1985 Intl. Geoscience and Remote Sensing Symposium,
Amherst, MA, October, 1985

CONTEXT CLASSIFIER
Robert M. Haralick and Hyonam Joo

Machine Vision International

Ann Arbor, MI 48104

The context classifier is characterized by the fact that it classifies
an unknown pixel using the entire context of the image or a sub-
stantially sized context neighboring the pixel. Basically, the effect of
context is that a pixel can have certain properties, when it is viewed
in isolation, which ché.nge when viewed in some context. One might
expect that classification accuracy is higher if an unknown pixel is
classified using context rather than when it is classified using only the
measurement made on that pixel without context. This is true in most
cases. For example, a single pixel is not likely to be classified as water
if it is surrounded by the pixels classified as ground in a remotely
sensed data. The classification result of the conventional context free
classifier leaves many isolated pixels and many small groups of pixels
not connected with the blob they belong to. Thus, in the last few
years there has been a trend to increase the use of context in the

labeling operations.

The most desirable kind of labeling process would give each pixel
the highest probability label given the entire context of the image.
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The next most desirable kind of labeling process would give each pixel
the highest probability label given some substaxtially sized context
neighboring the pixel. In this paper, a theory and an algorithm for
such a context classifier is presented. The algorithm takes the form of
a recursive neighborhood operator first applied in a top down scan of
the image and then in a bottom up scan of the image. The algorithm
itself is related to a forward dynamic programming zigorithm put in
a two dimensional mesh setting. To explain the meaning of what the
algorithm produces, select any pixel in the image. Now consider all the
row monotonically increasing paths which begin at any border pixel of
the image above the selected pixel, go through the selected pixel, and
end at some border pixel of the image below the selected pixel. Each
such path represents a context for the pixel. Corresponding to each
path and the observed pixel data on the path, there is an associated
highest probability label for the given pixel. Among =i the paths
there is some best path whose associated highest probability label is
higher than the highest probability label of every other path. In two
scans of the image, the context algorithm is able to assign to each
pixel of the image the highest probability label ¢ aing from its best

path.

The theory for the algorithm requires two dis::nct ideas. The first

idea produces a decomposition for the problem. Finding the highest
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probability label given the best path passing through the pixel can
be accomplished by finding two probabilites, the probability for each
possible label given the best path beginning above the pixel and ter-
minating at the pixel and the probability for each possible label given
the best path beginning at the pixel and terminating below the pixel.
Finding these probabilities is what the algorithm accomplishes in top
down scan and the bottom up scan. The decomposition tells how to
combine these probabilities to determine the highest probability label
given the context of the best path through the pixel. The second idea
produces a recursive decomposition which tells how to determine the
conditional probability for each label given the data on the pixels’s
best upper (or lower) path from this some kind of conditional prob-
ability of the pixel’s neighbors which have already been processed.
The decomposition bears a definite similarity to the one used in for-
ward dynamic programming and as well bears some similarity to the

iteration technique employed in some relaxation methods.

We now explain the assumptions and the probability function
that we need to get the highest probability label. For pixel (i,j), let
X, designate the measurements of the pixel (i,j). Let Q be any path
and e,. be the correct but unknown label at pixel (r,c). fz. (erc) is
defined to be the probability that pixel (r,c) takes label e,. and that

the joint measurements on the best row monotonically increasing path
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Qis {Xi;; (1,7) € Q}-

Thus

qu (erc) = d‘éaz’f‘ P(ercvxij; ("1.7) € Q)

By Bayes formula,

P(eij, Xs53 (5,7) € Q) = P(Xij3 (i,7) € Qlessi (1,7) € Q) -

P(Cij;(isj) € Q)

Assuming that the measurements at each pixel depend only on the
true label at that pixel and measurement noise for one pixel does not

influence the measurement noise for another pixel, we have

P(X.;; (i, 5) € Qlesi () €Q) = [ P(Xislews)
(s,3)EQ

The probability P(ej; (%, j) € Q) is the joint prior probability of
having the true labels for each pixel (i,j) on the path Q be e;;. This
probability encodes all the information we have about context. If for

example, we had independence,
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Pleij;(,5)€Q) = [I Plesy)
(v,7)€EQ

Thus we would discover that the highest probability assignment we
could make using the context is precisely the highest probability as-

signment we could make using only the local information.

