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ABSTRACT

This paper describes the relationship between morpho-
logically filtering and then sampling versus sampling and
then morphologically filtering in the sampled domain. It
also describes the relationships between morphologically
filtering versus sampling, morphologically filtering in the
sampled domain and then reconstructing. Unlike the stan-
dard communication sampling theory where for appropri-
ately low pass filtered images there is commutivity between
sampling and filtering, this is not the case for appropriately
morphologically simplified images. The relationship which
does exist shows that the commutivity holds to within one
sampling interval distance in the unsampled domain and to
within two sampling intervals in the sampled domain.

1. Introduction

Definitions for all the morphology concepts in this paper
can be found in Haralick et al. (1987a). The reference
list provides some pointers into the recent literature about
mathematical morphology. Sampling a set is accomplished
by taking its intersection with the sampling set. Recon-
structing a sampled set can be done by dilating the set
in the sampled domain or closing the set in the sampled
domain. These provide maximal and minimal reconstruc-
tions. The relationship between the sampling set S and
the reconstruction structuring element K is given by the
following five conditions:

(1) S=SaS

(2) §=35

(3) KnS={0}

(4) K=K

(5) aek,—K,nK,nS#0
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When K and S are so related, the binary morphological
sampling theorem states that for any set F

FnS=[{FnS)eK]nS

FnS={FnS)eK|nS

(FnS)e L CFeK

FoKc(IFnS)e K

I FF=FoK =TIk, then (FNS)e K C FC(FnS)eK
fA=AeK and AnS =IFnS, then AC (FnS)e
K implies A= (F'nS)e K

HA=AoK and AnS=FnS then AD(FnSes
K implies A= (FnS)e K

These bounding relationships are presented in Haralick
et al. (1987h). Figures 1 through 5 illustrate the set
bounding constraints expressed by the binary morphological
samling theorem. In this paper, we refine these bounding
relationships by the use of the Hausdorf set metric.

2. The Distance Relationships

The reconstruction (FnS)@ N is maximal with respect
to the property of being open and downsampling to F'nS,
and the reconstruction (F'n.S e K is minimal with respect
to the property of being closed and downsampling to F'n S.
But how far is the bound F'& K from F e K, how far is
Fo X from the bound F'@ K, and how far is the minimal
reconstruction (FnS)e K from (FnS)eK? This is important
to know since Fo K ¢ (FnS)e K C F when F = Fe K,
and F ¢ (FnS)sa K ¢ Fo K when F = Fo K, and
(FnS)e K ¢ FC (FnS)®aK when F = FoK = FeK. Notice
that in all three cases the difference between the lower and
the upper set bound is just a dilation by K. This motivates
us to define a distance function to measure the distance
between two sets and to work out the relation between the
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Figure 1 illustrates a sampling set S, a reconstruction
structuring element I, and three sets, Fy, F,, and Fs, each
of which is open under K.

distance between a set and its dilation by K with the size
of the set K. In this section we show that with a suitable
definition of distance, all these distances are less than the
radius of K. Since K is related to the sampling distance,
all the above-mentioned distances are less than the sampling
interval.

For the size of a set B, denoted by r(B), we use
the radius of its circumscribing disk. Thus, r(B) =
rzréifr} r;leabx\{z ~ ¥ll. The more mathematically correct forms
of inf for min and sup for max may be substituted when
the space E is the real line. In this case the proofs in this
section require similar modifications. For a set A which
contains a set B, a natural pseudo-distance from A to B
is defined by p (4,B) = max r;'éigﬂx ~ y||. Proposition 1
proves that (1) p(A,B) > 0, (2) p(A, B) = 0 implies 4 ¢
B, and (3)p(A,C) < p(A,B) + p(B,C) + r(B). The asym-
metric relation (2) is weaker than the corresponding metric
requirement that p (A,B) = 0 if and only if A = B, and
relation (3) is wealer than the metric triangle inequality.

Proposition 1
(1) p(A,B)>0
(2) p(A,B)=0if and only if AC B
(3) 1 (A,C) < p (4,B)+ p (B,C)+7(B)
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Proof
(1) p(4, B) > 0 since p(4, B) = max min|z - y|| and ||z ~
yll > 0.
(2) Suppose p(A,B) = 0. Then meanrbréigl![a —bj| = 0. Since
lla — b > O,r?&x Ibréil?“a - bl = 0 implies for every a ¢
A, I;/réi}_};l lla=b]| = 0. But [la—b|| = 0 if and only if a = b. Hence,
for every a € A, there exists a b ¢ B satisfying a = b. i.e.,
A C B.Suppose A C B. Then for eacha € A, Ibréiz? [la=b]} = 0.
Hence, maxmin|ja - b|j = 0.
a€A bEB
(3)
p(4,C) = max minlja - c|
< max min fla— bl +]1b - ¢
for every be B
< max {lla = bl + min 1~ ||}
for every be B
< max{lla - bl + max
min || — |}
for every be B
< 2(B,C) + max Jla~ b
for every be B
But max|la — bl = max |l — O+ b - b
for every b, ¥’ € B
< maxfla - IR L
for every b, ¥ € B
Finally IP&XH(L =Dl < |16 - b)) + max|la - Al
for every b, b'e B
Thus rg]eanHa ~b< rbx}eag]!b’ - bl + min
max la— b'|| for every be B
< max ||t~ b+ p (A, B)
Finally p (4,C) < p (B,C) + max||b’ - b
for every be B
<p (A, B)+p (B,C)+
min max||0' - b||

beB Ve€B

<p (A,B)+p (B,C)+r(B).

