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Abstract

In this paper we suggest two .oundary detection
techniques for digital images. The techniques are
based on decision theoretic and statistical hypothesis
testing models using Tocalized characteristics that
change from pixel to pixel. The procedures were
tested on a section of a LANDSAT image. The paper
illustrates detected boundaries for some values of the
parameters of the method. The procedures seem to work
well and the boundaries detected are thin and consis-
tent.

1.0 Introduction

Boundary detection is an important step in the
segmentation of homogeneous regions of an image.
Recent Titerature contains a large amount of work
being done in this field. The reader will find exten-

sive references in surveys by Davis1
Arbib?.

and Riseman and

The problem of edge determination falls into the
two broad but partially overlapping classes, each of
which contain a variety of technigues. The first
class uses purely local information and addresses
itself to the initial jdentification or detection of
edge ¢eils. Most methods pere create z partial bound-
" ary image using thresholding procedures which classify
each pixel as a boundary or object pixel based on a

homogeneity or gradient criteria.3’4’5

However, methods which just identify edge cells
using only Tlocal criteria are not adequate
for detecting complete boundaries. This is because
real world images are noisy and the boundaries
detected are usually incomplete or erroneous. In
order to use these partial boundary images, some sort
of enhancement and boundary completion using world
model or prior information must be done. Such
techniques constitute the second class of techniques
in boundary determination. Enhancement includes
things Tike Tine completion by joining segments or the
reduction of noise points. For example,

Vanderbur99 uses template matching to iteratively
enhance linear features.

Zucker et. a1.6 use. a relaxation labeling on proba-
bility values associated with pixels to detect lines.

Ke11y7 uses a p]ann1nq method on a compressed image to
guide detection in the original picture.

Montanari' 38 method uses dynamic programming to detect
systems of curves.

The boundary analysis part of the VISIONS'©
incorporates both these classes. The first section
contains programs to detect edges while the second
improves upon the edges determined.

The two methods discussed in this paper fall into
the first class. The aim is to.initially classify
each pixel of the image as boundary or non-boundary,
Other procedures can then be used to improve upon the

"boundary celle found,

One of the interesting statistical thresholding
techniques is the dynamic thresholding method of

Chow and Kaneko]]. The basic assumption they use is

. that the probability distribution of gray tones for

.any small region of the picture consisting solely of
the object or background is unimodal. Thus, in order
to detect boundaries, the image is sectioned into
overlapping windows and the distribution in the windows
is checked for bimodality. The frequency distributions
were assumed to be normal, as it is possible analytic-

ally to identify two mixtures of normal d1str1but1ons]2
Thus the distribution for the r-th window is represen-
ted by
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where P1p and Py, Are the theoretical fractions of

areas occupied by the object and the background, and
(o1p + ppp = 1)

and standard deviation of the object and background
respectiveiy. The mean and standard dev1a*1on of the
mixture are given by

Hps Hops O1p and aor are the mean

Mp = PppMyp ¥ Ppplp,  and
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Since windows which contain boundaries between
obJect ind background are likely to have bimodal
'h1stograms with large variances, only those windows
{with these properties are selected. The five para-
.meters of the above distribution are estimated using
;a least sguare fit to the histograms. The bi-
“modality for each of these histograms is tested by
the difference in means u = Upp = Hypps ratio of

variances ¢ = OIr/Uzr and the valley to peak ratio

Min. of f(u.) in [uy.sup,]
Min. of [F{u; ), fluy )]

where f(“r) is the obtained distribution for the r-th
window and f(”]r)' f(uzr) are the approximated

distributions. A histogram is labelled as bimodal if
the values for u, e, and &, lie within certain ranges.

Based on this a threshold, tr’ for each of these

windows was computed such that the probability of
misclassification was minimized. The thresholds for
the remaining windows were computed by interpolating
the weighted averages for thresholds of neighboring
windows. Using these thresholds for each window, the
image was segmented 1nt0 Dounaary and non- boundary
arcds . DCLdubU Il. l: Hlbl‘:llb Lth: LU :\lldul 14, LHI'.'



process warksd vory well din doatermining the boundary
of the heart in a cineangiogram image. However, the
procedure is not readily extendable to scenes with -
many objects each with different mean gray tones as
the thresholding would tend to smooth -objects into
each other, and would make it difficult to determine
the mixture for any one window.

