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I.  INTRODUCTION

In this paper we formulate a general network con-
straint analysis problem which we call the labeling
problem. The labeling problem is a generalization of
specific problems from each of several different spe-
cialty areas. Some of these specific problems include
the subgraph isomorphism problem [20], the graph homo-
morphism problem aud the graph coloring problem [13],
the relational homomorphism problem [8], the packing
problem [3], the scene lzbeling problem [1], the shape
matching problem [2], the Latin square puzzle [22],
constraint satisfaction problems [4], and theorem
proving [14]. The generalized problem involves a set
of units which usually represent a set of objects to
be given names, a set of labels which are the possible
names for the units, and a compatibility model contain-
ing ordered groups of units which mutually constrain
one another and ordered groups of unit-label pairs
which are compatible. The compatibility model is some-
times called a world model. The problem is to find a
label for each unit such that the resulting set of
unit-label pairs is consistent with the constraints of
the world model.

Before we can fully state the labeling problem,

we need some additional concepts and definitions. Let
U= {1,...,M} be a set of M units and let L be a set
of labels. If ul,...,uN e U, a labeling of units
(ul....,uN) is a function f:{ul,...,uN} + L that

assigns a label in L to each of the units u
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The labeling problem is to use the world model to find
a particular kind of labeling called a consistent
labeling for all M units in U.

The problem of labeling is that not all of the

labelings are consistent because some of the
units are apriori known to mutually constrzin one
another. TIf an N-tuple of units (Ul""’uN) are known

to mutually constrain one another, then not all label-
ings are permitted or legal for units (ul,...,uN). The

compatibility model tells us which units mutually con-—
strain one another N at a time and which labelings are
permitted or legal for those units which de constrain
one another. One way of representing this compati-
bility model is by a quadruple (U,L,T,R) where TS U
is the set of all N-tuples of units which mutually
constrain one another and the constraint relation

R < (U x L)k is the set of all 2N-tuples (ul,ll,...,
uV.LV) where (11,...,LV) is a permitted or legal N-
N - o A

tuple of labels for the N-tuple of units (ul,...,uw).
We call T the unit constraint relation and R the unit-

_abel constraint relation.

A labeling f:{ .up} -~ L is a consistent

Upse-s

labeling of units (uj,...,up) with respect to the com-

patibility model (U,L,T,R) if and only if
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are understood, such a labeling f is called a (T,R)-
consistent labeling of (ul,...,up}. The consistent

by

labeling problem is to find all consistent labelings of
units (1,...,M) with respect to the compatibility model.

In this paper we give examples of the consistent
labeling problem in scene analysis and define a general
look-zhead operator ¢KP which aids in solving labeling

problems by reducing the unit-label constraint relation
R.

IT. SOME EXAMPLES OF LABELING
PROBLEMS IN SCENE ANALYSIS

II.1 Scene Labeling

The scene labeling problem arises in the context
where a picture is taken of a scene (such as an office)
that has objects (like chairs, tables, desk%, file
cabinets, and so on) which need to be identified. A
low level computer vision system analyzes the picture,
segments it and perhaps even assigns one or more labels
to some of the objects in the picture. Given the world
model information which describes allowable spatial
relationships among pieces of office furniture, and
given the spatial relationships that exist among seg-
ments in the image, the scene labeling problem is to
use the world model to find labels for each segment in
the picture. This involves labeling those segments
which have not been given labels and reducing the la-
beling ambiguities for those segments which have been
given tentative labels by the low level vision system.

Let U = {ul""’uM} be the set of segments in the

office image. By a spatial analysis of the image, we
can produce a list of N-ary relationships that hold
among the segments of U. Each item of the list can be
expressed as a predicate and N possible segments for
which the predicate holds. For example, with N = 2,
the spatial analysis might discover that segment uy

is on segment ug, and seg-

is

above segment u segment u

3 2
ment u. is behind segment ug. We write these kinds of

relations in the shorthand form: ABOVE (u

ON(uZ,ul); BEHIND (u

12Uq) 3
S‘uﬁ)'

The world model constraint is also a list of N-ary
relationships. Each item of the list consists of a
predicate and N possible object names for which the
predicate holds. For example., with N = 2, the follow-
ing constraints between object names may hold: pic-
tures can be above chairs, books can be on desks, and
chairs can be behind desks. In the shorthand form we
write: ABOVE(PICTURE,CHAIR); ON(BOOK,DESK) ;

BEHIND (CHAIR,DESK).



