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Abstract

We present evidence that the Lapla-
cian Zero-Crossing operator does not
use neighborhood information as effec-
tively as the second directional der-
ivative edge operator. We show that
the use of a Gaussian smoother with
standard deviation 5.0 for the La-
placian of Gaussian edge operator with
a neighborhood size of 50x50 both
misses and misplaces edges on an aerial
image of a mobile home park. Our re-
sults of the Laplacian edge detector on
a noisy test checkerboard image are
also not as good as the second direc-
tional derivative edge operator. We
conclude by discussing a number of open
issues on edge operator evaluation.

I. Introduction

Marr and Hildreth (1980) suggest
that an edge detector first eliminates
noise on the input image by smoothing
with a sufficiently broad Gaussian
filter, takes the Laplacian of the
smoothed image, and marks pixels as
edges if in some direction, the pixel
on the convolved image has a zero
crossing with high enough slope. 1In
actual implementations, the Gaussian
filtering and Laplacian operation are
done with one Mexican hat filter whose
kernel is the Laplacian of the Gauss-
ian.

We tested the following zero cross-
ing Laplacian edge detector. It uses a
Gaussian smoother with standard devia-
tion of 5 with a neighborhood size of
50x50, any pixel which had a slope
greater than 10 zero-crossing of the
smoothed Laplacian was assigned an
edge. True edges were declared for any
pixel of the no noise checkerboard
which was black but bordered a white
pixel or which was a white pixel and
bordered a black pixel. Our results
indicate that for a checkerboard made
up of 20x20 checks and a contrast to
noise ratio of 2:1, given a pixel is a
true edge, the probability that the
pixel is assigned an edge is .7217.
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Given that a pixel is assigned as edge,
the probability that it is a true edge
pixel is .7155.

We tried a directional derivative
zero crossing example (Haralick, 1984)
where we presmoothed with a Gaussian
filter having a standard deviation of
.88 followed by a 9x9 equally weighted
fit to compute the facet coefficient.
Figure 1 shows the checkerboard test
image, the perfect edge image, the zero
crossings of Laplacian of Gaussian with
5.0 standard deviation and the zero
crossings of the second directional
derivative edge detector (lower right).
Here, .8391 is the probability of a
pixel being a true edge pixel given
that it is assigned an edge pixel. The
probability of a pixel being assigned
an edge given that it is a true edge is
also equal to .8391. The directional
derivative operator is better.

The edge operator evaluation situa-
tion is more complicated than it ap-
pears on the surface. From a signal
content/noise content point of view,
the standard deviation of the Gaussian
filter must be set based on the size
distribution of the homogeneous re-
gions, their relative contrasts, and
the amount of noise. A standard devia-
tion of 5.0 for a Gaussian averager may
leave objects such as the 20x20 checks
intact, but would tend to smooth out of
existence objects which are small or
thin. Thus, there are circumstances in
which a standard deviation of 5.0 would
be inappropriately large and it is
precisely for this reason when doing
edge operator evaluation an upper win-
dow size limit must be selected to do
the experiments rather than determine
the largest window size which works
well on the test image.

To see the folly of not fixing the
upper limit size of the window:'consider
an image whose size is as large as we
like, whose left side is a noisy black
and whose right side is noisy white.
Suppose the signal to noise ratio is
reasonable. Under these circumstances
consider how we would want to evaluate



edge operators. Since the geometry is
utterly simple and the objects are as
large as we would like, each edge
operator propecnent could find a window
of sufficiently large size so that the
edge operator produces a result of
prespecified accuracy. Obviously, in
this situation the above evaluation is
meaningless. What we must do is per-
form the evaluation under conditions in
which the pixel information provided to
the edge operator is limited and then
perform the evaluation under the lim-
iting information conditions. Under
these circumstances and edge operator
could be said to be uniformly better
than other edge operators if under each
possible information limiting condition
it performs better than all the other
edge operators. Thus performance in
controlled experiments must be per-
formance as a function of information
utilized. The key issue is how well
does the operator utilize information
in a bonded set.

II. Experiments

To show the problem of an exces-
sively large standard deviation for the
Gaussian smoother, we try to determine
the edges of the aerial image of a
mobile home park shown in figure 2. We
perform three experiments. 1In the
first experiment a Gaussian standard
deviation of 5.0 is used with an ade-
quate 45 by 45 window as the smoother
preceding the Laplacian. The zero
crossings obtained having a non-zero
slope are shown in figure 3. Notice
how many edges are not detected and
that many edges are misplaced around
nearly straight boundaries as well as
around corners. This is only a rea-
sonable edge image if the rows of the
mobile homes were the desired objects.
It is not a reasonable edge image if
the boundary of the individual homes
are desired.