The pseudo distance p has a very direct interpretation.
p(A, B) is the radius of the smallest disk which when used
as a structuring element to dilate B produces a result which
contains A.

Proposition 2
Let disk (r) = {z| ||lz|l < r} and A,B C FV.
max %igmla —bl|=f{rlAc Be disk(r)}.

Then
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Figure 2 shows how the erosion and dilation of F,
bound the minimal reconstruction (Fi n S)e K and the
maximal reconstruction (F1nS) @ K, respectively, which in
turn bound F}. because Fy is both open and closed under K.

Proof
Let py = r&%xr&ig“a - bl and ry = inf {r]A C Be&

disk(r)}. Let a € A be given. Let b, € B satisfy
— = mi - \{ = i -
lla = bolt = minlla - bll. Now, po maxmin ||z -yl >

I'blgllla — bl|l. Hence, py > |la — bol| so that a — by €

disk(po). Now, bo € B and a - by € disk(po) implies

a="by+(a-by) € B disk(p,). Hence A c Be disk(p,).

Since ro = inf {rlA € Be disk(r)}, 7o < po. Suppose

A C B disk(ro). Then max min |la —bj| = 0.
a€A beB@ disk(ro)

Hence, max min min  |la—b—y|| = 0. But [|(a—b)~y|| >

A b€B ye disk(ro)

lla — bl] — |ly]]- Therefore,

0> maxmin min
a€A bEB ye disk(ro)

lla ~ bl ~ Iyl

> maxmin|la - b min  —|1
= aeA beB I H+ye disk(ro) flyl
>maxminfla—bll— max |y
acA bEB ve disk(ro)
Now po = maxmin |la - b|j and 7o = max |y implies
o = maxmin [ja - bjj 0= . M(WIIJH p

0> po~ro so that 7o > po. Finally, ro < po and 7o > po
implies ro = pq. =

The pseudo distance p can be used as the basis for a
true set metric by making it symmetric. We define the set
metric par(A, B) = max{p(4, B),p(B, A)}, also called the
Hausdorf metric. Before we actually prove that par is indeed
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a metric, we note that py(A,B) =inf {rlAc Be disk(r)
and BC A disk(r)}. This happens since
pm(A, B) = max{p(4, B), p(B, A)}
= max{inf{r|A C Be disk(r)}
inf (rBC Ao disk(r)}}
=inf{rlAc Be disk(r) and BC A® disk(r)}
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Figure 3 shows a second example of how the ero-
sion and dilation of F, bound the minimal reconstruction
(Fon S) e I{ and the maximal reconstruction (F;nS) ¢ K,
respectively, which in turn bound F,.

Proposition 3

(1) pu(A,B)>0

(2) par(A,B)=0if and only if A =B
(3) par(A, B) = pu(B, A)

(4) pa(A,C) < par(A, B) + pae(B,C)

Proof (1) pu (A, B) > 0 since p(A, B) > 0 and p(B,A) > 0.
(2) Suppose par(A, B) = 0. Then max{p(A, B),p(B,A)} =0.
Since p(A, B) > 0 and p(B,A) > 0, we must have p(A,B) =0
and p(B,A) = 0. But p(4,B) = 0 implies A ¢ B and
p(B,A) =0 implies BC A. Now A C B and B C A implies
A= B. Also py(A,A) = max{p(4,A),p(A,A)} = p(A, A).
Since AC A,p(A,A) =0

(3) Immediate from symmetry of max.




(4) Let p12 = par(A,B) and poy = pa(B,C). Then A
Bo disk(py),BCCa disk(pss),BC Ao disk(pss),C
B disk(p:s). Hence, A C Co disk(p) ® disk(pss)
Cea disk(py2+ pn)and CC Ao disk(pr2) ® disk(pas) C
A disk(pi2+pas). Now A C Ce disk(pra+prs) and C C Aa
disk(prz+ pas) Imply pra+pes > inf {rlAC Co disk(r), C ¢
A disk(r)}. Therefore, pp(A, B) + pas(B,C) 2 prr(A,C).