To put the scene labeling problem into the format
of the general labeling problem, we must define the
relation T of segments which mutually constrain one
another and the relation R of constraints between seg-
ments and labels. We can construct the relations T and
R as follows. Let P be a predicate. If for some seg-

ments Upseeesliys a spatial analysis of the image shows

P(UI""’uN) is true and if for some labels 1,,...,%y

the world model constraint permits P(El,...,in) to be
true, and the low level vision analysis does not pro-
hibit label ln for segment un, a=1,...,N, then the
N-tuple (ul,...,uN) is a member of T and the 2N-tuple
For example, if

(ul’ll""’uﬁ’l?) is a member of R.

one of the labels that the low level vision system
allows for segment ug is PICTURE and one of the labels
it allows for segment uq is CHAIR and if P is the pre-—
dicate ABOVE, since ABOVE(PICTURE,CHAIR) is true and
ABDVE(ul,uB) is true, then T contains (ul’UB) and R
contains (ul,PICTURE,u3,CHAIR). Each consistent label-

ing based on T and R is a possible labeling of the
scene; and since consistent labelings are subsets of
possible labelings, the number of labeling ambiguities
will be reduced.

II.2 The Edge Orientation Problem

There are a variety of approaches te finding edges
in a picture [18]. Most of them begin with the appli-
cation of some local operator tc determine the strength
of an edge passing through each resolution cell in a
particular direction. The problem with these local
operators is that they tend to be noisy; their variance
is high. Since most meaningful edges in real world
images tend to be highly continuous with little curva-
ture, it should be possible to combine the prior know-
ledge low curvature condition and the local gradient
operator values to produce cleaner edges.

We define the orientation of an edge to be an
angle between 0° and 360°. The edge lies along a line
in the given angular direction and a person traveling
along the edge in the angular direction of the edge
will always find the darker side of the edge to his
right. Low curvature edges mean that the maximum angle
by which any small edge segment can bend with respect
to its predecessor edge Or Successor edge segment is
limited to some maximum bending angle which we call
. (for example, 609). With this kind of prior know=
ledge, we can formulate the edge orientation problem
as a labeling problem.

Let U= {(i,i) | 1 =1,...,I and j = 1,...,J} be
the set of resolution cells of an I-row by J-column
image. Let L be a set consisting of possible edge
orientations (including the possibility of no edge).
For example, L could be {none,0,45,90,135,225,270,315}.
For each resolution cell (i,j) let E(i,j) < L be the
set of its possible edge orientatioms computed on the
basis of the strength of some local edge operator. Let
the neighborhood of resolution cell (i,j) be N(i,3).
N(i,j) could be a 4-neighborhood, an 8-neighborhood,
or perhaps something more complex. Only edge orienta-
tions of resolution cells in the neighborhood of a
given resolution cell can constrain the edge orienta-
tion of the given resolution cell. Om this basis we
can define the compatibility model by (U,L,T,R) where
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III. RELATED LITERATURE

One general technique that can be used to solve a
labeling problem is a depth-first search. The search
procedure fixes labels to units as long as it can find
a label for each new unit that is compatible according
to the constraint relation R with the labels already
fixed to previous units. Whenever the procedure cannot
find a label for a new unit, it backtracks to the pre-
vious unit and tries to find a different label for that’
unit. If the procedure finds a label for all M units,
it has found a consistent labeling. TIf the procedure
backs up all the way to the first unit without finding
any consistent labelings and there are no more possible
labels for the first unit, the procedure fails and
there exist no cunsistent labelings.

The depth-first search procedure suffers from
thrashing. A poor choice of labels for cne of the first
units can cause failure of all paths stemming from that
choice. To make the depth-first search more efficient,
we must eliminate those paths which terminate because
they are not contained in any consistent labeling. To
do an efficient search, we must first remove from R all
N-tuples of unit-label pairs which do not participate
in a consistent labeling. Montanari [16] showed that
this problem itself is NP-complete. However, compati-
bility relations can be graded with respect to the
difficulty of removing these N-tuples. The initial
work by Waltz [22] on line labeling indicated that al-
though the compatibility relation he employed was not
minimal, the amount of work to make it minimal using a
sequentially implementable look-ahead operator was
small. Gaschnig [6] reported similar results. Hence,
it may be that the worst case problems do not seem to
arise very frequently in practice and look-ahead opera-
tors of low order complexity can be of great help.
Other related work includes that of Rosenfeld [19],
Rosenfeld et. al. [17], Ullman [20], Haralick and Kar-
tus [8], Haralick [9,10], Mackworth [15], Zucker et.
a1 [24], Vanderbrug [21], Hanson and Riseman (71,
Barrow and Tennenbaum [13], Davis [2], Zucker and
Hummel [25], Freuder [5], Haralick et. al. [11], and
Haralick and Shapiro [12].

