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L Viewpoint

Scientific advancement proceeds on two frontiers: the
experimental frontier and the theoretical frontier. In the
experimental frontier researchers perform some conbina-
tion of exploratory experimental work and formal hypoth-
esis testing. In exploratory experimental work experi-
ments are performed and data is gathered in the hopes
that some pattern in the observed data can be deciphered
which would suggest a formal hypothesis to test. In the hy-
pothesis testing mode, the experiments being performed
are done by explicitly setting up some controlled situa-
tion and testing if the resulting observations agree with
what one would expect to observe if the hypothesis were
true. The hypothesis could come from a conjecture, a law
which follows from a theory, or a hypothesis test which at-
tempts to replicate the results of a previously reported ex-
periment. In the theoretical frontier, researchers perform
some combination of synthesizing experimental data and
existing theory into a more comprehensive coherent and
general theory. The language of the theory is expressed in

a mathematical form in all the hard sciences.

As a science, computer vision has its experimental
and theoretital aspects. In the theory of the science of
computer vision one would expect to find the laws and
principles by which computer algorithms can be designed
to solve a variety of vision tasks from industrial inspec-
tion, robot assembly, autonomous vehicle navigation, and
general 3 dimensional scene understanding. In the experi-
mental results reported in the archival scientific literature
for computer vision, one would expect to find clear de-
scriptions of controlled situations under which the experi-
ments are performed, a precise statement of the algorithm
being used, and a statement of the results which includes
some measure of the certainty of the stated results. In
the theoretical results reported in the archival scientific

literature one would expect to find a variety of partial or
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incomplete theories each of which gives a precise statement

of the particular computer vision problem the theory ad-

dresses. The content of the theory would develop a set of
laws, principles, and associated algorithms which logically
proceed from the initial problem statement and assump-
tions pertaining to the reality the theory addesses. The
algorithms would accept for input an appropriate image
or images and perform a calculation which provides an an-
‘swer which is correct modulo the amount of noise in the
data and the adequacy of the theory.

When a broad examination is made of computer vi-
sion research, it becomes apparant that the science is
young and immature. The pockets of theory are sparce.
The amount of replication is nearly non-existent for the
complex algorithms. Very few experiments are reported
on enough image data so that the certainty of the results
can be stated. There appears to be no agreement on con-
trolled data sets for any experiments. Many experiments
have a "Look ma, no hands” aspect to them. Indeed, the
experiments are often extremely complicated because the
computer vision algorithms are extremely complicated.
The algorithms are so complex that the algorithm details
often cannot be entirely reported in a single paper. Not
only is a precise statement of the problem difficult, but it
is nearly impossible to find the appropriate assumptions
which make the mathematical derivations which proceed
from the problem statement simultaneously mathemati-
cally tractable and a reasonable description of reality.

Upon reading the literature, one even gets the feel-
ing that perhaps the algorithm itself is sufficient, without
a statement of what problem is being solved or without
a statement of the degree to which any problem is being
solved. At the 1985 NSF sponsored workshop on Model
Based Computer Vision held in Orlando some participants
even held the view that it was not important to try to



state problems precisely nor attempt to derive from for-
mal problem statements optimal or near optimal solutions.
Those people held that the only thing which matters is
whether the algorithm produces reasonably good results
in the application for which it is intended.

II. Why?

Why does this state of affairs exist? Is it because com-
puter vision is young and the problem is difficult? Cer-
tainly so, but this answer is a quick one and not a helpful
one in understanding the shortcomings of the field. In this

section we attempt a deeper understanding of why.