NN 1N

A strong relationship between the set distance and
the dilation of sets must be developed to translate set
bounding relationships to distance bounding relationships.
We show that p(A e B,C & D) < p(A,C) + p(B,D) and
then quickly extend the result to p(Ae B,Co D) <
par(A,C) + pu (B, D).

Proposition 4
(1) p(A® B,C® D)< p(A,C) + p(B, D)
(2) par(A®B,C® D) <pu(A,C)+ pu(B, D)

Proof

Ae B,Ce® D)= max min ||z -1
(1) p(A®B,CeD)= max min |lz-y]|
= max max min min
a€A beB ceC deD

lla+b—c—dj
< maxmax min min
= deA beB deD ceC

{lla—cll+ 116 - d|i]

< mex e p (mipla =)
+116-d||]

< max min|la - cf|+
T pple-di

<p(A,C)+p(B,D)

(2) pu(A®B,CeD)=max{p(Aa B,Ca D),

p(CoD,Ae B)}

< max{p(4,C) + p(B, D),
p(C,A) +p(D,B)}

< max{p(4,C),p(C, A)}+
max{p(B,D),p(D,B)}

< (A, C)+ pu(B, D)

From this last result, it is apparent that dilating two
sets with the same structuring element cannot increase
the distance between the sets. Dilation tends to suppress
differences between sets, making them more similar. More
precisely, if B= D = K, then py(Ae K,CoK) < pp(A,C).
It is also apparent that py (A4, A® K) = py(Ae {0}, Ae K) <
pre(A AY + pn({01, K) = par({0},K) < max||kl|. Indeed,

since the reconstruction structuring element K = K and

8 € K, the radius of the circumscribing disk is precisely

max [Ik]l. Hence, the distance between A and A K is no
€

more than the radius of the circumscribing disc of K.
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Figure 4 shows a third example of how erosion and
dilation of F» bound (in this case properly) the minimal
reconstruction (F3nS)e K and the maximal reconstruction
(F3nS)e I, respectively, which in turn bound (in this case
properly) F.

. 2K uk] .
olo|o|e|oie|e
elele
£
[

.

Fins

Figure 5 shows a set F, which is not open under K.
Its sampling F4n S is identical to the sampling of Fs yet the
maximal reconstruction (Fyn S)® K does not constitute an
upper bound for Fy as in the previous examples.



Proposition 5
If K =Kand 0eK, then r(K) = rkl'leal&x”k[].

Proof

r(I) = mipmaxiie -yl < max||0 - y|| = max|lyll

1
and max|ly|| = 5 max|ly -z + 2 + y||
forze K
1
< glmaxily — | + max e + y||}
forz e K

1

< gimaxllz -yl + max iz -y}
forze K

< ryréa;(xnx —ylforze K

< mi L X - = (
< min max|lz - y|| = r(K)

| ]

Since pp(A, A0 K) < I&a;g(“k“ and rkpee};y]]kﬂ = r(K),
we have pp(4,4 0 K) < r(K). Also, since AeK D
A, pr(AeK,A) = p(Ae K,A). Since 0 e K, Ae K C Ag
K. Hence, py(Ae K, A) = p(As K, A) < p((Ae K) s K, A)=
p(As K, A) <r(K).

It immediately follows that the distance between the
minimal and maximal reconstructions, which differ only
by a dilation by K, is no greater than the size of the
reconstruction structuring element; that is, p((FnS)e
K,(FnS)eK)<r(K). When F = FoK = FeK, (FNnS)e
K c FC(FnS)aK. Since the distance between the minimal
and maximal reconstruction is no greater than r(K) it is
unsurprising that the distance between F and either of the
reconstructions is no greater than r(K).

Proposition 6
If A ¢ B c C, then (1) pu(4,B) < pa(A,C) and
(2) pu(B,C) < pu(A,C).

Proof

(1) Since A< B,par(A, B) = p(B, A), then

p(B,A) = max min 10— a|

< max min|jc~ «|| since B¢ C
c€C a€A
<p(C,A) = pa(A,C) since AcCC.

(2) The proof of (2) is similar to (1) with B taking the role
of A and C taking the role of 3. .

Now it immediately follows that if F = Fo K = I e
K, pu (F,(FS)oK) < r(K) and par(F,(FnS)ek) < r(K).

These distance bounds can actually be shown under
slightly less restrictive conditions. Suppose that F'= Fo K.
Then it follows that F ¢ (FnS)e K. Since FnS ¢
F(FnS)eK c Fel. Hence Fc (FnS)eK c Fo K. But
(P, Fo ) < r(K). Hence py (F,(FnS)e K) < r(K) and
par ((Fﬁ SeK,Fe K) <7(K). It goes similarly with the
closing reconstruction.
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When the image F is open under K, the distance
between [ and its sampling F n'S can be no greater than
r(K). Why? It is certainly the case that FnS C F ¢ (Fn
S)e K. Hence pp(F,FnS) < par(FnS,(FnS)e K) <r(K).

