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ABSTRACT

A fully automatic algorithm was developed for single-frame detection of minelike objects in realistic shallow water,
beach, and nearby land environments. Detection was accomplished in gray scale images, containing representative
targets and backgrounds, which had been collected by a down-looking coherent active sensor.

The problem was made challenging by low contrast, partly covered targets, and highly cluttered images including
beach vegetation and rocks, complicated natural backgrounds, obscuration (replacement noise) by glint from the
surface of the water and distortion within it, and 15 kinds of manmade objects. To deal with these challenges,
innovations have been made in automatic background cancellation, in the final thresholding to binary, and in shape
and veracity clues for the feature vector used in the final classification step.

Performance is reported for a representative set of 1024 frames. For the majority of background types, including
low conventional signal to noise ratio and pervasive instances of clutter and replacement noise patches, the
algorithm performed correctly in 92% of the frames. This applies individually to frames identified as "target” where
one or more targets existed, and frames identified as "notarget” where no targets existed.

Target-field detection over multiple frames depends upon reliable single-frame target detection. Despite challenging
images, performance of our single-frame algorithm appears sufficient for multi-frame target-field detection to
proceed with acceptable error rates for the majority of background types encountered in the tests conducted.

1.0 INTRODUCTION
1.1 BACKGROUND

The problem underlying our work is the automatic detection/localization of minefields in shallow water, upward to
the beach, and on nearby land, using an active coherent imaging sensor (hereafter referred to as the "camera"”)
viewing the scene from above. Target-field detection, and particularly the reliable identification of regions without
target fields, must be performed despite the presence of man made clutter objects, beach and dune vegetation and
rocks, variable and complicated natural backgrounds, and variations in optical transmission due to water surface
glint and in-water inhomogeneity of the optical path (caustics, efc.)

The images for the work described in this paper were collected during FY 89-90 by a developmental camera which
produced images representative of those that could be obtained by an analogous camera under operational
conditions. The majority of the data (6 of 8 data sets considered) was collected over representative shallow water,
beach, and nearby land sites. The remainder was data of opportunity collected over a group of dry inland sites.

Target-field detection begins with fully automatic detecting of minelike targets in a stream of two dimensional gray
scale images (frames) sensed from above by the "camera" system. Single frame information (target detections in
frame, along with frame location in reference space) is then integrated in a target-field detection algorithm. Using



the principle that coastal mines must occur in clusters (and thus in many adjacent frames) to be effective, the target-
field algorithm uses spatial concentrations of single-frame detections as its criterion.

Here we describe the automatic single-frame detection algorithm, for minelike targets, developed by the Applied
Physics Laboratory, University of Washington (APL-UW) for the sponsoring organization, namely the Airborne
Mine Detection And Surveillance (AMDAS) program, under the technical direction of Naval Coastal Systems
Center (now NSWC/DD, Coastal Systems Station). The algorithm was required to be fully automatic so that the
recognition process could be independent of the variations in human judgement, and so that the entire recognition
process could be performed, without intervention, in a high speed parallel-processing hardware set (References 1, 7)
developed simultaneously under AMDAS funding.

1.2 TECHNICAL PROBLEM DEFINITION

As indicated in Reference 2, the automatic detection problem for minelike targets is a difficult one. Targets of
several classes are geometrically relatively well-defined in the sensor frames (though with some random
component), but embedded in often severe random backgrounds of various types. Sensor frames typically may also
contain one or several classes of man-made objects which are not targets, hereafter called non-target man made

objects, or MMOs.

Because the problem here is a single frame target detection problem embedded in a multiple frame target-field
estimator, there are two important design implications:

Small numbers of errors from the single frame algorithm can be tolerated without resulting in a false
negative or positive report from the target-field detector based upon clusters;

The most important single-frame measure of performance is correctmess of the report "any targets vs no
targets,” with the correctness of the actual numerical count being of lesser importance.

The problem was attacked in two phases. In an initial phase, the images contained at most one type of target.
Severely complex backgrounds were relatively rare, and MMOs virtually absent. Image processing results for this
phase, encompassing candidate detection but not classification (per the algorithm overview below), were presented
in Reference 2. A second phase introduced more diverse images at two pixel resolutions, including four target
types, seven background types (all but one of which are quite complex, spatially) from shallow water, the beach, and
nearby land. Fifteen types of non-target MMOs were included, many in substantial numbers. This paper reports on
the final delivered version of the single-frame algorithm, end-to-end, including results on second-phase images.

1.3 ALGORITHM OVERVIEW

The overall single frame target detection algorithm is shown in block diagram form in Figure 1-1. Target detection
consists of candidate detection followed by classification. Candidate detection in turn consists of the following:

Gray scale morphological image processing which enhances each input frame (e.g. removes clutter and
occlusions, normalizes the background);

Automatic thresholding to a binary image, in which connected regions are then labelled as separate objects
and become the detection candidates; and

Obtaining a feature vector for each such candidate region in each frame.

