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ABSTRACT :

A new hypothesis based reasoning scheme is pre-
sented for- the analysis of sensory data generated
by a well-defined physical processes. Hypothesés
are represented by subsets of allowable attributed

relational tuples describing relationships' between’

the entities in the world. Interpretations are de-
fined to be those hypotheses which are consistent
with the structure imposed by the sensing process
and compatible with the observed sensory data.

Although the problem of detemining the in-
terpretations of a given sensory image is equiva-
lent to theorem proving in general, recasting it in
the above hypothesis generation form makes it equi-
valent to a propositional logic censistency problem
with side conditions on the attributes.  In this
form, the problem of finding the best or maximal
interpretations reduces to an NP complete problem,

We show how to exploit ' the structure of the
search space of all. hypotheses to significantly
reduce the computational complexity of this NP—com-
plete problem. ' * The technique is applied to the
problem of interpreting line drawings of perspec-
tive projections of polyhedral objects.

Introduction

One of the central aspects of intelligence is
the ability to ' reason about and operate - in a real
world -environment using sensory information. & We
have the ability to use various types of visual,
auditory, and tactile information to understand the
contents of the world around us. The process by
which such information is generated from the world
is a deterministic physical process. However infor-
mation is lost in the process, since there is not a
unique combination of objects in the world which
could give rise to a particular combination of sen-
sory patterns.

The reason for our capacity to compute the in-
verse mapping for any sensory process seems to be
that the three-dimensional world has some regulari-
ty and that the physical system which produces the
stimulus strongly constrains the possible arrange-
ment of the three-dimensional world. Of all the
possible ways in which the stimulus could be inter—
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preted , only a few are actually consistent with the
physical process invo;ved. '

We believe that the ' process of interpretation
can be considered to be one of formulating Meducat-
ed guesses" as. to the nature of the three—-dimen-
sional  objects in the world and ‘utilizing - the
constraints of three-dimensional ' coherence -and
world knowledge about the physical processes in-
volved to select the reasonable arrangements from
possible guessed arrangements. 1In essence, we hy-
pothesize what the world could consist of and re-
tain only the consistent hypotheses. . P

In this paper we . presént a computational frame-
work for hypothesis generation-and testing. We for-:
mally define the notion of a hypothesis and develop
the space of " all hypotheses over -which the “in-
terpretation process searches for the interpreta-
tion. The search problem is NP complete. However
the search space.is structured by the constraints
of. the physical sensory system and ' this structure
can be utilized to reduce the size of the search
involved. . Examples of the computational paradigm
are presented where appropriate, based on the prob-
lem of analyzing line drawings of ‘perspective. pro-
jections of three-dimensional ‘ objects.

'Literature Review

Hypothesis generation' and. ‘testing has been
around for .a long = time as a scientific analysis
technique. Its early origins can be traced back to
ancient Greek scientists notably Aristarchus of Sa-
mos [1] who formulated the heliocentric theory as a
hypothesis which was capable of explaining the body
of observations about the movement of the planets.
The school of thought to which his arguments be-
longed have been termed "saving the phenomena” [2].
Philosophy also has’ a branch of non-demonstrative
logic which is called the Method of Hypothesis [3].
Although the philosophiers are interested in the lo-
gical form of the _hypothetical arguments; their
concepts bear some resemblance to the computational

theories developed in this paper.

Recent computational theories of hypothesis aim
more at the interaction with propositional and
predicate logic.. One of the  earliest works of a
formal nature is the work of N. Rescher [13], which
deals specifically with counter-factual hypothesis



manipulation. However in the categorization of
hypothetical arguments employed by Rescher our form
of hypothesis would be similar to that called "Pro-
blematic". Rescher does not formalize this branch
of hypothesis any further.

In the field of Artificial Intelligence, one of
the first successful expert systems was DENDRAL [4]
which also used a form of hypothesize and test to
generate the possible structures which could ac-
count for observed mass-spectra of organic molec-
ules. The search space in this program was cont-
rolled by means of a constraint generation
algorithm which would prune inconsistent combina-
tions of molecular structures.