Every science develops a body of principles which are
used in solving the application problems to which the sci-
ence is directed. To be sure, the body of principles under-
goes refinement and changes as the science develops. For
computer vision, the body of principles would contain the
problem statement and solution techniques for a variety
of computer vision problems. These problem statements
would be statements of canonical form problems. For ex-
ample, in pattern recognition under a class conditional
Gaussian assumption, the quadratic form of the optimal
maximum likelihood decision rule is well known. In com-
puter vision, the canonical problem of relational matching
by a relational homomorphism is well stated and efficient
tree search techniques for the computation of the match-
ing function are well known. In numerical analysis, stable
techiques for performing the singular value decomposition
of a matrix or for determining the eigenvectors of a ma-
trix are well known and are available in standard software
packages such as LINPACK, EISPACK, and SPSS.

Computer vision, to be sure, has its current bag of
tools. But it is not the case that very many of these tools
constitute the optimal solution technique to a well defined
problem. The thesis of this paper is that computer vision
will advance if more effort were put into the definition of
canonical computer vision subproblems and if more effort

were put into their optimal solution.

III. Pose Detection

To illustrate the points raised in sections I and II
in a more concrete way, we consider the problem of ob-
ject pose detection. We will draw upon three strong
and solid papers in this area, papers by Roberts (1965),
Perkins (1978), and Stockman, Kopstein, and Benett

(1982). These papers represent work of which the authors
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as well as the computer vision research community can be
proud. First we will give a brief summary of the work
and then discuss some of its shortcomings relative to the

definition of subproblems and to their optimal solution.

Object pose detection is the process by which a two
dimensional perspective projection of a 3D object is ana-
lyzed to determine the object’s pose (position and orien-
tation) with respect to a given 3D coordinate axis system.
The analysis first depends on the capability of matching
the 2D perspective projection of the object on the image
to a 3D model of the object. Then given the match, the
unknown parameters of the perspective projection must
be determined. A transformation of coordinates to the
given 3D coordinate system can then produce the object’s

pose.

The first paper to explore a solution to this problem
was by Roberts (1965) who matched topologically equiv-
alent points. Roberts (1965) and Duda and Hart (1973)
give a least squares solution to the determination of the
unknown projective geometry parameters once the match
points are known. Perkins (1978) discusses a solution
to the 2D matching problem as well as the 2D projec-
tion transformation parameters. Stockman, Kopstein, and
Benett (1982) also match similar 2D structures (vectors)
from the image to the model. Each match determines a
transformation. The set of transformations is clustered
and the cluster having the largest number of transforma-
tions is the one chosen as the one defining the most likely

projective transformation.

Perkins (1978) first represents a 2D shape by the
chain of its boundary points where each boundary point
has a tangent direction which is produced by the edge di-
rection of the edge operator detecting the boundary point.
To determine straight line segments or circular arc seg-
ments each boundary sequence must be broken at points
of high curvature change. Perkins computes curvature at
each boundary pixel as the ratio of the difference in tan-
gent angle of adjacent boundary points to the difference in
position of the adjacent boundary points. Then segments
of boundary pixels are fit to a straight line or to a circle.

The resulting arcs are used in the model matching.

Model matching proceeds by crosscorrelating a tan-
gent angle versus arc length curve of the model against
a tangent angle versus arc length curve from a detected
boundary point sequence of the observed object. The po-
sition determined by the shift producing the highest cor-

relation and the tangent angle at that position constitute




sufficient information to determine the translation and ro-

tation angle of the unknown sensor projection.

Stockman, Kopstein, and Benett (1982) perform a lo-
cal feature detection 2D image and 2D model. Matching
takes place based on structures which are determined by
pairs of features which can stand in a legal spatial relation-
ship. A structure from the image matched to a structure in
the model determines the unknown 2D rotation and trans-
lation parameters. Thus to every possible match there
is a correponding rotation and translation vector. These
vectors are clustered. The representative vector from the