If two sets are both open under the reconstruction struc-
turing element I, then the distance between the sets must
be no greater than the distance between their samplings
plus the size of K.

IfA=AoK and B= Bo K, then py(A,B) < par(An
S,BnS)+r(K)

Proof
Consider p(A,B). p(A,B) < p(A,Bn S). Since A =
AoK, Ac(AnS)® K. Hence p(A,B) < p(A,BnS) <
p((AnS)eaK,an) <p(AnS,BAS)+r(K). Similarly,
since B=BoI{,p(B,A) < p(BnS,AnS) +r(K).

Now par(A, B) = max{p(4, B), p(B, A)}
< max{p(AnS,BnS)+r(K),
A BnS,AnS)+r(K)}
=7(K)+max{p(AnS,BnS),
p(BnS,AnS)}
=r(K)+ pu(An S, BnS).

From this last result it is easy to see that if F' is closed
under K, then the distance between F and its minimal
reconstruction (F'nS)e K is no greater than r(K). Consider,

pu(F,(FnS)e K)< pas(F S, (FnS)e K)n s)

+r(K)
= p(F S, FnS)+r(K)=r(K)

These distance relationships mean that just as the stan-
dard sampling theorem cannot produce a reconstruction
with frequencies higher than the Nyquist frequency, the
morphological sampling theorem cannot produce a recon-
struction whose positional accuracy is better than the radius
of the circumscribing disk of the reconstruction structuring
element K. Since the diameter of this disk is just short
of being large enough to contain two sample intervals,
the morphological sampling theorem cannot produce a re-
construction whose positional accuracy is better than the
sampling interval.

2.1 Examples

We use the example sets Fy, Fa, F3, and Fy in computing
the distance between the original images and the sample
reconstruction images. The values rynﬁg(”x - y|| for each
2 € K are shown in Figure 6. The minimum value among
them, v2, is the radius r(K) since r(K) = gé]lr{l ryg{xﬂx -yl
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Figure 6 The 131Eaj‘x|[a: —y|l values for all x € K. where
K is the digital disc having radius V2.

We now measure the distance between two sample
reconstructions for all the example sets. To compute
pu((FinS)e K, (FinS)e K) we first compute p((F n
S)e K, (F,nS)s K) and p((F,nS)e K, (F,nS) e K).

The values min ||z —y| for all z € (F1n S) @ K are
vE(FNS)K

shown in Figure 11. The maximum value among them, v2,
is the distance p((FinS)e K,(FinS) e K). Similarly, we
can compute p((F1nS)e K, (FinS)® K) which equals 0.
Thus, pu((Fin S) e K, (F1n S)® K) equals v2 which is
exactly the radius r(K). Similarly, the distance between
two reconstructions for sets F3, F3, and F; can be measured
and they are all equal to r(K).
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Figure 7 The min |lz~y| forallze(FinS) e K.

ye(FiNS)e K

What is the distance pp(F,(FnS)® K) for the example
sets? Since F1 = (FinS)e K, pu(Fi,(FinS)e K) =
pu((FinS)e K, (FinS)e K) = r(K). It is easy to see
pu((F2y (F2nS)@ K) = 0 because F, = (F;n S) @ K. Figure
12 shows the values i‘[éipljl”]) ~yll for all z € (FsnS)e K,
their maximum value being p((F3n S)® K, Fs) = 1 Since
Fs ¢ (FsnS)e K,p(Fs,(F;n 8) @ K) equals 0.
pn((FsnS) e K, F3)=1<r(K).

Hence,

The distance p(F4,(Fsn S) @ K) is interesting since

Fy # Fy0 K. The ye(rg‘] I%@K

F, are shown in Figure 9a, their maximum value being
p(Fay(FunS)® K) = 2. The I]’EliF[luil) —y|| values for all z €
FASE Y

|lz — y|| values for all z €

(FinS)@ K are shown in Figure 9(b), the maximum value is
p((FanS)e K, Fy) = 1 Thus, the distance pa(Fy, (FanS)aK)
is equal to 2 which is greater than »(X). This shows why
the condition F' = Fo K is required to bound the difference
between F' and its maximum reconstruction (F'nS) @ K.
Similarly, we find
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pu((FinS)e K, Fio K)=0<r(K)
pu((FanS)e K, Foa K) =2 =r(K)
on((FanS)e K, Fsa K) =1 < r(K)
((FanSYe K, Fyo K)=2>r(K)

Note that since Fy # Fyo K, par((FinS)e K, Fso K) £ r(K).
Using the minimum reconstruction, the positional accuracy
for the example sets are

pru(FL,(FinS)e K)=0<r(K)
par(Fa, (Fan 8) e K) = v2 = r(K)
pr(Fs, (F5nS)e K) =
(F ( ) K)

Also, since Fy # Fao K| pa(Fa, (Fan S)e K) £ 7(K).

olojoe
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min
yE(FiNS)BK
z € Fy. Figure 9(b) shows values for n;u'[nllx —yj| for all
¥ 4

Figure 9(a) shows values for llz ~ y|| for all

z € (FynS)@ K. The maximum among all these values is 2.
Hence py(FanS)o k) =2 > r(K).