Several recent vision systems have also been
constructed to use knowledge based reasoning.
These systems integrate knowledge sources codifying
world knowledge into the image interpretation pro-
cess. The largest and most complete such system is
the VISIONS system [5]. The use of world knowledge
in the image segmentation field and the integration
of different sources of sensory input has been at-
tempted by Levine [6]. The use of distributed con-
trol in. which groups of cooperating processes
worked jointly on a global information base was pi-

oneered in the HEARSAY system [16,17]. HEARSAY-I
and HEARSAY-II worked in the domain of speech un-
derstanding. Several independent computation

sources worked on the common database of informa-
tion. These modules would lie dormant, waiting for
the appropriate combination of conditions under
which they could work and modify the database based
on their computation. A similar control strategy is
employed by the VISIONS system.

The main difference between the research pre-
sented in this paper and the previous hypothesis
based systems is that for the first time, we are
attempting to explicitly specify what the search
space is and control the process which searches in
that space for a solution.

Hypothesis Generation and Testing.

The basic idea behind the concept of hypothesis
generation and testing is simple. There is some
physical world which consists of several entities
and various ways in which these entities relate to
each other. 'The actual relationships between the
entities of the physical system are unknown. What
is known is the types of relationships that they
can participate in. The actual physical system is
not accessible for the purpose of determining the
relationships between the entities. However,
through some well-defined process, it is possible
to make some measurements which depend on the rela-
tionships. An interpretation of the observations
consists of determining the unknown relationships
between the entities. If these interpreted rela-
tionships are correct, they would give rise to the
observations.

The Optimal Hypothesis Problem

An interpretation is a hypothesis which is con-
sistent and is "optimal" in some sense. Although
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the treatment in this section is formal, it is
helpful to keep in mind the intended physical in-
terpretations for the symbols. To that end, consid-
er the application of the hypothesis system to the
problem of determining the three-dimensional object
structure which gives rise to an observed perspec-
tive image.

The world being sensed consists of a set of en-
tities and the attributed relationships between the
entities. ILet E be the finite set of entities E
= {e;,...,e } about which we want to reason. In
compiter vision, these entities can be three-dimen-
sional lines, planes, and points as well as two-di-
mensional entities such as projected arcs.

The true but unknown state of the world is spe-
cified by a union of named attributed relations
between these entities. EFach relation r. in this
union, has a name r,, and an attribute set a;. The
nunber of entities which r; relates is the order of
r; and we denote it by o;. ‘Thus eachr; can be
répresented as a subset

o1
rcifgl} xE x 0,

where each £ € . is a single valued relation which
associates a real number for each attribute in a;.
That is, £ ¢ a; x . This associated number is
called the attri%ute value. The state of the world
is then represented by

R=U r..
Ti=l,m

In the case of the perspective geametry problem,
the relations are spatial relations such as paral-
lel lines, groups of lines in a plane or pairwise
touching lines or arcs. These relations have attri-
butes such as distance between lines, coordinates
of the starting and ending points or directions of
plane normals.

The information given to the interpretation pro-
cess consists of the relation names, orders of the
relations, names of the relation attributes, the
entities in the observed instance of the world and
measurements made by the sensing process. The in-
terpretation process constructs the best guesses
for the unknown world state R. The basis for the
interpretation is the observed measurements and the
known form or semantics of R

et P be the set of all possible instances of
tuples from any relation. Thus

°i
U My} xE- x Q)
i=1l,m

P =

Any state of the world is a subset of the set P.
The interpretation process must effectively search
all subsets of P to find the best guesses for R.
This is an enormous search problem.