The two techniques discussed in this paper also
perform dynamic thresholding by using a non_tationary
window for each pixel. Where they differ from the
Chow and Kaneko approach is that 1ike some other

methods13’]4’15, they use spatial differentiation
to create a gradient image.

The purpose of a gradient operation is to enhance
the edges or boundaries in an image. The gradient
at a resolution cell is a value indicating the change
in gray tones around that pixel. A high value for
a pixel of the gradient image means sharp changes in
the gray tones in the neighborhood of that image
point, thus indicating a boundary cell. Low or zero
gradient pixel values indicate 1ittle or no change
in the spatial neighborhood of the cell, thereby
indicating a non-boundary or homogeneous cell. Thus
the homogeneous areas in the original image tend to
show up as areas of low pixel values in the gradient
image.

There are quite a few gradient cperations avail-

able for digital 1magesT6’]7. Some of these
approximate the two dimensional gradient function
'v', while others, 1ike the Roberts

1 .
Cross 5 operators have no counter part in the
continuous domain.

" The simple way to detect the boundaries is to .
pertorm 2 level slicing on the gray ieveis of the -
gradient image. Those pixels which fall above the
cutoff will be boundary cells, while those below the
cutoff will be homogeneous area cells. Unfortunately,
the simple approach does not work well because bound-
aries are often relative. In one area of the image,
where there may be much texture, pixels may be
considered to be boundaries only if the gradient of
the boundary s higher than the gradient of the
textured area. In another more quiet and homogeneous
part of the image, pixels may be considered to be
boundaries only if the gradient of the boundary is
higher than the average gradient of the homogeneous
areas. In absolute terms, however, a gradient which
is higher than the average gradient of the homogeneous
area may be much lower than the average gradient in a
textured area. Hence, a threshold adequate for a
relatively homogeneous area would call texture cells
in a busier part of the image boundary cells, and a
boundary threshold adeguate for a busy textured part
of the image would tend to call boundary cells in a
relatively homogeneous part of the image a non-
boundary cell. Thus to generate a good boundary image
by thresholding, the cutoff for each pixel should be
sensitive to the pixel gradient and the average
gradient of the pixel's neighborhood. This leads to a
non-stationary statistical approach ..r determining
thresholds.

2.0 Statistical Boundary Detection

In the boundary detection technique described in
the next section, the pixel's neighborhood is a
rectangular window centered around the pixel. We
use this neighborhood to determine the average spatial
variation or gradient in the local rectangular area
around each pixel. Boundaries are detected when
pixel's gradient is significantly higher than the

gradient in its neighborhood.

We use the Foberts Cross operator for the gradient.
The gradient value, g, for pixel (i,j) for thic opera-
tor is defined by

g(‘::}) = [I(1sJ)'I(1+TsJ+1)E + II(19J+])‘I(1+1:-§)|

The image on which we illustrate our results is a 130
rows by 90 column LANDSAT image over a section of
California. Figure 1 shows the MSS band 5 of this
image and Figure 2 the result of the Roberts Cross
operator. The lighter areas in Figure 2 correspond to
edges, while the dark areas represent homogeneous
regions. In Figure 3 we have the defocused image of
the gradient picture of Figure 2, using a rectangular
window box filter of size 5 rows by 5 columns. We
will take the pixel value of the defocused gradient
image to be the mean gradient value in the pixel's
neighborhood.

2.1 Decision Theory Method

Each cell in the image will be classified as a
boundary cell, or a homogeneous cell. We will assume
that boundary cells and homogeneous cells belong to
two populaticns with the same probability distribution,
but different means and variances. Given a gradient
image pixel with magnitude X, we denote the probability
that the pixel is a boundary point by P(b|X).

Similarly for the homogeneous case the conditional
probability is denoted by P(h|X).

P(b) and P(h) are the probabilities of the pixel
being a boundary cell and homogeneous cell, respec-

tively. Since a pixel is either a boundary or a
homogeneous cell, it follows that P(b) + P(h) = 1.

"~ The Bayes'criterign would assign a pixel to be
a boundary cell if P(b[X) > F(n|{X}. By definition

of conditional probabilities,
P(b|X) = P(X|b) P(b)/P(X) and P(h|X) = P(X|h) P{h)/P(X)
Thus the cell is a boundary cell if

P(X|b) P(b) > P(X|h) P(h). (1)

In order to use this statistical model, we need
to determine the conditional probabilities P(X|b) and
P(X|h). Histograms of the two probability functions
P(X|b) and P(X|h) tend to show that each is unimodel.
The distribution for homogeneous cells is thin and
peaked at low values, while that of the boundary cells
is more spread out and peaked at relatively higher
values. This can be seen in Figure 4. Hence, the
larger the mean gradient, the larger the variance of
the gradient.