2.2 The Reconstruction Distance Bounds Theorem

This section summarizes the results developed thus
far which constitute the reconstruction distance bounds
theorem.

Reconstruction Distance Bounds Theorem

Let F,K,S c EN. Suppose K and S satisfy the sampling
conditions

Then
(1) If F = F oK, then py(F,(FnS)e K) <r(K)
(2) If F=FoK, then pu((FnS)a K,F)<r(K)

3. Operating In the Sampled Domain

The previous section established the relationship be-
tween the information contained in the sampled set and the
information contained in the unsampled set. It shows that
a minimal and maximal reconstruction can be computed
from the sampled set. When the set is smooth enough
with respect to the sampling S (that is, when the set is
both open and closed under the reconstruction structuring
element), then the minimal and maximal reconstructions
bound the unsampled set, differing from it by no more than
the sampling interval length.

Not addressed is the relationship between the computa-
tionally more efficient procedure of morphologically operat-
ing in the sampled domain versus the less computationally
efficient procedure of morphologically operating in the un-
sampled domain. In this section we quantify just exactly
how close a morphological operation in the sampled domain
can come to the corresponding morphological operation in
the original domain. Thus we answer the question of how to
compute the largest length of sampling interval which can
produce an answer close enough to the desired answer when
morphologically operating in the sampled domain.

The first proposition shows that a sampled dilation
contains the dilation of the sampled sets and a sampled
erosion is contained in the erosion of the sampled sets.

Proposition 8
Let B € EV be the structuring clement employed in the
dilation or erosion. Then

(1) (FnS)e(BnS)c (FeB)nS

(2) (FnS)e(BnS)2(FeB)ns

786

Proof

(1) FnS ¢ Fand BnS C B. Hence (FnS)e(BnS) c FeB.
Also FnSC S and BnS ¢ S. Hence (FnS)®(BnS)C
S®S. But S©S = 5. Then, (FnS)a(BnS) € (Fe&B)nS.

(2) By (1) [(FeB)nSle(BnS)c [(FoB)eBlnS =
(FoB)NSC FnS. But [(FeB)nS]e(BnS)c (FnS)
ifand only if (FnS)e (BnS)2 (FeB)nS. .

Unfortunately, the containment relations cannot, in gen-
eral, be strengthened to equalities. But we can determine
the conditions under which the equality occurs and the
distance between sets such as (FnS)@(BnS) and (FeB)nS.
In the sampled domain, we compare the scheme of sampling
and then performing the dilation in the sampled domain to
dilating first and then sampling. We also inquire about
how different things could be in the unsampled domain by
comparing performing the dilation in the sampled space
and then reconstructing versus performing the dilation in
the unsampled domain. The next proposition shows that
this difference in the sampled domain cannot be more than

2r(K).
Proposition 9
If F=FoK and B= BoK, then pM((FeBB)mS,(Fn
S)e(BnS)) < 2r(K)
Proof
First consider p((F & B)nS,(FnS) e (Bn S)) <
p(F&B(FnS)e (Bn S)) Since F = Fo K and
B=PBoK, FCc(FnS)eaK and BC (BnS)e K.
Hence,
p(FeB,(FnS)e(Bn S)) <p((FnS)eKe
(BmS)@K,(FmS)@(BnS))
< p([(FnS)e; (BnS)]eKeK,
(FnS)e(Bns))
<r(leX)<2r(K)

Next note that p((FnS)e (BnS),(Fe B) ns)=o.
Since (FnS)@ (BnS) c (FeB)nS. Now pu ((Fo B)n
S,(FnS)e(BnS)) = max{p((F&B)nS,(FnS)e(Bn
$))sp((FnS)a(BnS), (FeB)nS )} < max{2r(K),r0} =
2r(K) =

Whereas dilation tends to suppress differences, erosion
tends to accentuate differences. Consider the following
example. Let F' be a disk of radius 12 and B be a disk
of radius 10. Then F'& B is a disk of radius 2. Now define
I to be a disk of radius 12 with its center point deleted.
Notice that the psecudo set distance between F' and F’ is
zero. But although F” close to F, F'e B = 0. The difference
of one point makes all the difference.

More formally, consider the difference between the ero-
sion of I and the erosion of F @ K.



pu((FeK)eB,FoB)=p((FeK)eB,FeB)
>p((FeB)o K,FeB)

since (Fe K)o B ¢ (FeB)a K where p((FoB)aK,FoB)
is no greater than and could be as close to r(K) as possible.