o

However, by effectively using the knowledge
about the semantics of the relationships between
the world entities, it is possible to reduce the
search space considerably. = Because the process
which generates the sensory data from the real
world is a well defined physical process, the com-
binatorial search for interpretations does not have
to be performed over the entire space of subsets of
P defined above. The measurements and the physics
of the projection process relate the attribute va-
lue relations in the tuples in R to the entities
involved in the relations. It 1is possible to use
expert knowledge encoded as inference engines to
compute large portions of the attribute value rela-
tions in the last component of each tuple given
only the measurements and a - set of tuples complete
except for the last component as being in R. This
means that the relational portion of the tuples
(the projection over all but the last position)
determines the remaining position (the attribute
value relation). ‘Thus the combinatorial search
space involved is all subsets of

P'= U
i=1l,m

O
{r;} xE "]

Tuples from P which are examined during the process
of searching for an interpretation, are called

predictions.

A hypothesis H is a subset of the set of pred-
ictions H ¢ P. A hypothesis may be consistent
which is denoted by C or inconsistent which is de-
noted I. Thus there exists a function F:H -—>
{C,1} vhich detemmines if a hypothesis is consis-
tent or not. A hypothesis is consistent if upon
using all inference engines, the computed attribute
value relations for the tuples in H are each single
valued. We will have more to say about the nature
of F later.

is'a hypothesis set Hc P
such that F(H) = C. We are interested in "best"
possible interpretations I. That is, we are inter-
ested in any I which maximizes some property g(I).
Best possible interpretations may not be unique.

An interpretation I

= #H, the number of

The simplest g(h) is g
the domam. The only

consistent predictions abou
requirement on the function g(H) is that it be in-
teger and bounded from above. With only that res-
triction, any appropriate function can be used.

With this formalization, the problem of deter-
mining the optimal hypothesis can be shown to be an
NP complete problem, provided that consistency of a
hypothesis can be detemmined in polynomial time.
The proof uses the fact that the consistent label-
ing problem (CLP) is a known NP Complete problem
[8], and constructs a polynamial time transforma-
tion from the CLP to the hypothesis determination
problem. For complete details on the proof, the
reader is refered to [9].

In the next section we develop ideas about con-
sistency checking. Unless consistency checking can
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be performed efficiently, the problem of generating
the optimal hypothesis problem will be practically
intractable. We will show that for a given hypothe-
sis,. we can detemmine consistency without perform-
ing any search.

Determining Consistency of a Hypothesis

The sensory process can have parameters. For
example, the perspective image produced by a camera
depends not only on the arrangement of entities in
the scene but also on the location and the focal
length of the camera. The parameters of the senso-
ry process can be considered to be attributes of
@-th order relations (those which involve no world
entities). Based on physical laws, the sensory
process interacts with these relationships and
their attributes and produces a sensory pattern
consisting of sensory entities and their relation-
ships which are also attributed. For purposes of
discussion, we can call this produced pattern an
"image" of the world. The attributed relationships
in the image are fixed and depend on the instance
of the world being sensed. These relationships
between the sensory entities are temed measure-
ments.

an image may be characterized by the

An image consists of a set of entities
where each e;! is the image of
The entities e;

Formally,
following.

= {el' [AXEYN] }I
the corfresponding world entity e.
are called sensory entities.

Sensory entities stand in named attributed rela-
tionships to each other. These relations are
termed sensory relations and are defined as R' =

',..,R '} where each R;' is an attributed rela-
tlon over the sensory entities. Fach relation Ri'
has a name r.', and an attribute set a.'. The rela-
tion r.' relates o;' sensory entities. 'Ihus each r;
can be represented as the subset

o.'
i
Ri'g{r-'}xE' x[piv
where each f' € {.' is a single valued relation
which assigns a value for each attribute in a.'
taking a value. We use the term measurement (de-
noted M) to be M (E',R',0',A') where O' is the
set of all the o;' and A' is the set of all attri-
bute names. No%e that all the information in M is

known and detemmined unambiguously from the image.

A hypothesis is a collection of relational tu-
ples. These tuples define relationships between en-
tities in the real world. The only way to check if
a hypothesis is consistent is to detemmine if the
physics of the sensory system would give rise to
the observations if the hypothesis were correct.