1v. FINDING (T,R)-CONSISTENT LABELINGS WITH THE
HELP OF A GENERALIZED LOOK-AHEAD OPERATOR ¢KP

tet U= {1,...,M} be a set of units, L be a set of
labels, T< U, and Rg (U x L)". Let K < N < P with

K < P. The look-ahead operator $KP is defined by
depR = {(ul,il,...,uﬂ,lN) ¢ R | for every combinaticn
= . 1
Ipeeendg of 1,...,N and for every u}'c_l_l,...,up e U,

> 1
there exists 2K+l"'
defined by f(uj‘) =g, ,i=1,...,Kand f(ui) = Ei,

.,l; ¢ L such that the function f

3.

i i

i = Kbl,enayp i a (T,R)-consistent labeling of units
1 1

(ujl, .,qu,uK+l,...,up)}.

The look-ahead operator ¢KF removes 2N-tuples from

2 which do not contribute to a consistent labeling. We
j1lustrate its use with an example where N = 3, K= 2,
and P = 4.

Iv.1 Example
Let U = {1,2,3,4,5}, L= {a,b}, T = {(1)213)1

(1,2,4), (1,2,5), (2,3,5), (2,3,3), (3,4,5)}, N =3,
M=35, K=2,P= 4, and



R = i(1,a,2,a,3,a), (1,a,2,a,4,a), (1,a,2,a,5,a),
fla,2,5,3,a), (1,a,2,5,4,b), {1,5,2,5,5,b), {2,a,3,a,

+,a), t2,a,3,a,5,a), (2,b,3,a,4,b), and (3,a,4,a,5,a)J.

The results of examining three 2N-tuples
(l,2,2,a,3,a), (1,a,2,b,3,a), and (1,a,2,b,5,b) are
shown in Figure 1. The 2N-tuple (1,a,2,a,3,a) passed
111 tests and is therefore an element of D 4R. The
-y
2N-tuple (l,a,2,b,3,a) passes its first test since
with the fixed unit-label pairs (1l,a} and (2,b) and
free units 3,4 the function f defined by 1(l) = a,
i{2) = b, £(3) = a, £(4) = b is a consistent labeling
of (1,2,3,4). However, with (1,a) and era® 2 o
fixed and free units 3,5, there is no consistent
labeling of (1,2,3,5). (There is no label x with 2N-
tuple (1,a,2,b,5,x) in R). Thus (l,a,2,b,3,a) is not
in ¢2’4R. Similarly, the 2N-tuple (1,b,2,b,5,b) fails

its first test and is not in b, AR'
=y

After testing each 2N-tuple of R, we obtain
= i(1,a,2,a,3,a), (1,a,2,a,4,a), (1,a,2,a,5,a),

79 4R i
(Z,a,3,a,4,a), (2,a,3,a,5,a), (3,a,4,a,5,a)}.

Ly

At this point every 2N-tuple of R contributes to
the one consistent labeiing f of (1,2,3,4,5) defined

Sy £(i) = a, i =1,...,5.
ZH-Tuole =2 ; P -nR=2 P - % =2 labels for |
Fixed unit- free the free units that
label pairs } units contribute to a con-
} sistent labeling of i
i ! all P = U unics
1
I (1.a.2.2.3.a) 1,a.2,2 I N 3,343
i 3.5 3,2,5,a
| 4.5 “.a.5,a
i 1,a,3,2 2,4 Z,a.h4,a
i 2.5 Z,a,5.a
4.5 “.a,5,a
2,3,3.a 1,4 I Tia,h,a
1.5 1,a,5,a
4.5 4,3,5,a
(1,a,2,6,3,a) 1,a,2,b | 3. 3.a,h,b
3.5 HONE
No more combinatjons need be [looked at for this
2N-tuple |
(1,b,2,b,5,b) 1,b,2,5 3.4 NONE
io more combinations need be llooked at for this
IN-tuple g
|

figure 1 illustrates the application of the éKP opera-—
tor to three 2N-tuples of R. ’

The theoretical results concerning the QKP opera-

tor may be found in Haralick and Shapire [12]. We will
briefly summarize the most important results here. A
labeling r is a (T,R)-consistent labeling if and only
if 1t ds a (T,¢KPR)—consistent labeling. Thus ¢KP

never removes any 2N-tuples of R that contribute to a

consistent labeling. There is a minimum relation S*P
LE%

that has the same set of consistent labelings as R.
The minimum relation S,? is contained in o?PR for every

positive integer m, and aﬁP(STR) =3 The operator

IR’
‘yp 18 more powerful {can remove more IN-tuples) for
ey i
-4rger vaiues ot p. sinally, for [ = U, when ®K+l P;
= R Lo tt
Cor fien
2,.oR = R.
Xp

cannot remove anvthing else from R),

CONCLUSION

The labeling problem is an important problem in
scene analvsis, and the ®.p operator is a seneralized

tool for helping to solve the labeling problem.
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