strongest cluster determines the estimate of the unknown

transformation.
III.1 The Shortcomings

There are a variety of shortcomings, much easier to
see on hindsight, and we will discuss only a few. In the
seminal work of Roberts (1965), once a set of image and
model matched points are obtained, the solution to the
parameters of the unknown perspective projection is done
in an equal weighted least squares sense on the entries of
the 4 x 4 perspective projection matrix. This perspec-
tive projection matrix has 16 entries which depend on the
six unknown parameters (3 for rotation and 3 for transla-
tion). The least squares solution, however, is done with-
out regard to the linearly independent constraints which
are known to hold. Furthermore, the solution technique
is a least squares solution technique. The equal weight
least squares solution is optimal only in the case where
the errors of the observations in fact are independent and
identically Gaussian distributed. Should the error distri-
bution be thicker tailed than a Gaussian or should there
be outliers, the least squares solution is the technique with
least virtue. Vision needs robustness. So for the Roberts
perspective projection parameters case, the wrong prob-
lem was posed and the solution technique given is the right
technique for an incorrect reality.

Perkins (1978) put a variety of techniques together in
a way which handled some relatively hard vision tasks.
The paper is innovative, solid, and representive of the
consistently good work which Perkins does. The Perkins
paper, however, is an example of the “Look Ma no
hands”approach. Consider, for example, the arc segmen-
tation problem discussed in the Perkins paper. A sequence
of points is given and each point is tagged with a noisy
observation of its tangent angle. It is known that the
sequence of points is sampled from an arc having only

straight line and circular arc segments, each segment be-

e
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ing greater than some minimum length. The problem is
to identify each segment. Identification means estimating
the starting and stopping points for each segment, clas-
sifying the segment as being a straight line segment or
circular arc segment, and estimating the free parameters

in whatever is the most appropriate parametric form.

An optimal solution to this problem is one which as-
sumes a model having some resemblance to reality and
which under the assumed model produces an answer which
is the most probable or one which has the greatest utility.
Utility can be defined in terms of an accurate numerical
result balanced with the amount of computation required
to obtain the result. Suboptimal solutions might involve
changing the actual problem to a problem close to the
actual problem but one which is more mathematically or
computationally tractable. Suboptimal solutions might
involve using an approximation in the derivation of the
algorithm.

What does Perkins do to solve this problem? He esti-
mates curvature by a finite difference approach using the
noisy tangent angle of the edge detector and ignoring the
point position information inherent in the given sequence.
He uses high curvature change, presumably also estimated
by a finite difference, to determine segment end points.
Under what model, if any, is this technique for estimating
third derivatives an appropriate one? What experimental
data has been gathered to show the performance of this
technique in situations where noise, however it is defined,
becomes greater and greater. If the model were stated
and the technique an appropriate one under the model,
then I as a reader could think about whether the reality in
which I need to perform this task is one consistent with the
model. If the model is not stated, then other researchers
will prefer their own adhockery to some one else’s. And
the proliferation of adhoc computer vision techniques just

continues.

If the model is not stated but experimental data were

- given which shows that the technique performs better than

other techniques, that too would be useful. Certainly it
is the case that sometimes intuition about a technique
precedes its formal understanding. But in these cases, the
researcher reporting the results is obliged to be empirically
convincing. Without controlled experiments, standards,
and comparisons the technique represents another adhoc
trick of the trade.

The Stockman et.al. paper is probably the strongest
of the three papers in so far as the robustness of the es-

timated transformation parameters are concerned. It is
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certainly adhoc in the sense that clustering is adhoc. Al-
though the increased robustness of the estimates is in-
tuitively obvious, one does not really know if it is the
most robust over all techniques with the same computa-
tional complexity. One does not even know in what sense
the technique might be a suboptimal technique. Had the
Stockman paper shown the robustness theoretically, then
as soon as I as a researcher commit myself to doing a vision
task like the one Stockman did, I must, if I am rational,
commit myself to using his technique if the computational
resources I am willing to commit to the solution are the
same as what he had committed. But the paper does not
prove the robustness. Hence, if I am a researcher trained
in the artificial intelligence tradition, I read the paper, put
another interesting tool in my tool bag, and wonder how
I might develop a new and better adhoc tool.

