otherwise.

Let U,. designate the set of all row monotonically
increasing paths which begin at some border pixel of the
image above or to the left of pixel (r,c) and terminate
at pixel (r,c). The set L,. designates the set of all row
monotonically increasing paths which begin at (r,c) and
terminate at some border pixel below or to the right of
pixel (r,c). These are illustrated in Figure 1 (2) and (b).
Let Ni(r,¢) = {(r—1,¢—1),(r—1,¢),(r - 1,c+1),(r,c—
1)}. and Ny(r,¢) = {(r + 1,e = 1),(r + L,¢),(r + L,c+
1),(r,c +1)}. The set U, (pg) where (p,q) € Ni(r,¢) is
defined as

Ure(pg) ={T': T € Ure and (p,q) € T}
Similarly, we can define

Ly(ijy={T:T € Ly and (,5) € T}
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where (i,7) € Na(ryc).

Z,. designates the set of all row monotonically in-
creasing paths begining from a border of the image pass-
ing through pixel (r,c) and continuing to another border
pixel of the image which is just the join of all paths in U,
with the paths in L,.. Similarly, we can define Z,(pq,:5)
as the join of all paths in U,..(pg) With the pathsin L. ).

The set U}, designates the set of all row monotonically
increasing paths which begin at some border pixel of the
image at the same row or above pixel (r,c) and terminate
at pixel (r,c). The set L}, designates the set of all row
monotonically increasing paths which begin at pixel (r,c)
and terminate at some border pixel at the same row or
below the pixel (r,c). This is illustrated in Figure I (c)
and (d).

III. DETECTION ALGORITHM

For pixel (r,c), let k,. designate its facet parame-
ter representation and fz, (¢}.) be the probability that
its true edge state is ¢i, given the facet parameters of

the best row monotonically increasing path T taking the
direction 65, through (r,c), where 8., is the direction

which maximizes P(0} lk,.). Let gz, be

(2)

maXx

gmax Plere, 07|k 2 (3,5) € T).

9z,.(e7e,07.) =
Then, fz,.(er.) = gz..(€res Orco). It is noted that fz,, is
not a function of 8}, because 6}, is a fixed value which
is determined by

P(e:colkrc) > P(0T0|krc) v 01‘6 :/: o:cﬂ‘

Similarly, we can define fz, . The average prob-

retraniiy (Ene)

ability fz (ek.) is defined by

72,(,(5:(;) =1z E fZ,C(pq.ij)(E:c)‘ (3)

Genes
The Baysian decision theory based edge detection scheme
(1) is now, assigning ¢*, = ‘edge’ if
fz..(€7 = ‘edge’) > f 7, (e7. = ‘no — edge')

and ¢}, = ‘non-edge’, otherwise. To perform edge detec-
tion, we have to compute fz . and then derive 7ZN from
fz,.. To compute fz, ., we have to compute gz, first.
Analogous to the definition of gz, (g%, 0%.)s gU..(Eres Orc)



07.) can be defined and we can derive

* .y P(&rc) * * * *
92z, (arm arc) = P(k-rclerc) 0:c) g0, (srca erc)gl}u(erc’ 01-.:)‘
(4)

and gz, (€7

Similarly, we can also define

(5)
After some derivations and mathematical manipulations
(see Lee, 1985) we have,

* * P &rc e:c 0:c
gU-c(erciGrc) = ( P(| : )*
max{

O‘Z

.
re=1%p6m1

hu;,(ere, 6re) = max Plel., 6|k, : (i,5) € T).