Inference Engines

For the purpose of efficiency, it is necessary
to organize the knowledge about the inference pro-
cess into compact manageable wnits.

We term these computational units "inference en-
gines". Inference engines operate on relational tu-



ples and measured attributes of the image, and from
them, compute values for the unknown attributes of
the hypothesis. A hypothesis will be declared in-
consistent if there exist two inference engines
which both compute a value for the same attribute,
and the two values are incompatible.

To be able to prove interesting properties about
the process of using these computing units, we
tighten the definition of inference engines as fol-
lows: inference engines are ‘modular computation
units which accept as input, a specific set of at-
tributed relation tuples from the possible rela-
tionships between the world entities and a set of
measurements taken from the sensory input. Based on
the measurements and on previously computed attri-
butes of the relational tuples, they compute values
for other attributes of the input tuples. The ini-
tial hypothesis has all the attribute values unk-
nown. No attribute has'a value. The attribute va-
lue relations are empty. Attributes can only be
given values based on the computations performed by
the inference engines. An inference engine is de-
fined to be in cannonical form if it computes the
value of only one attribute.

The questions that arise in this context deal
with the termination of the stability of the compu-
tations and the termination of the process. In the
remainder of this section, we state several leammas

leading up to a pair of theorems which show that’

consistency of hypotheses can indeed be defined in
computationally stable terms, and that no search is
needed to determine the order in which these en-
gines need to be controlled.

An inference engine E is applicable to a subset
K c P iff the following two conditions are met:

a) K satisfies the input requirements of the
engine E. That is K contains the relational
tuples that E uses as a basis of its computa-
tion and that the attributes of these tuples
which E uses in its computation, are all de-
fined.
b) No proper subset of K satisfies the input
requirements of E.

An application of an engine E to a set K is denoted
as E(K) where E is applicable to K. An application
of E to K may succeed or fail (with success and
failure being as defined earlier). If an applica-
tion succeeds, a new subset K' results which dif-
fers from K in that atmost one attribute of K which
was previously "unknown", now has a value. To make
the definition of E(K) complete, we provide that if
the application fails, the output subset K' is the
same as K. Thus E(K) = K' where if E(K) fails, K'
= K. If however, the application succeeds, then K'
differs from K by at most one value. That is,

g{;'larx;(ﬁl':lt,[:”}'gxi?) € Kand x'=(r,eqs--« sy, ')

We are interested in running our inference en-
gines on an arbitrary hypothesis set. To that end
we define an inference step as E(H) where Hc P to
be the application of E to some subset K¢ H to
which E is applicable. If the application Is suc-
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cessful, we replace K by K' in the set H. In what
follows, we will only be interested in the output
of E(H) for the cases where E(H) succeeds. There-
fore we can talk of E(H) = H' where H, H' c P.

We define a sequence of inferences on a hypothe-
sis H to be a sequence E.( E. ; ... ( H ) ) of
inference steps where edch gﬁ%erence engine E. is
applied to the output of the previous inferénce
step and each of the inference steps 1 through j-1
is successful. Further, if for some i and k, 1
ik <3, E, is the same inference engine as B, we
will assume that the subset of H to which they ap-
ply are different. Sequence of inferences are de-
noted in functional form to emphasize the fact that
though they are applied sequentially, each engine
operates not on the original hypothesis but on the
output of the previous inference step.

A sequence of inferences E; (E:_1.-(H)..) s
called a terminating sequence ifJeithér E. (.) is a
failed inference or there does not exist-any other
inference engine E. +1 Which can be applied to the
result of the sequ;nce in order to extend it.

Lemma (1): Consider a sequence of applications of
the inference engines to a hypothesis set H c P. If
at the ith step, engine E; is applicable, then E;
will be applicable at all Steps j > i. *
Lemma (2): If Ei
ferences such that application E, fails,
any sequence of

E. (Bpv (Byv_yee(Bia (Bs_q(ee(H)o0) where applica-
tlons £ Thirough B, ) Succeed, E will still fail.
In other words, pOstponing the application of a
failing inference engine does not lead to a suc-
cessful sequence.