If I am trained in the artificial intelligence tradition, I
certainly do not want to think about solving the problem
the most optimal way under my favorite criteria of opti-
mality because I know that once I can express the problem
as any kind of an optimization problem it leaves the realm
of artificial intelligence and becomes some kind of pattern
recognition or mathematical problem which is repugnant
to me and my collegues. And so this adhockery continues
to propagate.

In simple and concrete terms, what is this fuss all
about? To do model based vision, a common subtask in
virtually all vision research, the estimation of the sensor
transformation parameters is required. The data going
into this estimation process is known to be noisy with
outlier observations from foreign populations.

Some might suggest that this is the problem that
the Fischler and Bolles (1981) random concensus tech-
nique solves. Intuitively, the random concensus technique
also has more robustness than least squares. Fischler and

Bolles did do some experiments. But where is the compar-
ison, experimentally or theoretically, which will guide me
to select the Fischler and Bolles technique or the Stock-
man technique?

It would seem that at this point in the maturity of
computer vision as a science, we would have a handle on
how to best solve this problem. And the adhoc situation
in this instance where it is easier to precisely define the
problem in surely better than the rest of computer vision
where the problems may be more difficult to precisely de-
fine. Thus the thesis of this paper: Computer vision has
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little theory. It has much adhockery. Computer vision
just has not reached the maturity of a hard science.

To do something about this we need to be sensitive to
what is adhoc, to what techniques are currently in fashion,
and to what is science. We need to take a conscious stand,
develop this consciousness in our actions, and move toward
the science of computer vision.

So in three good papers, papers which are, in my
opinion, better than perhaps 95 percent of the archival
papers, there are shortcomings. It is easy to be critical and
find such shortcomings. But the purpose of this paper is
not just to be critical. Its purpose is to raise the sensitivity
of computer vision researchers so that their future papers
might have fewer methodological shortcomings.

It is also the purpose of the paper to practice the
methodology preached. Althought I try to practice the
methodology, I am not able to necessarily practice it per-
fectly. But I do try. In section IV I attempt a formaliza-
tion of the object matching problem through a sensor pro-
jection. The formalization suggests a solution procedure,
one of whose subtasks is like the estimation of unknown
perspective projection parameters problem. An informal
solution to this problem is also given. In section V 2 more
formal approach, statement, and solution of the robust
estimation of perspective projection parameters is given.
The solution technique of section V motivates the compu-
tationally simpler but less optimal technique discussed in
section IV which is a generalization and refinement of the
Fischler and Bolles technique.

1V. 3D Object Matching Through a Sensor Projection

Most image sensors such as optical, infrared, radar,
sonar, and X-rays produce some kind of a 2D projection
of the 3D objects viewed. To structurally recognize a 3D
object from a 2D view taken from an unknown position
requires a relational matching of the object with the im-
age of the object. The difficulty of the matching process
is that some of the relationships which might hold for the
3D object can be lost in the 2D image of the object. Some
relationships which might hold for a 2D image of an object
may not hold for the 3D object itself. Thus a total rela-
tional matching cannot be counted on to solve the match-
ing problem. What is required is a relational matching
that can operate through a sensor projection. The rela-
tional matching must be able to proceed using whatever
subset of features which appears on the image and match



these into the 3D object model. The match between im-
age and object model must satisfy both the relational con-

straints and the sensor geometry projection equations.

We assume the physics governing each type of sensing
mode is known. Given the sensor type and its position
t = (tz, ty, t.) and orientation 6 = (0, 8,, 0,) in the
object coordinate system, the sensor geometry projection
equations describe how each point (z, y, 2) in the 3D
world is transformed to a point (z’,y’) on the 2D image.