—TC)

gUr.c—l( re— 1,9:6_)

0re)s

* *
hU:_i'c_, (er—l,c—l ’ ar—l,c—l)

* * *
a(Epe—11 00 cm1sEncy

6, Z

11060 1,61
* * * *
* a(er—l,c—l’er——l,c—l 1 Epes orc)’

Z hys (5:—1,c,0:—-1,c)*
o

r=1,c
.
r—1,6t8r1,c

» (6)

* * * >
a’(sr—],c’ 0r—l,c’€rci 01‘::)’

> hu
-

.
r—1,e41r 1 c41

* *
Lett (5r—1,c+1 ) 0r—1,c—+—1)

* a(f:—x,c+1’0:—1.c+1>5:u 6:.)}
where a(ef,0;,¢1,0f) is an edge consistency function
which has maximal value when the edge direction at the
immediate adjacent neighbor agrees with that at the cen-
ter, and the expected neighbor direction agrees with the
true neighbor direction and is defined in functional forms
in Lee, 1985. Equation (6) says that for each edge la-
bel €7, 65, the conditional probability of ¢%,, 6%, given
{k;; : (i,7) € T} of the best path T can be obtained on
the basis of the previously computed 9U,.._,, and on the
hy:

r—=1,c

previously computed hys et ,hys tett

from the row above the current row. Equation (6) spec-

coming

ifies a recursive neighborhood operator which scans the
image in a top down left right scan to produce for each
pixel (r,c) and for each edge label &, 87, the probabil-

ity gu,.(e7es
compute hys which can be derived as,

Pkyeler

rc) rc)

P(k,.)

8;.) providing we can demonstrate a way to

hU:c (E:u 0:(:) =

G*Z

ot
et rc41

max{gy,. (e, O )

* e * * * *
hU:,¢+1 (5r,c+la 6r,c+1 )a‘(er,c+1 ) 9r,c+13 Epey 07-.:)}‘

M
Equation (7) states that hys, can be recursively com-

puted from gy. and the previous hy: 41 0 @ right left
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scan of a row done after gy, has been computed. To start
the recursive calculation (7), we take hys (e, 05.) =

9u,. (Erc’
most position.

67.) for that column position ¢ which is the right-

An absolutely mirror image derivation applies to gz, .
It can be computed by a bottom up right left scan of the
image recursively from gz, .., hrs,, . 1 h[,;+1 .

h L2ysers which had been computed. A left right scan of

, and

row r is then performed to compute hg: .

As soon as gr, (e, 05 ) has been computed, it can
be combined with gy, (e, 05 ) to compute gz,,(ex., 0%.)
(see (4)). In practice, the only useful 6%, for edge de-
tection is 8., which maximizes P(6}, [Ic,.c) Hence, we
determine 8., first and then only compute grc(ek,, 050)
The two probability

terms fz,,(¢}.) and f5 (e},) are then readily available.

for both e},=‘edge’ and ‘no-edge’.

The edge state of each pixel (r,¢) can now be labeled by
means of the rule of equation (4).

To perform the recursive algorithms (6), (7), etc.,

% The detailed

derivation of the conditional probabilities is shown in
T.ee, 1985.
VI. EXPERIMENTAL RESULTS

To understand the performance of the context de-
pendent edge detector, we examine the behavior of the
context edge detector on one well structured simulated
image and two real images. We then compare the results
with the context free second derivative zero-crossing edge
operator (Haralick, 1984) to see how and in what degree
the context information can improve the operator.

we need the probability ratio

The simulated test image is a noisy bar image. The
image size is 100 X 50 pixels. The pixel intensity is 0 for
dark bars and 175 for white bars. A 2 X 2 averaging is
applied to this image to simulate ideal single pixel width
edge lines. A zero mean Gaussian noise with standard
deviation 40 is then added to this image. We fit each 5
X 5 neighborhood of the test image by a cubic polynom-
inal and then apply the context dependent operator and
second derivative zero crossing edge operator to it. In
order to quantitively see the difference in performance of
these two schemes, we measure for the whole image the
conditional probabilities P(E'|E*), P(E*|E'), P(E'|E*),
and P(E'|E*) where E' and E' designate the assigned
‘edge’ and ‘no-edge’ pixel sets and E* and E* designate
the true ‘edge’ and ‘no-edge’ pixel sets. When deter-
mining P(E'|E*) and P(E*|E'), the adjustable parame-
ters of each edge operator are chosen to equalize these
two conditional probabilities (P(E'|E*) ~ P(E*|E')).
The performance in terms of P(E'|E*) and P(E*|E')
are shown in Table 1. When determining P(E'|E*) and



operator P(E'|E*) P(E*|E')
context dependent 0.8600 0.8600
context free 0.6950 0.6814

Table 1. P(E'|E*) and P(E*|E') values of the context
dependent edge operator and the context free edge oper-
ator.