Classification operates in feature vector space to give each candidate an assigned category "Target" (T) or "Non-
target” (N); these are referred back to the original frames to produce a count of targets detected per frame.
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The first principal contribution of this work is a systems one. End-to-end autonomous detection is demonstrated for
difficult targets in badly cluttered images (many with poor local signal-to-background ratio) taken by a high-speed
airborne laser-camera system in realistic environments.

The principal areas of innovation in the work reported here lie in the candidate detector (including the feature
computation.) Techniques of gray scale morphological processing have been chosen for the initial image
enhancement. The image data will be more completely described in Section 2; the following dominant qualities of
the images resulted in morphological processing being chosen.

The images contain a predominance of random sized replacement noise (patches with gray levels totally
unrelated to the correct ones), which does not fit the additive linear noise model associated with classical
signal processing,

The attributes distinguishing targets from replacement/clutter are mainly geometric (shape/size).
There is often gray scale background tilt far exceeding local target/background contrast.

Appendix A gives a brief review of morphological processing, as it applies to the work here. Reference 3 provides
an excellent recent tutorial text; additional material can be found in References 4, 5, and 6. The specific sequence of
morphological operations employed, and the associated design rationale, are described in Section 3.

Innovations in automatic thresholding from gray scale images to a binary detection image combine the background
cancellation inherent in the morphological closing residue operation (see Appendix A) with two separate models of
the histogram of the closing residue image. This combination of innovations (detailed in Section 3.1) rendered the
thresholding feasible, automatic, and adaptive to each image, whereas straightforward thresholding of the original
gray scale images would have been doomed by the extreme background tilt.

There are three innovations in the feature vector computation, introduced due to observed geometric attributes of
candidate regions in the binary detection images. An elongation and major axis computation based on extremal
points (Section 3.2.1, Reference 4), rather than an ellipse fit based upon second order moments, was introduced to
measure the decidedly irregular and non-ellipsoidal regions commonly encountered. A "spindliness" measure
discriminates between more or less compact targets and a spindly type of common processing artifact. A measure
of detector saturation allows identification of (likely) spurious candidates arising when the enhancement processing
and thresholding is occasionally overwhelmed.

2.0 DESCRIPTION OF GRAY SCALE IMAGE FRAMES

The data used here by APL-UW consisted of 1024 digitized sensor frames of 8-bit grayscale data. These frames
consisted of eight sets (odd numbers 01 - 15) of 128 images, each chosen as representative of data from a separate
sensor pass made during FY 89-90. Sets 01 - 11 were taken over shallow water, the beach, and nearby land. Sets
13-15 were data of opportunity taken over dry inland sites.

Frames varied in ground size and pixel count somewhat due to variations in altitude and in data
collection/digitization. All were approximately 200 rows by 300 columns. Data sets 01 through 05 were of higher
resolution, with a pixel edge "footprint” in the field of view representing about 0.6 the length used in sets 07 through
15. Figure 2-1 depicts two typical images at the higher resolution, each containing two minelike targets.
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21 TARGET CHARACTERISTICS

Targets considered here all appeared darker-than-background (dtb) due to the light background at the test sites.
Many displayed low contrast against the local background, to the point of often being difficult to see. Indeed
careful inspection of Figure 2-1a is necessary to ascertain that there are not one but two target objects visible.

Minelike targets considered in this study included "large discs" and "small discs”, having respective diameters about
36 and 15 pixels at the higher resolution, as well as "bars” and "long bars” of respective lengths 36 and 108 pixels at
the higher resolution. They were located in uniform test arrays in shallow water and on the beach. On land,
minelike objects were randomly scattered and placed near to existent non-target MMOs.

The discs, which constituted the majority of the visible targets, could be measured in image displays (at the higher
resolution of data sets 01 - 05) as discs/ovals of about 36 and 15 pixels in (major) diameter, respectively, with small
variability when cleanly visible. But several effects contributed to a large fraction of targets not having such simple

appearances:

Many targets were in the edge of the image, cut off by the image boundary;

Some targets were physically occluded by being covered with sand from the test site, at the time
measurements were made. Their effective shapes in the images ranged from "doughnuts” (e.g. leftmost
target in Figure 2-1b) to "horseshoes" to partial discs;

Some targets were occluded by the same "glint" processes, described in the next subsection, that occurred
in the background (e.g. leftmost target in Figure 2-1a);

The combination of background variability and low local SNR may make the target boundary obscure,
even to an experienced human observer (e.g. leftmost target in Figure 2-1a).