Lemma  (3): Let E (co By (B (H)..0) and
E. (oo B (B4 (H).00) be two sequence of inferences.
1t the sicond sequence be a successful sequence
(i.e. the application E.(,) succeeds). ILet these
sequences satisfy: J
(a) Every E., IKi<k-1 in the first sequence is
also in the second sequence (though not neces-
sarily in the same order) . '
(b) E, is not in the second sequence.
Then:
(E;..(H)..) is a valid sequence, i.e. K is ap-
p. icdble at the end of the second sequence.

(E-_l..(H)..) is a sequence of in-
then for
inferences

Lemma (4): If Ei(Ei- eee(H)e..) 1is a sequence of
inferences on the hypothesis H, then either it is a
terminated sequence or it can be extended to form a

temminated sequence.

Theorem (1): If Ei (Ei-— eee(H)e..) is a sequence of
inferences on the “hypothesis H which ends in fai-
lure, then all possible terminating inference se-

quences end in failure.

Corollary:  If E;(E; j...(H)...) is a terminating
sequence of inferences which ends in success, then
all possible terminating sequences will end with
success.



Theorem (2): Ignoring permutations, there is at-
most one successfully terminating sequence of in-
ferences for a given hypothesis H.

Implications of the Theorems. The theorems tell us
that the sequence of applications of inference en-
gines to a hypothesis must temminate. _Further, the
result obtained does not depend on the order in
which the engines are applied to the hypothesis
set. The definition of applicability and inference
Steps tells us that adding new relational tuples
into a hypothesis will not affect the inference en-
gines that would work on the smaller hypothesis
Set. Further, given a consistent hypothesis, there
is only one (ignoring permutations) sequence of ap-
plications which characterizes the set. There is no
search involved in the determination of the consis-
tency of a hypothesis because there is no order de-
pendency. Thus the process of determining consis-
tency is linear in nature.

One consequence of this definition of consisten-
cy is that if a hypothesis H ¢ P is consistent,
then any subset Kc H is also a consistent hypothe-
Thus we can replace the notion of searching

sis.
for an "optimal™ hypothesis by searching in P for
the "maximal" hypotheses. We define a subset I c P

to be an interpretation if it is consistent and is
maximal in the sense that for any p € P-I, the hy-
pothesis I+{p} is inconsistent. Note that there
may be more than one possible interpretation to a
Scene and each interpretation will correspond to
one such maximal subset. We now discuss one method
of finding such an interpretation.

Searching for the Maximal Hypothesis

The number of possible subsets of a set of rela-
tional tuples is where n is the number of possi-
ble tuples. This number grows exponentially in n,
and as n grows, the time taken to exhaustively
search the entire space, grows prohibitively. How-
ever the possible solutions are related as was
pointed out in the previous section. If some subset
K c P is a consistent hypothesis, then all its sub-
sets are also consistent and can be ruled out of
the search pattern. Secondly, since we are inter-
ested only in the maximal consistent subsets, we
can attempt to "grow" the solutions in a sequential
fashion.

The search space can be organized as a binary

tree. Suppose there are n possible relational tu-
ples. The tree would then have n+l levels: ")
through n. At each node of the tree (with the ex-

ception of the leaf nodes) there are two children.
For a node at depth i, 6 < i < n-1, these children
correspond to the selection of and the rejection of
the relational tuple i+l respectively. By conven-
tion, we choose the left child to correspond to the
inclusion of the tuple and the right child to cor-
respond to its elimination. Thus each leaf node
corresponds to a subset in which some tuples have
been selected and some left out.