In the second experiment a Gaussian
standard deviation of .8 is used with
an adequate 7x7 window as the smoother
preceding the Laplacian. The zero cross-
ings obtained having a slope greater
than 2 are shown in figure 4. Twenty
five percent of the pixels are assigned
edges. Although noisy, at least this
image shows the individual edges around
the mobile homes.

The third experiment uses the second
directional derivative zero-crossing
edge operator. The equal weighted
least squares bivariate cubic fit is
done in a 7x7 neighborhood and a pixel
is declared as an edge pixel if in the
gradient direction a negatively sloped
zero crossing of the second directional
derivative occurs within a distance of
.85 of the center of the pixel and the

gradient magnitude is greater than 12.
The resulting image has twenty five
percent of the pixels assigned as edge
and is shown in figure 5. The results
are not as noisy as the Laplacian of
figure 4. The edges are placed accur-
ately and they tend to be connected.

We tried an interesting variation in
which we used the fitting coefficients
from the bivariate cubic fit to esti-
mate the Laplacian. The resulting
zero-crossings are shown in figure 6 in
which the zero crossing threshold is
chosen so that twenty five percent of
the pixels are assigned as edges. They
appear more connected that the zero
crossings of the Laplacian of Gaussian
operator.

IIT. Discussion

There are some interesting issues
which have not yet been fully discussed
or understood. Whether the edge oper-
ator be a Laplacian zero crossing one
or a second directional derivative zero
crossing one, the operator must esti-
mate partial derivatives up through
third order if zero crossing slope is
used. For a fixed neighborhood size,
what is the most effective way to esti-
mate these partial derivatives? The
Marr and Hildreth scheme is equivalent
to averaging and then taking finite
differences to compute the partial
derivatives. The Haralich scheme per-
forms a least squares estimate assuming
a local cubic polynomial model. Finite
differences and least squares yield the
same result only when the polynomial
model has as many parameters as pixels
in the neighborhood. The least squares
estimate can be generalized to a
weighted least squares (Hashimoto and
Sklansky (1983) have already suggested
a binomial weighted least sguare) and
it is possible to presmooth followed by
a least squares estimate. It is also
possible to pose the estimation problem
as a robust estimation problem which in
effect makes the weights used in the
least squares fit adaptive.

The Marr Hildreth scheme chooses a
direction which maximizes the zero
crossing slope of the Laplacian. The
Haralick (1984) and Canny (1983) scheme
choose the gradient direction although
they compute it in a different way.

Are there other reasonable directional
choices or computaticnal techniques?
What kind of experiment could be done
to evaluate which is the better choice?
What kind of analysis could be done to
evaluate the choices in a theoretical
way?

Both techniques cause edges to be
displaced under certain conditions. In
regions of non-~linear gray tone inten-




sity surface the Laplacian technique
can spatially displace edges by as much
as the standard deviation of the Gauss-
ian smoother; it can even miss edges
also (Berzins, 1984); (Leclerc and
Zucker, 1984). Edges which curve ra-
pidly around corners can be displaced
by both techniques. There are diffi-

culties around saddle points especially
in the second directional derivative
technique which requires a non-zero
gradient.

These sorts of issues and problems
need to be addressed. Perhaps this
note will stimulate work in this area.

Figure 1

shows the checkerboard test image (upper left),
the true edge image (lower left),

the zero crossing of

Laplacian image using a Gaussian standard deviation of

5.0

(upper right) and the second directional derivative

edge operator with a Gaussian presmoother having standard

deviation

-88 followed by a equally weighted cubic fit

in a 9x9 window (lower right).

Figure 2

shows an aerial image of a trailer park
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Figure 3 shows the zero crossings of a Laplacian edge
detector having a Gaussian standard deviation of 5.0
and using a window of 45x45, 22% pixels are assigned as
edges.

Figure 4 shows the zero crossings of a Laplacian edge
detector having a Gaussian standard deviation of .8 and
using a window of 7x7. 25% of the pixels are assigned
as edges.
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Figure 5 shows the second directional derivative edge
detector u

sing an equally weighted cubic fit in a 7x7
25% of the pixels are assigned as edges.
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