Thus the majority definition of a target was darker than background over "most" of its area, at least "somewhat"
round or ovaloid, and possibly with missing area at the boundary or interior. This mitigated strongly against any
sort of shape-matching (matched filter or otherwise) that depended upon precise shape.

22 NON-TARGET MAN MADE OBJECTS (MMOs)

A development objective was to test and enhance the ability to reject non-target MMOs while recognizing targets.
Accordingly 332 MMOs, of 15 types, were included in a total of 260 of the 1024 frames. MMOs, which ranged
from substantially smaller to much larger than the targets, included large numbered, striped, or checkered objects
(range markers and contrast/resolution calibration markers), buoys, rectangular and elliptical objects 15 to 36 pixels
(at the higher resolution) in major dimension, telemetry tower parts, views of a boat and a car, tire tracks, and the
top view of humans.

2.3 BACKGROUND CHARACTERISTICS

In general, backgrounds were complex; a large fraction contained (in addition to MMOs) obscuration due to
reflection and transmission phenomena in the water and/or natural background clutter. Often these appeared at least
superficially targetlike enough to cause false reports from the candidate detection phase, which had to be rejected in
the classifier. Occasionally, background objects were so targetlike and strongly visible as to dominate true minelike
targets in the final threshold to binary, causing missed targets. Appendix B shows examples of complex
backgrounds.
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For targets in shallow water, the most significant background characteristic was the presence of surface glint (as in
Figure 2-1a.) Surface glint, which appears lighter than background and usually smaller than minelike targets,
obscures the basic image under the water (replacement noise) rather than adding to it incrementally. This being the
case, and with targets being physically occluded by sand as well, we were strongly motivated to employ
Mathematical Morphology rather than more "classical” processing techniques based upon matched filtering, in our
algorithms. The morphological opening and closing operations (cf. Appendix A) are well-suited for "papering over”
large upward or downward spikes or plateaus in the grayscale image surface, which are best modelled by a (strongly
nonlinear) maximum or minimum operation, for example:

Corrupted Image = Max(Original Image, Glint Image)

By comparison, optimal matched filter results are based on additive (linear) noise models. Image backgrounds often
had a significant tilt (systematic change from one edge to the other), as exemplified in Figure 2-2. The contrast
between object and background was often less than the background tilt; the rightmost object in the image of Figure
2-2, which has extremely low contrast, demonstrates this point. The effective use of simple thresholding (on the
“raw" image frames) for detection is precluded in such images. The morphological opening and closing residue
operations (cf. Appendix A) inherently cancel tilted backgrounds.

2.3.1  Background Categories

In the 1024 data frames, seven background types were identified by visual inspection prior to any tests of the
algorithm reported here on those frames. Examples and underlying mechanisms are given in Appendix B. In
summary one background type was simple, five contained substantial potential difficulties for the algorithm, and
one (obtained, on opportunity, over dry inland sites) was seemingly impossible.

3.0 TARGET DETECTION ALGORITHM AND RESULTS

As indicated in Section 1.3, target detection is viewed as consisting of candidate detection, followed by
classification. Candidate detection is itself composed of gray scale morphological image processing, auto-
thresholding (with labelling of objects), and feature vector computation. Candidate detection will be described in
Section 3.1, classification in Section 3.2, test protocols and performance results in Section 3.3, and promising future
enhancements in Section 3.4.

3.1 CANDIDATE DETECTION

Before proceeding to the specifics of detection we provide top-level pictorial and block diagram representations,
Figures 3-1 and 3-2 respectively, that show each image processing substep including glint removal, occlusion
removal, gray scale detection, and binary detection. The autothresholds occur within these steps. (Each image
processing substep consists of one or more morphological operations.) Thereafter the objects in the binary detection
image are labelled and a feature vector is computed for each.

The morphological operations from input image B to binary detection image O are as follows.

Find Glint Restore Target lusion
C=1B>p+30) L = K openedby square w4
D =B closedby square wj
G = 1(D openres square wy > T2) Normalize Background; Detect Binary Image
I=(C u G) dilatedby square 3 N =L closeres square wy
O=1(N>Tj)

Eliminate Glin
K =fill(D,)
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In the equations above, the morphological operations dilatedby, closedby, openedby, closeres, and openres are
described in Appendix A; square w is a zero-height square structuring element with edge-length w; and
image = 1(condition) denotes a binary image whose value is 1 where the condition is satisfied, and 0 elsewhere.

Sections 3.1.1 through 3.1.3 will now describe the motivation for the morphological processing steps. The
subalgorithms for the fill operation and for choosing autothresholds T; based on image statistics will be described in
these sections, as will the rules for choosing structuring element sizes w; based upon target geometries. Thereafter,
Section 3.1.4 will discuss the connected component labelling of the binary detection image and Section 3.1.5, the
feature vector.