The ‘advantage of this representation is that the
entire tree does not have to be stored at any time.
The tree can be searched by a backtracking tree
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search in which once a subtree is -examined, all
information about it can be discarded. However, it
is not convenient to prune subsets of known solu-
tions in this representation, because the subsets
are not related in any consistent or simply denote-
able fashion. We will examine this problem and in-
dicate the solution that allows rapid pruning of
the tree.

Let us assume some ancillary data structure is
used to record solutions (or consistent leaf nodes)
as they are visited in a preorder traversal of the
binary tree. Associated with this storage is the
required set of procedures which can quickly deter-
mine if a given subset of P is a subset of any of
the solutions which have been generated. One way to
avoid outputing the subsets is to wait until a "so-
lution" is generated and then check if it is a sub-
set of a previously generated solution. Note that
since the tree is traversed in preorder, and since
the tree organization is as described earlier, the
larger subsets of P are visited before the smaller
ones. Thus there cannot be any case where we have a
subset of P (say S) marked as a solution and then
visit a leaf node which is also a solution but con-
tains S.

This strategy forces all the nodes of the tree
to be visited. However subsets of solutions are
clustered together and detection of subsets early
would improve the efficiency of the search process.
We can prove two important theorems which deal with
this problem.

Theorem (3): At any non-leaf node in the tree, de-
fine the "leftmost solution" to be the leftmost
leaf node of the subtree rooted at the non-leaf
node under consideration. If the leftmost solution
in a subtree is a subset of a previously generated
solution, then all the possible solutions in the
subtree are subsets of previously generated solu-
tions. This allows us to prune that entire subtree

and back up.

Theorem (4): At any non-leaf node in the tree, de-
fine the "rightmost solution" to be the rightmost
leaf node of the subtree rooted at the non-leaf
node under consideration. If the rightmost solution
is not a subset of any previously generated solu-
tion, then none of the possible solutions in the
subtree can be subsets of previous solutions.

This theorem says that if a node passes the test
for the rightmost solution, we can do away with the
checking for subsets of previous solutions while we
are exploring the subtree under the node. This al-
lows the search procedure another degree of effi-
ciency. In addition, forward checking [14] can be
used.

Logical Inconsistency and Completeness for Pruning.

In addition to the numerical consistency crite-
ria imposed by the inference engines, another form
of consistency is important in the hypothesis gen-
eration process. This is termed the Logical Consis-
tency of the space. For example, two lines cannot
be simultaneously parallel and perpendicular. Logi-




cal consistency arises from the world semantics and
it is often not possible to define in a numerical
sense. Other examples of such logical consistency
are the symmetry and transitivity of relations.
These constraints can also be encoded as extensions
of the forward checking which rule out possible fu-
ture tuples from consideration. For example, if the
left branch at any internal node takes the tuple
(parallel linel 1line2) into the hypothesis set,
forward checking can rule out (perpendicular linel
line2). This dichotomy between the logical and
numeric constraints parallels the distinction bet-
ween "geometric" and "relational" consistency which
was reported in previous work [11].

In addition to ruling out possiblities, the con-
cept can be extended further to forcing the selec-
tion of certain tuples based on the tuples in a
partially completed hypothesis. Note that if a
partial consistent hypothesis is extended by adding
a new tuple, it may become inconsistent. This will
be tackled in the tree search by taking the right
branch at the appropriate node. However in the case
where the relation semantics dictate that the tuple
must be included in a hypothesis, the resulting
subset of P must be ruled out (although by the num-
erical computations of the inference engines, it is
consistent). For example, a hypothesis which con-
sists of two tuples (parallel linel line2) and
(parallel line2 line3) alone must be ruled out be-
cause the transitive nature of the parallel rela-
tion dictates that the tuple (parallel linel line3)
should also be included in the hypothesis. The ori-
ginal hypothesis is in that sense "incomplete".

This fact can be utilized in the tree search as
follows. At any internal node in the tree, whenever
a new tuple is added (i.e. a left branch is tak-
en), all the tuples that are logically implied by
the previously accepted set of tuples and the new
tuple are also put into the partial subset. If any
of these logically implied tuples have been ruled
out by forward checking at previous levels, the
subtree below the current node is discarded and the
procedure backs up.