Let these equations be specified by
z, = f(z, Y, 2 t, 0)
y, = g(z, Y, 2 t, 0)

The functions f and g are many to one. Given a 2D po-
sition on the image, there are many corresponding 3D
points. However, if there are N points on the image (N
being about 4 for most sensors) for which the correspond-
ing positions of the N 3D points are known, then it is
possible to solve the geometry equations for the position
t = (tz, ty, t;) and orientation § = (0, 8,, 0,) of the
sensor. It is this fact which permits a relational match to

proceed through a sensor projection.

Matching determines a correspondence between im-
age points and object points which are simultaneously re-
lationally consistent and satisfy the sensor geometry pro-
jection equations. The eligible points to be considered on
the image must be points which are easily distinguishable.
Such points can be the center of bright spots, the center
of dark spots, line end points, corners between two lines,
or corners between two edge arcs. These points can be de-
tected by some low level neighborhood feature extraction

operation on the image.

We denote the set of these distinguished image points
by U. Associated with each point u is its image co-
ordinates ¢’(v) and y’(u), and the type of point or la-
bel of point P(u). The label set for points is de-
noted by L which can be defined as, for example, L =
{bright spot, dark spot, line corner, edge corner}. The
point labeling function P has domain U and range L;
P:U — L.

The distinguished points stand in relation to one an-
other through other detected features such as edge arcs,
line arcs, or containment in the same homogeneous re-
gion. We denote by A the set of relations which can exist

between image points. For example, A can consist of
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A = {straight arc edge, curved arc edge , straight arcline,
curved arcline, containment in same homogeneous region}

Pairs of distinguished points from U tagged with a relation
label from A define the relational contraints. We denote
this relation B; R C U x U X A. If (u1, u2, @) € R, then
points u; and u; stand in relation a on the image. The
total relational structure on the image is then given by the
5-tuple (U, L, A, P, R).

The distinguished points on the image come from cor-
responding points on the 3D object being imaged. For a
fixed object, let V' be the set of 3D points which can give
rise to the detected 2D feature points. Associated with
each point v € V is its 3D coordinates (z(v), y(v), 2(v)),
which are the coordinates relative to the object frame.
Also associated with each point v € V is a set of types of
distinguished feature points it can give rise to on the im-
age. We denote by Q C V x L the relation associating with
each point in V' the types of point labels its corresponding
point on the image can be. @, although a relation rather
than a function, has a role in the object’s relational struc-
ture which is analogous to the role P has in the image

relational structure.

Depending on sensing modality, object shape, and
viewing direction, pairs of pointsin V (on the object) can
have corresponding pairs of points in U (on the image)
related by one of the relations in A. For a fixed sensing
modality and object, we let S C V x V x A denote the set
of all triples (vi,vs,a) such that for some viewing direc-
tions of interest object points, v; and v, give rise to image
points which stand in relation a. The relational structure
of an object is then given by the 5-tuple (V,L,A,Q,9).

Model based object matching through a sensor projec-
tion can be defined in terms of the relational consistency
between the image relational structure (U, L, A, P, R) and
the model relational structure (V,L,A,Q,S) combined
with the sensor projection geometry consistency between
the points in U which match to points in V. The
matching procedure must determine some maximal part
of (U,L, A, P, R) which matches into (V,L,A4,Q,S) and
which is consistent with the projection equations. The
matching inevitably involves a search and the difficulty is
how to make that search be over the smallest set of alter-

natives possible.