3.1.1  Finding and Removing Glint

The most significant background characteristic for targets in shallow water was seen to be surface glint, a random
lighter-than-background replacement noise. Without removing such interference, reliable detection of minelike
targets would not have been feasible. Morphological algorithms seeking these darker-than-background targets
would have produced numerous false detections on mine-sized "valleys” that happened to occur among the "peaks”
represented by the glint.

Glint was eliminated by first finding a binary mask I of glint pixels, then replacing each value under that mask with
the image value at the nearest point outside the mask. (The replacement is performed by setting image D to zero
under the mask, then filling into the nulled region using nearest nonzero values found by a two-pass algorithm.
Section 5.8 of Reference 4 describes an analogous algorithm for the morphological distance transform.)

Pixels qualify for mask I on the basis of two criteria arising from the nature of glint in typical images. In a minority
of images, glint appeared as very bright, extended, irregular patches. A majority of glint appearances were
relatively light, and smaller than targets. Thus, submask C was based on extreme amplitude alone, and submask G
was based on an opening residue for finding objects smaller than square wy and brighter than (local) background.

Two steps in finding the glint mask remain unexplained. The initial closing by square w) (smaller than w3) is
standard morphology practice, to protect the subsequent opening residue from being "distracted” by tiny dark
patches. The final dilation by square 3 remedied occasional loss of corners of glint regions.

Parameters Tz, wz, and w) are set from image statistics and target geometry as follows.
T = max{| + 20, 0.25 x max[D openres square w,], T3}

where L and o values are measured for the opening residue image and the adaptive T threshold process for openres
and closeres images will be described in Section 3.1.3. To maximize the size of glint found while ensuring that
(lighter) gaps between closely spaced (dark) targets are not mistaken for glint, we define wa = (0.6)*(2)05 *d,
(where d is the size, in pixels, of a large disc) based on the assumption that actual targets would not be placed closer
together than the diameter of the largest disc target. (We correct by (2)-05 to allow for diagonal placement, and by
0.6 as a safety factor.) To ensure that the initial closing is smaller than the opening residue it protects, and that it
does not remove minelike targets, wi = {w2/3, dmin/2}.

Readers familiar with morphological processing will note that we have not used a potential glint remover with fewer
steps, namely D = B closedby square w; K = D openedby square wa. Our rationale, in terms of
reducing artifacts arising from the square wp structuring element, is given in Reference 2, including images
containing artifacts and their impact upon detections.
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3.1.2  Occlusion Restoration

Target occlusion, whether by sand or optical interference, constitutes light replacement of otherwise dark target
pixels, hence restoration by an opening. Structuring element w3 = 0.6 d, so that occlusions up to half the diameter
of the largest target are restored.

3.1.3  Background Normalization and Binary Detection

With preliminary processing completed for the principal forms of small clutter and occlusion, the darker-than-
background targets result in the only substantial bright objects in the final gray scale closing residue (grayscale
detection) image. The residue process simultaneously removes large-scale background variation (e.g. background

tilt.)

The final greyscale-to-binary detection is performed by a well-defined autothreshold sub-algorithm based upon
image statistics (intensity histograms.) By virtue of the previous processing, the candidate targets to be detected are
expected to cover a small fraction of the grayscale detection image and to have the highest amplitudes there (as was
emphatically not the case in the original frames.) This dictates that the corresponding intensity histogram will have
the majority of pixels close to zero; pixels to be retained will be found in a flat histogram "tail" or a second (or
greater) mode or both.

The procedure for setting T3 was motivated by the need to negotiate "blind" (i.e. automatically, and for all cases) in
any histogram having the possibilities just defined. The T3 threshold contains three steps as follows:

First the histogram for image N is compressed into fewer bins and smoothed to prevent irregularities and
"dropout” bins from distracting the remaining steps (which implicitly assume smooth histograms).
Specifically, if 95% of the pixel gray levels lie between 0 and Lgs, the number of bins is compressed by a
factor Lgs / 10, so that most pixels are in the first 10 bins of the new histogram. Then, a simple 3-point
"boxcar” smoother is applied to the compressed histogram (without further compression.)

Next, two separate models of the above histogram are created: T3 is the Otsu threshold of Reference 8.
Tsp is obtained by fitting an exponential model density curve P(x) = ae-ax to the first three histogram bins,
then finding the threshold for a (model) false alarm rate of 0.001, so that T3g = (1/a) In(0.0001). Then T3 =
max{T3a ,T3p] is the starting value before adjustments.