Thus we cannot expect that the difference between per-
forming an erosion in the sampled domain versus performing
a sampling of the erosion in the unsampled domain is no
greater than the size of K. However, we do obtain set
bounding relationships for dilation and erosion using the
following relationships:

Dilating (eroding) a sampled set by a sampled structur-
ing element is equivalent to sampling the dilation (erosion)
of the unsampled set by the sampled structuring element.

Lemma:
(1) (FnS)e(BnS)=[Fe(BnS)|nS
(2) (FnS)e(BnS)=[Fe(BnS)InS

Proof
1)
[Fo(BnS)nS=(|J F)nsS
= zo (FonS)
zEBNS

But z € S implies S = S,. Hence,
[Fo(BnS)nS= |J FnS:
z€BNS

J (FnS).

reBnS

=(FnS)e(BnS)

[Fe(BnS)nS=( ) F.)nS
zeBNS
=( N E)ns
re Bn3
N (Fen$)
zeBnS
= [ (F2nS.) since
zeBn$§
z € S implies S, =S
N (FnS).
reBn
=(FnS)e(BnS)

Moreover, the dilation of the minimal reconstruction
by a structuring element B open under K is contained in
the dilation of the maximal reconstruction by the sampled
structuring element Bn S.

Lemma:

Let B= BoK. Then [(FnS)e K]aBc[(FnS)e K|e
(BnS)
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Proof
Let z € [(FnS)e K]® B. Then there exists an f €
(FnS)e K and b € B such that ¢ = f 4 b. Since
B = Bo K, b e B implies there exists a y such that
b e K, ¢ B. But because of the sampling constraint
between K and S, b € K, implies K, n I, nS # 0.
Therefore, there exists a z € I{yn K, nS. Now z € K,
implies that z = k4 b for some k € K. Since it is also the
case that z € K, it must be that z € B because I{, C B.
Recall that z = f+ b= f+2z~-k = (f — k) + 2. Since
fe(FnS)e K =[(FnS) e K]eK and since ke K=
K, f-ke ([(FnS)eaK]eK) oK =(FnS)e K. Since
zeBandzeS,ze BnS. Finally, f-k e (FnS)oI and
zeBnSimplyz=(f-k)+ze[(FnS)eK]e(BnS).

Now we see that dilation in the sampled domain and
dilation in the unsampled domain are equivalent exactly
when the structuring element B of the dilation is open under
K, and when the image F' is its minimal reconstruction.

Sample Dilation Theorem
Let B= BoK. Then (FnS)e (BnS)={{(FnS)eK]e®
BynS

Proof

(FnS)a(BnS) = ((FHS)@B) n.S is always true.
Since FNSC(FnS)e K,

(FnS)eB)nS c {[(FnS)sK]eBynS. But
(FnS)eKl®eB c (FnS)e K]a (BnS) when
B = BoK. Hence (FnS)e(BnS)c {{(FnS)e
KleBynS c {{{FnS)e Kle (BnS)}nS. Now
{{(FnS)eK]e(BnS)nS = {[(FnS)eK]nS}e(BnS).
Since [(FnS)® K]nS = F'nS always holds under the
sampling conditions, there results (FnS)® (BnS) C
[(FnS)eKle(BnS)c (FnS)e(BnS) so that
(FnS)e(BnS)=[(FnS)eK]®(BnS). .

The equality relationship established in the theorem im-
mediately leads to a set bounding relationship for dilation.

(FeK)eBlnSc{{(FnS)eK|eB}nS =
(FnS)s(BnS)c(FaB)nS

Also from the theorem, it becomes apparent that the
difference between the maximally reconstructed dilation and
the dilation of the minimal reconstruction can be no more

than the size of ' when B is open under K. This happens
because
pu([(FnS)e (BnS)]e K,[(FnS)eK]|eB) <
pu({(FrS)e (BnS) e K)ns,
{{(FnS)e K]® B}nS) +r(K)
<ou((FnS)e(BnS),
(FnS)e(BnS))+r(K)=r(K)



Similarly, eroding a sampled image by a sampled struc-
turing element is equivalent to eroding the maximal re-
construction by the structuring element and then sampling
when the structuring element is open under K.

Sample Erosion Theorem
Let B= BoIK. Then (FnS)s(BnS)={{(FnS)e K]e
BinS

Proof
The sampling conditions imply [((FnS)e K]nS = FnS.
Hence,

(FnS)e(BnS)={[(FnS)eKInS}e(BnS)
={{(FnS)eK]le(BnS)}nS
2{{(FnS)eK]eBInS

Under the sampling conditions, (FnS)e(BnS) ¢
S. So to complete the equality, we need to show that
(FnS)e(BnS) c[(FnS)eKleB. Letz € (F'nS)e(BnS).
Then (BnS), C FnS. Since B=BoK, BC(BnS)a K.
Hence B, € (BnS), K. But (BnS), € FnS so that B, C
(FnS)@ K. Now by definition of erosion, if B, ¢ (FnS)a K,
thenze[(FnS)eK]eB