To make the search efficient, we break the problem

up into two parts. First we search over all subsets U’ of



distinguished points in the set U. We can structure the
search to involve only subsets of size N where N is the
smallest number of 2D image points which when matched
with 3D object points can guarantee a solution for the
unknown position and orientation of the sensor. If prior
information is available that the points on the image must
be from a particular subset U, of U, then the search only
selects U’ from within the known subset U,. Having se-
lected a subset U’, we perform a search to determine all
relational matches. A function h: U’ — V is a relational
match if and only if

(1) corresponding points are of the same type, that is
u € U’ implies (h(u), P(u))eQ

(2) pairs of corresponding points have the same relational
label, thatis R o h C S, where Ro h is defined by

Roh = {(v1,v2,a) e VXV xA|for some (u1,uz,a) € R,
vy = h(uy) and vy = h(uz)}

If prior information is available that certain points
u € U can only match to certain points v ¢ V, then the
search for the relational match h is so restricted. That is,
if H C U x V is the prior contraint, then the search for
h is restricted to all functionsin H N (U x V). After
the search has established a candidate relational match, it
must be verified. The verification has two conditions. The
first condition establishes that there exists a sensor posi-
tiont = (¢4, ty, t.) and sensor orientation § = (0, 6,, 4.)
by which every 3D object point from V with coordinates
(z,y,2) corresponding to a distinguished 2D image point
from U’ with coordinates (z',y') satisfies the sensor geom-
etry projection equations. That is, we must verify there

exists a ¢t and 6 such that for every v € U’,
z'(u) = f(z(v), y(v), 2(v); ¢, 0)

¥'(u) = 9(z(v), y(v), 2(v); ¢, 0)

where v = h(u). Establishing the existence of such a ¢ and
0 is done by solving the above set of sensor geometry pro-
jection equation for t and 4. If no position and orientation
can be found which makes the sensor geometry projection
equations satisfied, then the candidate relational match is

not a valid 2D to 3D correspondence.

If a position and orientation can be found which
makes the sensor geometry projection equations be sat-
isfied for the match h, then the second part of the match-

ing procedure seeks to find confirming information for the
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correspondence. Confirmation involves finding additional
2D points and relations, not used in the initial candidate
matching, which simultaneously have corresponding 3D
points which satisfy the sensor geometry projection equa-
tions and the relational match. The confirmation phase of
the matching process is different from the candidate search
phase of the matching processing in that because the po-
sition and orientation of the sensor is known, there need
be no searching to establish confirmation. There need be

only some checking.

In the confirmation phase, each 3D point v ¢ V has 3D
coordinates (z(v), y(v), 2(v)). Sensor position ¢ and ori-
entation § are known. By the sensor geometry projection
equations, the corresponding 2D image point has position

(z*,y*) given by
z* = f(z(v), y(v), 2(v); t, 6)

¥" =9(2(v), y(v), 2(v); t, 6)

Either the point (z*,y*) is the position of a distinguished

feature point from U or not. If it is a distinguished

point, then there exists a uw ¢ H such that (z*,y*) =

(2'(), y'(u)). The set U* defined by

U* = {ueU| for someveV,a'(u) = f(z(v),y(v), 2(v);t, 6)
¥'(v) = g(2(v),y(v), 2(v); ,0)}

is the set of all points on the 2D image which can be used

for confirmation. The set

Vi=A{veV|for someueU*,a'(u) = f(2(v),y(v), 2(v);¢, 6)
v'(u) = 9(2(v),y(v), 2(v);t,0)}

is the set of all points on the 3D object which can be used
for confirmation. The function h* : U* — V* defined by

z'(u) = f(z(v), y(v), 2(v); ¢, 0)
vif { ¥'(v) = f(z(v),y(v), 2(v);1,0)
(v, P(u))eQ

establishes all possible candidate matches between points

h*(u) =

on the image and points on the object which are consistent
with the sensor geometry projection equations and have
the same permissible type labels. Computing h* is direct
once ¢t and 6 are known. For each 3D point v ¢ V determine
its 2D projection and see if at the projection position there
exists a 2D point u € U. If so check their type labels. If
they both have the possibility of same type labels then
add the match to h*.

The function h* is essentially produced by propa-
gating forward the constraints implied by the candidate



match function k. In this sense.its generation is analo-
gous to the forward checking procedure used in constraint
satisfaction tree searches.