Finally, further automatic upward adjustments in T3 (decreases in the number of pixels detected) are
applied iteratively; these serve to eliminate pathological cases where the two models both produce
threshold values that lie before the first flat spot or upturn in the histogram. Specifically, if h(i) is the
number of pixels in the histogram bin at the ith threshold iteration and hyqa1 the total number of pixels
then adjust T3 upward stopping on condition C1 AND C2, each defined as follows:
Cl; [h(i+1) - h(i) < 0.0025 hyorar] OR
[threshold is above 99.75% of the total pixels]

C2: [h(i+1) / h() > 0.65] OR
[h(i+1) < 0.000025 hygall

The procedure outlined above, though lacking in elegant simplicity, has proved exceptionally successful at avoiding

"misses” of targets clearly visible in the grayscale image on the one hand, and "saturated” candidate detection
images on the other.
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3.14  Labelling the Binary Detection Image

Image O is binary; it is labelled 1 for any of the candidate regions, and 0 elsewhere. Additional processing, to
facilitate the computation of a feature vector for each separate detected candidate in the frame, is called the labelling
of connected components (CCMs.) This produces a labelled image (denoted Q) in which the background is
numbered 0 and the n separate connected objects (candidate regions) are numbered 1 through n. Our CCM labelling
algorithm is a memory-efficient two-pass version, described in Sections 2.3.5 and 2.3.6 of Reference 4.

3.1.5  Feature Vector Computation

For each detected candidate region (CCM), a vector of eleven features (clues) is computed. Of the eleven, the first
eight are standard.

Fl1: Area = number of pixels in CCM.
F2: Gray scale Variance = [1/(N-1)] £ (I - D2, where | = mean gray scale value over CCM.

F3: Eccentricity (based on ellipse fit} = A1 / A3,
where A5 =0.5 [d+ f+sqgrt[(d—£)? +4(e)2] )

Hee e ]

de
and ’: ] =025] Mer Hee — (Hrc)? 171 ’:
“Ure Her

ef

F4,5. Mean of Radius=(1/N) LR,
Variance of Radius = (1/N-1) X (R, - p,)2
where pointwise radius R; = sqrt[(r; — )2 + (c; — )2 1, (. ¢) = centroid,
and only boundary pixels of the CCM are used.

Fo6: Number of Boundary Pixels = Number of pixels in the CCM touching the background.
F7: Measure of Circularity = (Variance of Radius)0-5 / Mean of Radius

F8: Gray Scale Gradient (magnitude) = sqrt(o2 + 2),, for V(P .) = (o, B),
based on a least square fit of plane P, .= or+ Bc + € to the gray scale surface over the CCM.

The last three are innovations developed in response to specific problems or requirements encountered during the
algorithm development process.

F9: Elongation (based on extremal points) characterizes aspect ratio because a large fraction of observed
candidate CCMs bear no vague resemblance to solid ellipses, and thus are likely to be badly characterized by the
conventional eccentricity feature F3. The elongation feature was based on the eight extremal points of any CCM as
depicted in Figure 3-3 (formal definition: Section 3.2.1, Reference 4.). We used no model of shape, assuming only
that the extremal points approximated the extent of the CCM in a broad sense. Thence the two extremal points
farthest apart define an approximate major axis (and its length); width comes from the narrowest band, parallel to
the major axis, encompassing all extremal points, as indicated in Figure 3-3.

F10: Spindliness = (major axis)2 / pixel area, approximating the major axis using extremal points (see above).

This quantifies a shape difference between true-target and false-detection CCMs (which may have similar
elongation.) Many known false detection CCMs were skinny and meandered about regions of the frame.
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(Intuitively, they were spindly.) True-target CCMs are rarely spindly. Spindliness of a disc is 1.27, of "compact-
looking" objects up to about 1.8, of "spindly-looking" objects 2.2, 2.5 or more. An n X 1 line has spindliness n.

F11: Detector Saturation = (area of all CCMs in frame) / (area of frame) provides a distinguishing measure for
CCMs that come from occasional frames in which the detection (probably the thresholding) works poorly, so that
the final binary image has a large fraction (say, 20% or more) of its area covered with meaningless objects. By
comparison, correctly detected frames, even those containing the maximum number of true targets seen in the data
sets, rarely filled more than 10-12% of the binary detector image. To "inform" the classifier of frame credibility
(even though the classifier works on individual CCMs) we compute a frame-wisc feature of this fraction and assign
its value to all CCMs in the frame.

The 11 - dimensional feature vector for each candidate CCM (labelled according to its frame of origin, and location
in the frame) is the essential item handed from the detector to the classifier,

32 CLASSIFICATION

A binary decision tree was used. The theory of such classifier algorithms is known; see for example Section 4.9 of
Reference 4, or Chapters 2 and 3 of Reference 9. In particular we implement Fisher's Linear Decision Rule, at each
node, to divide feature space. This can be viewed as separating feature-space into half-spaces by a hyperplane, then
linearly dividing each half-space again, etc. A purity (entropy) measure, described in Reference 4, was used to
optimally adjust the hyperplane for each node.