This theorem immediately leads to some set bounding
relationships for erosion

(FeB)nSc(FnS)o(BnS)=
{(FF'nS)e KleBynSc((FeK)sB|nS

Theorem 3 also makes it apparent that the difference
between the maximally reconstructed erosion and the ero-
sion of the maximal reconstruction can be no more than
the size of K when both B and the erosion of the maximal
reconstruction are open under K. This happens because

mi([(FnS)e(BnS)e K [(FnS)eK]e B)
< pM({[(FnS)e(BnS)]eaK}nS,

{(FnS)e K]e BynS) +r(K)
<p((FnS)e(BnS),(FnS)e(Bn S)) +r(K) = r(K)

Just as it was the case that dilating (eroding) a sam-
pled set by a sampled structuring element is equivalent to
sampling the dilation (erosion) of the unsampled set by
the sampled structuring element, so it is also the case that
opening (closing) a sampled set by a sampled structuring el-
ement is equivalent to sampling the opening (closing) of the
unsampled set by the sampled structuring element. These
relationships are useful in establishing when the opening
and closing operation are equivalent in the sampled and
unsampled domain.

[Fo(BnS)InS=(FnS)o(BnS)

Proof

Let ¢ € [Fo(BnS)|nS. Then z € Fo(BnS) and
z €S But 2 € Fo(BnS) if and only if for some
y € Fe(BnS),z e (BnS), C F. Now z € (BnS), implies
z =b+y where be BnS. Then y = z—b. Since be S and
since S-S, —~be S.Sinceze Sand ~be S, z—be S6S.
But S@S = S. Then y € S. Now we show that y € S and
(BnS), € Fimply (BnS), C FnS. Let z € (BnS), Since
(BnS),C F, ze F.Nowze (BnS), = B,nS, = B,nS
since y € S. Hence z € S. Hence z € F'nS. Finally,
re(BnS), c FnSimpliesze(FnS)o(BnS). Thus
[Fo(BnS)nSc(FnS)o(BnS).

Now suppose € (Fn.S)o(BnS). Then there exists a
ye(FnS)e(BnS)such that z € (BnS), € FnS.
But FnS C F. Then ¢ € (BnS), ¢ F and this
implies that @ € Fo(Bn S). Also, z € F'n S implies
zeS. Then x € [Fo(BnS)|nS. This establishes that
(FnS)o(BnS)C[Fo(BnS)nS .

Proposition 11
[Fe(BnS)nS=(FnS)e(BnS)

Proof

Let 2 € [Fe(BnS)|nS. Then z € Fe(BnS) and
z e S But z € Fe(BnS) if and only if z € (BAS),
implies © € (BAS), n F # 0. Let y satisfy = € (BAS),.
Then z = b+y where be BnS. Then y = z — b. Since
zeSand -be S, yeSaeS =235 NowifyesS, then
(BnS),nF=B,nS,nF=B,nS,nSnF =(BAS),n
(FnS). Now z € (BnS), implies (BAS), n I # 0. Since
(BAS)y,n F = (BAS), n (FnS),(BAS),n(FnS) #0.
This implies that z € (FnS)e (BN S).

Let € (FF'nS)e(BnS). Then z € (BAS), implies
(BAS),n(FNS) # 0. But (BAS),n(FnS) C (BAS),NF.
Hence (BAS),n F # ¢ and this implies that z € Fe(Bn
S). Also,

(FnS)e(BnS)=[(FnS)e(BnS)|e(BnS)
={[Fe(BnS)|nS}e(BnS)
cSe(BnS)cSeScsS

Hence z € S. Finally, z € Fe (BnS) and z € S imply
re[Fe(BnS)nS. .

The bounding relationships between the sampled and
unsampled domains for the opening and closing operation
now follow immediately.

Sample Opening and Closing Bounds Theorem

Suppose B = Bo K, then

(D) {Fo[(BnS)e KInSc (FnS)e(BnS)C{[(FnS)a
K]oB)nS



(2) {[(FnS)eK]eB}nS c (FnS)e(BnS)C {Fe[(BnS)®
K)}nS

Proof

(1) Notice that [(BnS)®K]o(BnS) = (BnS)@k. Under this
condition, {Fo[(BnS)e K]}nS C [Fo(BnS)InS. But by
a previous proposition [Fo(BnS)]nS = (FnS)o(BnS).
Now suppose ¢ € (FnS)o(BnS). Then there exists a
y such that z € (BnS), ¢ FnS. But (BnS), € (FnS)
implies (Bn S), @ X ¢ (FnS)e& K since dilation is an
increasing operation. Hence, [(BnS)e K], C (FnS)a K.
Since B = BoK, Bc (BnS)®K. Then, B, c (FnS)e K.
Also, z € (BnS), implies =z € B,. Finally, ¢ € B, C
(FnS)e K implies z e [(FnS)e Ko B.