Having computed h*, the confirmation process can

complete. The function A* necessarily includes the can-

= 2

Y1y-e0YN

didate matching function h. Confirming evidence can in
part be given by the difference in size between h* and h;
that is #A* — #h. Confirming evidence can also in part
be given by the number of relational matches h* can es-
tablish beyond that which h established. This number is
given by

#{(Roh*)N'S] — #{(Roh)NS)

If the function h* significantly extends the match h on the
number of relations matched then confirming evidence can
be considered to have been provided and the extended
candidate match h* becomes the match between object

and image.

V. A Bayesian Approach to Robust Estimation of

Camera Parameters

V.1. Problem Statement

Suppose bi,...,by are known points in a 3D space
whose observed perspective projections are z, ..., zy. The
position, rotation, and focal length of the camera, i.e. the
parameters which determine the perspective projection,
are not known. For any value of camera parameters a and
any 3D point b,, the function x determines the ideal per-
spective projection y(a, b,) of b. An observed perspec-
tive projection z, of b, is a noisy instance of u(a, b,).
With probability ¢, z, comes from U(—Large, Large).
Such an z,, represents a contaminating measurement. For
n # m, z, is independent of z,,. The problem is to esti-

mate a.
V.2. Analysis

Let yy,..., yn be independent random variables char-
acterized by

| 1 with probability ¢
Y»=10 with probability 1 — ¢

The y's are independent of z!,s. When y,, = 1, the obser-
vation z, is not an outlier. When y, = 0, the observation

Z, is an outlier coming from a foreign population. We
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wish to find the most probable value of @, the unknown

parameters given the observed and known information.

P(alzl, ey TN bl, ooy bN)

_ P(zy,....,zN | a, b1, ..., bn)P(a, by, ..., bN)
P(Zl,...,:EN, b],..., bN)

P(Z1yeeey TN, Y1y -y YN|@y b1, ooy b)) P(alby, ...y ) P(b1, ..., bN)

P(:z:l, ey TN, bl, weey bN)

Because of the conditional independence of z,,, y,, on

a and b,.
P(a,| L1y TN, bl, ceey bN)
(I1 P(2n; yn |, bn)] P(a)

N P(.’tl, ey TN I bl, weey bN)

Y1,
Because of the independence of z,, from y,,
P(a,l L1yeeey Ty bl, ceny bn)

(I1 P(zn|a, bn, yn) P(yn| a, bx)] P(a)

P(zl, wesy TN ' bl, seey bN)

Yis--UN

But y,, is independent of a and b,. Hence
P(a|zy,...,zN, b1y ..., b)
(II(P(zn | a, bn, yn) P(yn)] P(a)

P(Z], ey TN l bl, aeey bN)

Yiy--0 YN

From the above equation, the value of a achieving the
maximization is a computationally intensive task because
the summation over all possible values yy, ..., yn involves
2N terms. The difficulty is not so much that there are
2N terms to be summed, but that the maximization to
be performed is much more complex when the expression
to be maximized has 2V terms to be summed, each term

being a product of N functions.

However, there is a condition under which things
can be considerably simplified. The simplifying condition
amounts to assuming that if y, = 1, indicating that we
are conditioning under the assumption that z, is not an
outlier, then the probability density P(z,|a, bn, yn = 1)
is peaked. Hence if the observation z, is really not an
outlier P(z,|a, bn, y, = 1) will be rather high. We
take rather high to be a probability density greater than
unity. However, if the observation z, really is an out-
lier, then P(z, |a, bp, yn = 1) will be rather small. We
take rather small to mean rather small in comparison to
1—ZQP(:::nIa., bn, yn = 0). The reason for this will be

T P




obvious shortly. Since

1
P(z.|a, by, yn=0)=mrg—e=€,

this means that when z,, is an outlier P(z,, | a, b,, yn = 1)

will be small in comparison to 1—;‘15.