P(E'|E*), the adjustable parameters of each edge opera-
tor are chosen to equalize these two conditional probabili-
ties (P(E'|E*) ~ P(E'|E*)). The probability (P(E'|E*)
for the context free operator is 0.02 while the probability
for the context operator is 0. The results show that the
context scheme performs much better than the context
free operator.

We now apply the context dependent edge detector
to two 3-D range images (128 X 128 pixels) of man-made
objects. To these images a zero mean Gaussian noise
of standard deviation 30 is added. The noisy images are
shown in Figures 2(a), and 3(a) . A 5 X 5 cubic polynom-
inal fitting is applied to the noisy images followed by the
applications of both the context free second derivative
zero-crossing edge operator and the context dependent
edge operator. The context bounds we used for both
images are €min= 0.1 and €m,q4,=10. The results of the
context free edge operator are shown in Figure 2(b), and
3(b). The results of the context dependent edge operator
are shown in Figure 2(c), and 3(c). It can be easily ver-
ified visually that the edge images of the context depen-
dent edge operator show better connectivity and much
less noise than the context free edge operator.

In order to see the performance of the context de-
pendent edge operator under different noise levels. The
context dependent and the context free edge operators
are applied to images with noises of standard deviations
10, 20, 30, 40, and 50, respectively. The general edge
evaluator is employed to measure the performance scores
of both edge operators. The edge results which maximize
the edge score (see Haralick and Lee, 1988) are shown in
Figure 4. Tt is also easy to verify that the context edge
operator has better performance over the context free
edge operator by a visual evaluation. The edge score
curves are shown in Figure 5.

V. CONCLUSIONS

We have developed an edge detection scheme from a
Bayesian theoretic framework. The edge detection makes
use of the edge context of the entire image. For a given
pixel the edge context of the whole image related to
this pixel is organized as monotonically increasing paths
which begin at any border pixels of the image above the
selected pixel, pass through the selected pixel, and end at
some border pixels of the image below the selected pixel.
We will assign a pixel edge state ‘edge’ if the edge prob-
ability of the best ‘edge’ path is higher than the average
probability of the best ‘no-edge’ paths.
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We derived the algorithms of finding the best paths
as a recursive scheme. It starts with a top down left
right scan of the image followed by a right left scan. It
then performs a bottom up right left scan of the image
followed by a left right scan.

Experiments were performed to illustrate the validity
of the context edge detector and the general edge evalu-
ator. We have compared the performance of the context
edge detector with the context free second directional
derivative zero-crossing edge operator. The results show
that the context edge detector has superior performance.

The approach of using full context and local coher-
ence can be extended to the detection of other local image
features.
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Figure 1. illustrates'(a). the set Uy, and (b) the set L. Us. is the set of all row and column monotonically increasing
paths begllnnmg at a border of the image above or to the left of the pixel (r,c) and terminating at pixel
(r,c). Ly is the set of all row and column monotonically increasing paths beginning at the pixel (r,c) and

terminating at the border of the image below or to the right of the pixel. Similarly, the sets Uy and L}, are
illustrated in (c) and (d).

(2) b =) ®) (9
a , . .

(b) (c) Figure 3. The noisy object image 2 (a), its context free edge
Figure 2. The noisy object image 1 (a), its context free edge image (b), and context dependent edge image(c).

image (b), and context dependent edge image(c). g‘he window size for cubic polynomial fitting is 5 X
The window size for cubic polynomial fitting is 5 X ’
5.

&‘“‘b—
o ..

0 » % “ s Noise standard deviation

Figure 5. Shows the edge scores of the context dependent edge
operator and the context free edge operator applied
to the image shown in Figure 12 with noise standard
deviations 10, 20, 30, 40, and 50, respectively.

Figure 4. Shows the edge images of the context dependent edge
operator and the context free edge operator applied
to the image shown in Figure 12 with noise standard
deviations 10, 20, 30, 40, and 50, respectively.

207