By a previous proposition (FnS)s(BnS)=[Fe(Bn
$)]nS. Since (BnS)® K]o(BnS)=(BnS)a K,[Fe
(BnS)InS c{Fe|[(BnS)aK]}nS.Let R=(FnS)e K.
Since B = Bo K, Re B is open under K.
ReBc[(ReB)nS]e K. Now

Hence

(ReB)nS=[(ReB)eB]nS
c({(ReB)nSl@Kye B)nsS

But the sampled erosion of a maximal reconstruction is
the erosion of the sampled set by the sampled structur-
ing element. Hence,

({(Re B)nS]e K}e B)nS = ([(Re B)nSle (BnS)

And the sampled dilation of a minimal reconstruction
is the dilation of the sampled set by the sampled struc-
turing element. Hence,

[(ReB)nSle(BnS)=[(RnS)s (BnS)le(BnS)

Finally, RnS = [(FnS)eK]nS = FnS so that
((FnS)eK]e B)nSC(FnS)e(BnS).

The bounding relationships immediately imply the fol-
lowing equivalence for the opening and closing operations
between the sampled and unsampled domains.

Sample Opening and Closing Theorem
Suppose B= Bo K.

MU F = (FnS)e K and B
(FﬁS)o(BﬂS) =(FOB)OS

2y fF=(FnS)eK and B=(BnS)e K, then (FnS)e
(BnS)=(FeB)nS

(BnS) e K, then

Proof
(1) f F=(FnS)® K and B=(BnS)e K, the bounding

relationship for opening becomes

(FoB)nSc(FnS)o(BnS)c(FoB)nS
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from which we immediately obtain (F o B)nS = (F'n
S)o(BnS)

(2) f F=(FnS)eK and B=(BnS)e I, the bounding
relationship for closing becomes

(FeB)nSC(FnS)e(BnS)C(FeB)nS

from which we immediately obtain (Fe B)nS = (Fn
S)e(BnS). ]

3.1 Examples

A simple example illustrates the bounding relationships
of morphological operations operating in the pre- and post-
sampled domain. The sample set S and the set K we
used are those defined in the previous examples (see Figure
1). The sets F,B, and K are defined in Figure 10. It
is clear that B B o K. In Figure 11, we show the
results of down-sampling every other row and every other
column, I'nS, BnS, and the sampled domain morphological
operations, (FnS)&(BnS), (FnS)e(BnS). The results
(FnS)eK]eB, [(FnS)eKleB, {{(FnS)sK]sB}nS,and
{{{FnS)® K]o B}n S are shown in Figure 12. Note that
the following equalities hold:

(FnS)e(BnS)={{(FnS)eK]eB}nS
and
(FnS)e(BnS)={[(FnS)eK]eB}nS.

Figure 13 shows (Fa& B)nS, (FeB)nS,(F&(BnS)), and
(Fe(BnS)). Note that the following are true:

(FnS)a(BnS)c(FeB)nS

and

(F'nS)e(BnS)2(FF'eB)nS.

It can be easily verified that
(FnS)e(BnS)=[F&(BnS)|nS

and

(FnS)e(BnS)=[Fe(BnS)nS.

In practical multiresolution image processing applica-
tions we would like to perform morphological operations in
the sampled domain to reduce the computational expense.
How well can a morphological operation be performed in
the sampled domain rather than the original domain can
be answered by the relationships and distances between
(FnS)e(BnS)and (F&B)nS as well as (FnS)e(BnS)
and (F o B)nS. Unfortunately, the distance

pi((Fn8)®(BnS),(FoB)nS) <2r(K)

can be guaranteed only when F = FoK and B=Bo K. It
can be very big when the set F is not open. The set F' of



Figure 10 is an example having a large difference between
the pre- and post- sampled dilations because the conditions
F=FoK and B= Bo K are not satisfied.
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Figure 10 illustrates the sets F', B, and K.
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Figure 11 shows the results of sampling the F and B of
Figure 14 and performing the dilation and erosion of Fn S

by BN S in the sampled domain.
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Figure 12 shows the dilation and erosion of the minimal
and maximal reconstruction of F' by the structuring element
B and also shows the sampling of this dilation and erosion.
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Figure 13 shows some morphological operations in the
original domain followed by sampling.
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4. Conclusion

We have refined the set bounding relationships of the
binary morphological sampling theorem to distance bound-
ing relationships. We have shown that on all comparisons
between morphologically filtering versus sampling, morpho-
logically filtering in the sampled domain, and reconstruct-
ing, the differences by the Hausdorf set metric will be no
more than the sampling interval. For comparison in the
sampled domain, that is, between morphologically filtering
and sampling versus sampling and morphologically filtering
in the sampled domain, the difference by the Hausdorf set
metric will be no more than twice the sampling interval.
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