Becuase the mean and variance of the Poisson
distribution are the same, these characteristics can
be represented by appropriate Poisson distributions.
In addition, the Poisson distribution is a discrete
function defined on positive integers, which fits in
nicely with the quantized gray tone values of a
digital image.

. Using the Poisson distribution form, we can
expresss P(X|b) and P(X|h) as
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where H and M represent the means of the boundary
and homogeneous populations and Wy > Wy

Substituting this into the Bayes rule (1), we
decide a boundary cell if
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Now consider a rectangular window surrounding
the resolution cell (i,j) having magnitude X in the
gradient image. Let u be the mean gradient in the
window; p is then the value of the resolution cell
(i,j) in the defocused gradient image. If P(b) and
P(h) are the probabilities of boundary and homogen-
eous cells, respectively for that window, then the
mean gray tone p for the window is given by

u =y P(b) + w, P(h). (4)

Using v = ub/uh we have

- u
Hh T YP(b) + P(hY

Substituting this in equation (3) a cell with gra-
dient magnitude X is a boundary cell if

. (y - 1) In P(h)/P(b
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By introducing the parameters 0 and « where
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This torm 1s Intuitively appealing. It states
that the threshold criterion is a linear function of

“the mean of the window and a scaling factor. The

boundary non-boundary decision regions may be illustra-
ted on a scatterogram as shown in Figure 5. The
horizontal axis represents the gray tones of the
defocused gradient image, while the vertical axis
represents the values of the gradient image. Resolu-
tion cells having (defocused gradient, gradient)

values lying on or above the line ou + k¢ will
correspond to boundary points, while those below
correspond to homogeneous region cells.

Figure 6 shows some examples of thresholding
using this model for a few values of P(b) and v.
The corresponding values for @ and ¢ are also shown.
As expected, increasing the P(b) estimates increases
the number of boundary cells. In general, the best
values for P(b) and v would vary a little for differ-
ent images and might have to be determined by trial
and error.

In our discussion we made the assumption that

P(b) and P(h) remain the same over all windows. One

way to generalize this assumption is to use the pro-
cedure iteratively. The boundary image from the first
iteration could be used to determine the P(b) and

P(h) values for each window. The thresholding could
be carried out again with these varying probability
values. Of course, this would be at the cost of
increasing the complexity of the procedure.

2.2 Hypothesis Testing Method

The second procedure is based on a different
kind of statistical model which also uses the
gradient value and the average gradient value in a
pixel's neighborhood. Tt perhaps is slightly more
intuitively pleasing.

The box car filter or rectangular convolution
operation is a low pass digital filtering function
and the effect is to smooth out rapid changes in gray
tones. This is best seen in Figure 7 which shows a
cross-sectional view along one direction in a gradient
image. The peaks represent the high gray tone values
as we cross the edges. The convolution function
spreads these higher gray tone values over a larger
spatial area as shown by the dotted curve. Over the
homogeneous areas both these curves will have about
the same values as there is little spatial change to
average out. Thus to determine edge cells, we will
look for cells in the defocused image for which the
corresponding cells in the gradient image have large
enough values. Because of the noise and variation
in the image we only want to label a pixel a boundary
cell if this difference is relatively large.

To see what relatively large means we put the
problem in a statistical hypothesis testing context.
Let the neighborhood around a resolution cell have a
mean gradient of p and standard deviation of o. Let
X be the observed noisy gradient value. We wish to
test the hypothesis: '"the pixel has a gradient value
coming from the population having mean at most u and
standard deviation o." It is natural to reject the

X = u
a

hypothesis if > k for some constant k.

E—é—ii is too large when the probability of rejecting
the hypothesis when it is true is too large. We -
denote this probability by

P(E—é—E > k | mean = u, standard deviation = o)

Fixing the probability to B we can solve the equation



P(x ; E > k | mean = u, standard deviation = q)
=g
for the threshold k.

The technique can be implemented as a two-pass
operation. In the first pass a temporary image can be
created in which each pixel value is the difference
between the corresponding gradient and defocused or
spatially averaged gradient. At the same time the
standard deviation (o) of the differences can also be
computed. In the second pass a pixel can be set to a
boundary cell if the difference value between the
gradient and convolution cells exceeded the variable,
k'= a.0, where a is a user supplied parameter which
controls the level of thresholding. By increasing or
lowering o, the user can, to some degree, increase or
decrease the number of cells classified as boundary
points. Figure 8 shows results of this procedure for
a values of 0.1, 0.3, and 0.5.