Training is done in a space of feature vectors for which the true class is known and used. (The true class is
determined by software which compares each candidate detector output CCM with groundtruth; this true class is
then appended to the corresponding feature vectors for training.) Given that a human has entered groundtruth
information for the training images, thereafter the tree structure, separating hyperplanes, and stopping criteria are all
automatically created.

In testing (actual execution of the classifier), the unknown candidates are dropped through the same tree, with the
same decision rules (same weighting vectors and thresholds) created in training. Figure 3-4 shows the relationship
between the detector, training of the classifier, and testing by the classifier.

32.1 Equalization

A persistent problem was found in early development tests.  When the numbers of training vectors for one class
was much higher than for another class, the resulting training emphasized correct classification of the majority class
at the expense of the minority class. Among detection candidates (prior to the classifier) false target detections are
usually in the majority by a factor of at least 2.5. This has the potential for resulting in good classifier false alarm
rates at the expense of poor probability of correctly classifying true detections.

The cure was to equalize the count - specifically to weight the number of vectors of both classes inversely
proportional to the original numbers of training vectors in computation of the best adjustment of the hyperplane for
each node and in labelling the terminal nodes as "target" or "notarget” at the end of training.

33 TEST PROTOCOLS AND PERFORMANCE RESULTS

The basic test protocol divided the frames into two groups, choosing them alternately in numerical order. Results

were generated by training on group a and using the trained classifier to test group b, and the converse, followed by
adding the performance totals for the two tests. This is abbreviated "train a test b; train b test a."
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Per frame statistics were used to describe performance. In particular we measured the correctness of the report "any
targets vs no targets” which is the most important bottom line provided by our single frame target detection
algorithm to the multiple frame target-field detection algorithm which is the "consumer" of our results.

In light of the great variability among image backgrounds, performance is defined in terms of regimes of
background types. For the regime consisting of the majority of backgrounds, namely backgrounds B1, B2, B4, BS,
and B6 described in Appendix B, performance is described below. This constitutes all backgrounds except those
labelled "dark blotch" and "dry inland."

Frames With Target(s) 103
Correct Frames 95 (92%)
Target Frames / Error Frame 13
Frames Without Targets 477
Correct Frames 437 (92%)
No-Target Frames / Error Frame 12
All Frames 580
Correct Outcome 532 (92%)
Frames / Error Frame 12

This 92% performance (1 error / 12 frames) is the more remarkable because it includes all false positives due to
non-target man made objects (MMOs). (Section 3.3.1 considers effects of MMOs on performance.)

Performance for the "dark blotch" background regime (B3) obtains presence vs absence of targets in a frame
correctly in only 67% of frames, with equal failure rates in frames with and without targets. The fundamental cause
is that within measurements made by the present algorithm, the dark vegetation clumps are just too "targetlike” -
indeed often more so than the targets. Innovations in the feature set, with good potential for upgraded performance
(but beyond the resources of the work reported here) will be described in Section 3 4.

In the case of the "dry inland" background (B7), the shortfall is entirely in target frames, of which only about 25%
are correctly found. (Frames without targets are correct 88% of the time.) This background regime, which occurs in
the vast majority of the Set 13-15 frames, and only there, appears too obscure to suggest likely progress; it was
recognized as such when it was taken on. Indeed humans, working at interactive displays with enhancement tools,
often have difficulty finding the targets in these images,

3.3.1  Performance Against Non-Target Man Made Objects (MMOs)

Viewing MMO-only frames (frames with one or more nontarget MMOs but no targets) by themselves, some 17%
have one or more candidate detections that survive the classifier to cause error frames. But since the fraction of
frames containing MMOs is only 155 out of 1024, and only some of those are MMO-only, the overall effect on error
rate is small.

Furthermore, inspection of performance against specific MMO types reveals that 77% of all false positives due to
MMOs result from four types of large objects with high contrast areas, namely resolution panels, contrast panels,
number panels, and a boat. Of these four types, three are test-range artifacts. For the remaining types of MMOs,
false positives occur only 9% of the time.
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34 PROMISING FUTURE ENHANCEMENTS

For enhancing performance in the majority background regime beyond 92%, and for establishing algorithm
robustness where there is very "targetlike" clutter (as in the "darkblotch” background regime), we see promise in
new elements (clues) for the classifier feature vector. These clues combine morphological processing to establish
relevant subregions, with gray scale image statistics for those subregions.