The simplest assumption of higher order independence is a
Markov like assumption in which the joint prior probability becomes
a function expressible as the product of functions whose arguments
are the label pairs for succesive pixels in the path Q. Letting R(Q)
designate the set of all pairs of succesive pixels in the path Q, we

have,

Plej;(4,7) €Q) = H Aleij,ext)
((4,9),(k1))ER(Q)

Using the two assumptions described above, we could decompose

fz,.(erc) into two components as follows,

_ 9u.. (erc)gr..(€rc)
fz" (eFC) B P(X'Clerc)

where gy, (erc) (9L,. (erc)) designates the probability of label e,. and
joint measurements { X;; (%,7) € Q} arising from the best row mono-

tonically increasing path in U, (L,.). The set U,. designates the set
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of all row monotonically increasing paths which begin at some border
pixel of the image above or t» .he left of pixel (r,c) and termina‘e at
pixel (r,c). The set L,. des:; .ates the sev of all row monotcrucally
increasing paths which begin at (r,c) and terminate at some border

pixel below or to the right of pixel (r,c).

Even though the cont« information is not used to its full extent
due to the Markov like assumption, the improvement in overall cjassi-
fication accuracy was substantial. The overall classification accuracy
is measured as the ratio of the number of correctly classified pixels to
the number of :otal classified pixels. To compute the function A for
the testing purpose in this paper, we assumed a Gaussian stationary
two-dimensional process. Here stationary means that the correlatic
between pixels are position independent in the image. The function
A is estimated for four directional pairs of pixels, horizontal, vertical,
and two diagonals. It is approximated by the frequency distribution
of each pairs of labels in all four directions from the known ground
truth data. Assuming a multi-dimensional Gaussian normal distribu-
tion, the class conditional probability P(X,.|e,.) is computed from
known or estimated class conditional covariance matrices and mean

vectors, which in turn is used together with the function A to compute

fz..(erc)-

The recursive algorithm for the computation of gU'; (ere) is,
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gu.. (ere) = P(Xre|ere) max{ z gu.._, (ere—1)A(€re—1,€rc),

Cre—1

}: hU:_.,-, (e,_ ic— I)A(Cr—lc—l, €rc),

€r—ic—1
Z hU:_u (e'— lc)A(er—lc: erc)3
Ce—1c
E hU:—:«.;; (e"1°+1)A(er—1c+l ’ erc)}
Ce—le+1l

where hy:_(e,c) again designates the probability of label e,. and joint
measurements {X,;; (¢,7) € Q} arising from the best row monotoni-
cally increasing path in U;.. The set U/, designates the set of all row
monotonically increasing paths which begin at some border pixel of
the image at the same row or above pixel (r,c) and terminate at pixel
(r,c), which differs from the set U, that the set U,. does not include
paths which contain any pixels on the same row r beyond column c

while the set U, does.

hu.. (erc) can also be computed recursively as follows,
hU;‘ (erc) = tnax{g(_{,¢ (e,c), P(ch[erc)

Z hU:e+1 (erc+1)A(€,.c+1, erc)}

€re+1

An obvious mirror image derivation applies to gy, (erc)-
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First, a simulated image is used to examine the improvement in
classification accuracy of the new context classifier as compared to the
noncontext Bayes classifier under Gaussian distribution assumption,
given that the class conditional covariance matrices and mean vec-
tors were known. Then it is applied on real images to investigate its
performance in more realistic case. The simulated image is generated
from a real LANDSAT image. From the known ground truth data, the
mean vectors and the covariance matrices are estimated for each class.
Then a simulated image with the following characteristic is created.
(1) each pixel in the simulated image represents the same class as in
the ground truth data, (2) all classes have multi-dimensional Gaus-
sian normal distribution having the means and covariance matrices
estimated from the sample image, (3) all pixels are class-conditionally
independent of adjacent pixels. Applied on this image, the context
classifier shows better classification accuracy compared to the Bayes
classifier (Overall classification accuracy for the Bayes classifier with
equal priors, the Bayes classifier with correct priors, and the context
classifier is 59.7%, 68.8%, and 80.0% respectively). On real images, it
was observed that the context classifier gained 4-8% increase in over-
all classification accuracy over the context free Bayes classifier under

Gaussian distribution assumption.
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