3.0 Evaluation of Edge Detection Techniques

Pr‘att]g has suggested some criteria for what a
good edge detector should do and defined a performance
measure based on these criteria. However, in order to
check those the edge detector has to be applied to an
image for which the ideal edge locations are known.

Pratt classifies three major types of errors
associated with determination of an edge location:

(1) missing valid edge points,
{2) misclassificaticn of noise as edge peints and
(3) non-iocaiized edge points.

The first two can be estimated by fixing the edge
detection threshold at a level such that the proba-
bility of false detection resulting firom noise alone
does not exceed some value. The probability of the
edge detection can then be computed by counting the
known and detected edge points.

The third type of error is more complex as it
incorporates different kinde of errors. For example,
the edge detected may be ideal but fragmented, or it
may be continuous but offset, or the edges may be
correct but too thick. The figure of merit proposed
for non-localized edge errors is defined by

la

1 1
R=-1 o b
'Inzwadf

i=1

where In = Max(IT-, Ia) and I

of ideal and actual edge points.
constant and d;

and Ia are numbers

a is a scaling
is the distance between the i-th

actual edge point and a Tine of ideal edge points to
which it is supposed to belong. The rating factor is
normalized so that R = 1.0 for a perfectly detected
edge. o allows for adjustment to penalize edges

which are localized but offset from true position.

The normalization ensures a deterioration of the merit
figure for thick edges.

This figure of merit was tested for various edge
techniques for an image which contained a single
vertical edge of a fixed height and Gaussian noise
with known variance. The values for R correspond well
with the visual analysis of the boundary images.

Finally, we would add to Pratt's criteria one of
edge simplicity. A1l other things being equal, edges

which zig-zag about a line of resolution cells are not
as good as edges which are simple lines or smooth
curves. The micro busyness b of the edges in an

image can be measured by the entropy of the distribu-
tion of edge directions:

b =-[P(north) log P(north) + P(north-east) log P(north-
east) + P(east) log P(east) + P{south-east) log
P(south-east)].

4.0 Results

As can be seen from Figures 6 and 8, the edges
detected by the two procedures are fairly thin and
consistent. Comparison between the two procedures is
not as straight forward as might be expected. The
advantage (or disadvantage, depending upon the point
of view) that the first procedure has, is that there
are two parameters P(b) and y that the user can vary,
as opposed to the single variable o of the second
procedure. It should be noted that in this implemen-
tation the o that we use for the thresholding in the
second procedure, is computed over the entire image.
This could cause problems if the boundaries and
objects were not evenly distributed over the image as
they are in these figures. If, for example, we had a
large homogeneous category such as water, the small
variations for o over a large section of the image
could deteriorate the thresholding over the more
textured part of the image.

5.0 Future Research

We p]an to eva1u=te the edge detection techniques

........ 2 PR
discussaed in Section 2 by the evaluation technigue

discussed in Section 3. We also plan to extend each
of these techniques making them sensitive to direc-
tions of edges instead of just magnitude of edges.
The results of these evaluations and extensions will
be discussed in a future paper.
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Figure 1.
Test Image MSS band 5.
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Figure 2.
Gradient of Image shown in
Figure 1.

Figure 3.
5 x 5 Window Rectangular
Convolution of the Gradient
Image.
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Figure 4.
Histogram of the Gradient Image. The peak at low
values corresponds to homogeneous regions. The
boundary cells correspond to the spread out peak
at Che higher vaiues.
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Gradient Axis

Boundary

Non-boundary

Defocused Gradient Axis

Figure §
Schematic Scatterogram of the Gradient and the
Defocused Gradient Image, showing how boundary
pixels can be discriminated from non-boundary

pixels.
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Examples of Boundary Detection using the Decision Theoretic

model.
non-boundary.

The black area represents boundaries and the white



Magni tude

o
on
-
L™

-~ Gradient values

===<= 5 x 5 Neighborhood average

Pixel position along row

Figure 7
Cross-section view of the Gradient values along an
image row. The dotted line represents the 5 x 5
neighborhood average for the corresponding pixels.
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Figure 8.
Examples of Boundary Detection using the
Statistical Hypothesis Testing model.