The motivation for these clues lies in the following two types of difficult target/background discriminations, which
dominate error in the "majority” and "darkblotch” background regimes respectively:

Artifacts having no obvious basis in background clutter objects, but nonetheless assuming fairly target-like
size and shape at the output of the candidate detector;

Background clutter that is target-like in general attributes, and thus is in a sense properly found by the
candidate detector and left for the feature vector and classifier to discriminate.

We will call the resulting target-like CCMs processing artifacts and clutter detections, respectively. Because of
differences in gray scale image directly over and nearby the respective CCMs, these two types of erroneous
detections call for similar but subtly different innovations in classifier clues.

Processing artifacts may be viewed as resulting from targetlike CCMs located randomly in the frame; thus the gray
scale image over any such CCM should be very similar to the image over the nearby region. (In this regard,
processing artifacts are unlike targets; most visible targets are in some gray scale sense quite different from their
surroundings.) Discrimination between target and processing artifact CCMs ought to be improved by clues that
compare gray scale statistics over a detected CCM with those over a similar-sized annulus outside that CCM.

Obtaining annuli for the CCMs is a task suited for binary morphology. The task is made nontrivial by the desire to
compute all annuli in one or a few passes through the image, suggesting a binary dilation followed by set-
subtraction of the original CCMs. Unfortunately such annuli could overlap initially; fortunately good
morphological segmentation algorithms exist, based upon the distance transform and watershed concepts (Section
3.5 of Reference 3.) Once each candidate CCM has an annular background region, any of the following clues can
compare background b and candidate c:

Contrast = [y — He

Normalized Contrast = (1 — Lie) / (0.5 62 + 0.5 6¢2 )05

Relative Graininess = o2 / 62
In the case of clutter detections, the gray scale image over the CCM should differ in some important ways from the
gray scale image nearby. However those differences may be very similar to the ones for an actual target CCM and
its surroundings. But we observe that the gray scale boundary transitions often are more gradual and irregular for
clutter detections than for targets. These differences in gray scale boundary transitions should be exploitable by a
clue employing statistics of the gray scale image, or its gray scale morphological gradient (Section 7.1 of Reference
3), evaluated over a narrow annulus n (Section 3.2 of Reference 3) from inside to outside the boundary pixels of ¢,
the original candidate CCM. For example:

Relative Boundary Irregularity = 0,2 / 6.2

Gradient Strength (Normalized) = p,(G) / o
where G = gray scale gradient image, and p could also be max, or any order statistic
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The clues defined above for broad and narrow annuli may be considered local veracity clues.

In addition to differing from false detections in some form of boundary contrast, it appears that targets may differ
from clutter detections or processing artifacts in terms of grayscale uniformity within the CCMs. This suggests a
gray scale uniformity feature obtained from the mean or the maximum, over each candidate CCM, of the difference
image B closedby K — B openedby K derived from input image B. Grain size K should be chosen to eliminate
the smallest common image irregularities

4.0 CONCLUSIONS ON PERFORMANCE

Successful detection of single frames containing minelike targets has been demonstrated in the majority of
backgrounds presented, including difficult backgrounds in shallow water, on the beach, and on nearby land. This
performance, 92 per cent correct both for frames with and without targets, should be sufficient to drive the multi-
frame detection algorithm which is the "consumer™ of its output.

False positives due to (non-target) man made objects (included in the 8% error rate above) have required no special
attention, given that frames containing such objects do not occur much more frequently than in our data (155/1024
frames had MMOs.) The few classes of non-target objects offering potential problems if they were numerous, have
been documented; most of these are testing-range markers.

Two background types have been delineated, for which a performance shortfall remains. For "darkblotch”
backgrounds, containing clutter superficially resembling minelike targets, promising approaches exist, though
beyond the scope and resources of the work reported here. The images from dry inland sites were acknowledged as
marginal when the project began; indeed a careful human operator often has difficulty there,
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FIGURE 2-1. TYPICAL IMAGES, EACH WITH TWO TARGETS
(a) DEMONSTRATING GLINT; (b) DEMONSTRATING TARGET OCCLUSION




FIGURE 2-2. (U) IMAGE WITH BACKGROUND TILT EXCEEDING CONTRAST
BETWEEN TARGET AND BACKGROUND



FIGURE 3-1. CANDIDATE DETECTION BY MORPHOLOGICAL IMAGE PROCESSING
Row 1: Original (B), Glint Mask (I), Glint Nulled; Row 2: Glint Eliminated (K), Occlusion Restored (L)
Background Normalization / Gray Scale Detection (N), Row 3: Binary Detection (O), Ground Truth.
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APPENDIX A  BRIEF REVIEW OF MORPHOLOGY

Candidate detection is based on morphological image processing, and specifically the gray scale closing and
opening operations depicted in the first column of Figure A-1. Furthermore, differences between an image and its
opening (as depicted in the second column of Figure A-1), and between an image and its closing, can be used to
detect objects smaller than a given set (structuring element) and ignore background variation. Our design process is
based on such visualizations and the geometric effect, in successive gray scale surfaces, of a sequence of
morphological operations.