Thus at each node of the tree, tuples are not
instantiated individually but in "chunks". Thus the
effective depth of the tree decreases. The actual
amount by which the tree search gets pruned depends
on the degree to which subsets of tuples imply the
selection of other tuples. As a simple example con-
sider the space P with 3 tuples in it. Let these
tuples be called a, b and ¢ and let their semantics
imply that tuple a and b together logically imply
tuple c,and _b and ¢ imply a. The search space
consists of 2> = 8 subsets. However because of the
chunking effect of the logical relationship, the
number of viable subsets that must be searched re-
duces. The subsets {a,b}, {b,c} are ruled out
leaving only six possible subsets to consider.

Applications to Computer Vision

In this section we apply the method of hypothes-
es developed in the previous sections to a computer
vision problem. We are given a single image which
is a line drawing of the perspective projection of
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some unknown three-dimensional object. The task to
be undertaken is the analysis of the image and det-
ermination the orientations of the lines and planes
in the three-dimensional scene being viewed. In
the process of forming the perspective image, in-
formation is lost. There is typically not a unique
combination of three-dimensional entities which
could have caused a given image.

The entities and relations about which we reason
are entities and spatial relations in the three-di-
mensional world (lines, planes, and arcs). The re-
lations are attributed three-dimensional relation-
ships between the entities. Lines can be pairwise
parallel, groups of lines can lie in a plane, lines
can be perpendicular, and planes can be parallel or
perpendicular.

We assume that the search is over the possible
three-dimensional tuples.and that the attributes of
the relations do not form a part of the search
space. As described in Section III, the attributes
are computed from known measurements and play a
part in detemmining the consistency of the generat-
ed hypotheses.

Such a hypothesis based scheme has been imple-
mented in full for analyzing perspective projec-
tions of polyhedral objects. Currently the system
understands and can reason about straight lines and
planes. Inference engines have been implemented
which can reason about inter-entity relationships:
parallel, perpendicular, collinearity, and lines in
a common plane. The inference engines relate these
relationships and their attributes to the camera
position and orientation. The system can relate
vanishing points of lines and the vanishing traces
of planes and use them in computing the unknown
camera position and orientation. For an example of
the nature of the inference engines, see Figure 1.

The system has been exercised on perspective
line drawings generated by a graphics system.
Three-dimensional wireframe objects can be con-
structed and viewed from arbitrary positions with
user specified camera focal lengths. The resulting
line drawings serve as input to the inference sys-
tem. The inference system computes from the input
line drawing the relations between the lines in the
image in the camera coordinate system and the unk-
nown camera focal length. Current work is focused
on extracting line drawings from images digitized
by a camera and using the extracted lines as input
to the inference process. An excellent source of
perspective drawings is [14]. One example of the
drawings in that book is shown in Figure 2. Our
aim is to be able interpret drawings of that com-
plexity.

All the perspective equations reported in [12]
dealing with lines, planes and distances are being
implemented. Work is currently underway to extend
the knowledge encoded in the system to include con-
ic arcs and curved surfaces and to include more
high level and in some cases heuristic information
dealing with junction labellings, skewed symmetry
and stable physical configurations of three-dimen-
sional solids. The system is implemented in an ex-
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Inference engine 1:

Given the hypothesis that two lines are
parallel and are whose images are not
parallel, determine the vanishing point
on the image as the intersection of the
lines' projections.

Inference engine 2:

Given the hypothesis that two lines are
coplanar, such that they do not have a
cammon vanishing point, compute the
vanishing trace (locus of the vanishing
points of all lines in that plane) for
the plane.

Inference engine 3:

Given a plane with a known vanishing point,
and a line in the plane with an unknown
vanishing point, campute the vanishing
point of the line.

Figure 1: A sample of the types of inference
engines currently encoded in the vision system.