The motivation for these comparisons is as follows.
Let G* be the set of indexes of observations which are
really not outliers and B* be the set of indexes of obser-
vations which are really outliers. For any one of the 2V

values of yi, ..., yn, there are the corresponding sets G and
B defined by

G ={m|ym =1} and B = {m|y, =0}

One of the 2V square bracketed terms in the summation
will be

A = q#G‘(l - Q)#B.E#B‘ H P(zmla: by Ym = l)

meG

This term corresponds to the value of yi, ..., yn reflecting
the true but unknown state of the outliers. We will com-
pare this term to an arbitrary different square bracketed

term

Ay =q*%(1- q)#Pe#P H P(2m | @, bm, ym = 1)

meG

Upon comparing A; with Az, we have

g#% (1- q)#B"e*B" [ P(zm]|a, bm, ym = 1)

ﬁ _ meG*
A, = " qFO(1= )#PeF® 1| Pu(z[a b ¥ = 1)
meG

H P(zmlaa bm, ymzl)

= g#GHO(1 _ ) #B HB AB B GG

H P(fl:mltl, bmyymzl)

meG—G*

But #G* + #B* = N and #G + #B = N. Hence,

— - P(zm, aabmaymzl
ﬂ: [E(l—q)]#a #6 mzé[;‘[—G ( l )

A, q CI;IG P(zm|aabm’ym:1)
meG—-G*

Each term for which m belongs to G* — G pro-

duces a value of P(zZm|@, b, ym = 1) >> 1. Each
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term for which m belongs to G — G* produces a value
of P(zm | @, b, ym = 1) which is small in comparison to
ﬂ%l. Hence
[ega]*ere
II PGEmlabm,ym=1)

meG—-G*
11 [ e(1—9q)
meG—G* qP(zm t a, bmy Ym = 1)

>>1

Therefore, it follows that A; >> A,.

This argument suggests that under the assumed con-
ditions there will be one term among the 2V terms in the
summation which will be a dominant term. We simplify
the estimation of a by estimating a by the value @& where
& maximizes the dominant term. That is, for each of the
2" values of y1, ..., YN, there will be a corresponding value

4(y1,..., yn) which maximizes y, ..., yn,

N
P(a) [[[P(zn @, bn, ya)P(yn)]

n=1

The dominant term corresponds to that value yi,...,yn
for which

N
P(a(y1, .- yn)) H P(zn|a(y1y- s YN)s bny yn) P(yn)

n=1

N
> P(a(21,-.s2N)) H P(2p | a(21, - 2N), bny 2n) P(25)

n=1

for all values of 21, ..., 2.

V.3. Discussion

This procedure is related to and supports the random
Fischler and

Bolles use a randomly chosen small number of observations

consensus method of Fischler and Bolles.

to determine an estimate & of a. Instead of substituting

this estimate into

[ P(znl @, bn, yn = 1)

n
where the product is taken over those n having suitably
high P(zn|@&, bn, yn = 1), Fischer and Bolles consider
the estimate @ a reasonable one if the number of terms in
such a product is higher than that a produced by any other
randomly chosen small number of observations. This step

is, in effect, a verification step for the estimate a.

The estimation technique suggested in section IV cal-



culates the qualified product instead of just counting the
terms which would be in the product. The qualified prod-

uct of the confirmation is related to

H P(xmla7 bma Ym = 1)
meG*
the product expression appearing in the dominant term of

the summation in section IV.
VI. Conclusion

We have raised the issue of the adhoc nature of much
computer vision research. We have discussed the small
amount of replication and comparisons reported. We have
tried to illustrate the formalization of the model match-
ing problem and give a suitable motivation for a robust
technique for determining the sensor projection parame-
ters required to do model based matching. The technique
is a refinement and generalization to the Fischler Bolles
random consensus technique. Suitable experimental com-
parisons are now needed between it, the Stockman clus-
tering technique, and the Fischler Bolles technique before
this work will be ready for reporting in the archival liter-

ature.
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