+
+

Figure 2: A sample perspective line drawing
fram [14].

tended PROLOG which has procedural as well as
non-procedural statements and which has list, array
and associative table data structures.

It is interesting to contrast the technique de-
scribed in this paper with that of the ACRONYM sys-
tem [15]. ACRONYM used symbolic reasoning to pro-
duced model driven interpretations for perspective
images. The system described here does not use any
form of object models and reasons based only on the
known structure and constraints inherent in the
projection process. Secondly, ACRONWM's mode of
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reasoning was essentially theorem proving over the
domain of arithmetic and trigonometric inequali-
ties. Our technique captures the knowledge of the
domain in inference engines which have the required
mathematical functions encoded in closed form and
reasons over a space which is equivalent to that of
the predicate calculus and is therefore much more
efficient.

Bibliography

[1] Heath, T, "A History of Greek Mathematics",
Volume II, Oxford University Press, 1921.

[2] Duhem P.M.M., "La Theorie Physique: Son (bjet,
Sa Structure" Translated to: "The Aim ard
Structure of FPhysical Theory", by Wiener,
P.P., Princeton University Press, 1954.

"Induction and Hypothesis-A Study

[3] Baker S.F.,
Cornell Univer-

of the Logic of Confirmation",
sity Press, Ithaca, N.Y. 1957.

[4] Lederberg J., "DENDRAL-64, A System for Compu-
ter Construction, Enumeration and Notation of
Organic Molecules as Tree Structures and Cycl-
ic Graphs, Part I, Notational Algorithm for
Tree Structures", Report No. CR-57029, NASA.

[5] Wesley L.P. and Hanson A.R., "The Use of an
Evidential-Based Model for Representing Know-
ledge and Reasoning about Images in the VISION
System", IEEE-PRIP 1982,

[6] Levine M. and Nazif, "Rule-Based Image Segmen-
tation: A Dynamic Control Strategy Approach",
TR-83-9, Computer Vision and Robotics Labora-
tory, Department of Electrical Engg., McGill
University, 1983.

[7] Date C.J., "2An Introduction to Database Sys-
tems" Third Kition, Addison-Wesley Rlbllshmg
Company, 1981.

[8] Ullman J.R., Haralick R.M., and Shapiro L.G.,
"Computer Architecture for Solving Consistent
Labeling Problems" Technical Report, Depart-
ment of Computer Science, VPI&SU.

[9] Mulgaonkar, P.G., "Analysis of Perspective
Line Drawings Using Hypothesis Based Reason-
ing".  PhD dissertation, Department of Compu-
ter Science. 1984.

[10] Haralick, R.M., and Elliott G., "Increasing
Tree Search Efficiency for Constraint Satis-
faction Problems", Proc 6th. IJCAI, 1979.

[11] Mulgaonkar P.G., Shapiro L.G., and Haralick
R.M., "Matching 'Sticks, Plates and Blobs' Ob-
jects using Geometric and Relational Const-
raints", Image and Vision Computing, 1984.

[12] Haralick R.M., "Using Perspective Transforma-
tions in Scene Analysis", CGIP 13, 1980.

e



[13] Rescher N.,"Hypothetical Reasoning", Amsterdam

North Holland Publishing Company, 1964 [16] Reddy R., Erman L., Fennell R., and Neely R.,
"The Hearsay Speech Understanding System: 2An

[14] de Vries J.V.,"Perspective", Dover Publica- Example of the Recognition Process", IEEE
tions, New York, 1968. Trans. Computers. C-25, 1976.

[15] Brooks R.A.,"Symbolic Reasoning among Three- [17] Erman L.D., Hayes-Roth F., Lesser V.R., and
Dimensional Models and Two-Dimensional Imag- Reddy D.R., "The Hearsay-II Speech Understand-
es", Artificial Intelligence, special volume ing System: Integrating Knowledge to resolve
on Computer Vision, AI 17, 1981. uncertainty", Computing Surveys, 12(2), 1984.

294