The closing, opening, closing residue, and opening residue operations are defined, in turn, from dilation and erosion
primitives, as follows:

G closedby D = (G dilatedby D) erodedby D; G openedby D = (G erodedby D) dilatedby D.

G closeres D = (G closedby D)} — G; G openres D =G — (G openedby D) .
where G is a gray scale image and D is a structuring element. (The latter fills a role analogous to that of the FIR
filter kernel in linear processing.) Note that since closings are always extensive (G < G closedby D) and openings
are always antiextensive (G operedby D < G), per Reference 3, residues are always non-negative.

The underlying gray scale morphological primitives are defined as follows. For gray tone image G, over set I", and
structuring element D over set A, gray scale dilation and erosion are:

(G dilatedby D)(x) = max{ G(x — z) + D(z) }, where the max isoverze A, x—z)e T}

(G erodedby D)(x) = min{ G(x + z) — D(z) }, where the min is over z € A,
The output image domains change according to I — T dilatedby A for dilation and I" — T erodedby A for erosion.
The gray scale primitives are generalizations of binary dilation and erosion, defined as follows, for arbitrary sets F
and L.

F dilatedby L = (x| x=f+1forsome f€ Fand somele L}, and FerodedbyL = {x|x+1e Fforallle L}.
(Note that that in the algorithm contained in this paper, only one binary morphological operation is used, dilation of
the glint mask by a 3X3 pixel structuring element, to enlarge that mask by a pixel in all directions.) References 3-6
consider the properties of morphological operations extensively.

Note that image size (domain) changes during the gray scale dilation and erosion operations. This is a mathematical
resolution of the edge condition problem common to shifting mask algorithms (including linear filters.)
Mathematically, results expand where they can be fully defined outside the original domain, and are left undefined
where the lack of image data outside the edge would require local modification of the definitions. In applications,
padding is added to the edges of the original image so that the sequences of morphological operations never
encounter the shrinking and growing, within the original image frame. By so doing, and trimming afterward, we
can always display and consider images the size of the input image. (In computational practice, literal expansion of
the image may, in fact, be replaced by conditions and special functions that operate at and near the edges, and have
equivalent effect to padding.) The spatial extent of padding depends upon the extent of the structuring element.
Choice of appropriate padding values is a design decision equivalent to assumptions upon objects only partly visible
in the original image. We used "level" padding; each pixel in the padded region had value equal to the closest pixel
in the image.

Most significantly, the choice and use of a padding rule must be made if unexpected and potentially undesirable
effects are to be avoided not only at the edges, but within a structuring element width of them. For example, Figure
9 of Reference 2 demonstrates that to properly detect even the simplest shapes near the boundary of a clean,
noiseless image, proper padding must be performed.
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FIGURE A-1. GEOMETRIC VISUALIZATION OF GRAY SCALE MORPHOLOGY.
COLUMN 1: CLOSING, THEN OPENING OPERATIONS; COLUMN 2: OPENING RESIDUE
(DIFFERENCE). Note the zero background level in the residue, corresponding to cancellation
of background variation simultaneously with final detection.



APPENDIX B BACKGROUND TYPES

Seven background types were identified by APL-UW investigators based upon viewing the 1024 test images prior to
algorithm testing. Type B1 occurred mainly at site 1 (sets 01-11), with a few at site 2 (sets 13,15); types B2-B6
occurred only at site 1; type B7 occurred only at site 2. Backgrounds are depicted in Figure B-1.

B1: Flat Background. These occur in all data sets 01 through 15; such backgrounds are typical of the beach
domain. There is some fine-grain variability, but (except for MMOs) there is no natural clutter even beginning to
look target-like. Some images display background tilt, and some display corners with dark shading (particularly the
lower left corner.)

B2: Glint Background.  Glint arises from reflections of active illumination at the water surface. It is often much
brighter than background as illustrated in Figure B-1. Alternatively it may merely be lighter than background and
cover areas mainly smaller than targets. Where the glint "objects” are extensive enough to cover a significant
fraction of the frame, glint cleaning will not occur, and the remaining glint has to be eliminated by the occlusion
removal and background normalization preceding final thresholding.

B3: Dark_Blotch Background. This background arises from natural clutter objects, mainly dark vegetation
clumps on and near the beach. Many blotches superficially resemble large and small disc minelike objects, or larger
versions of those same targets. In general the blotch edges are more irregular than minelike target edges, and the
blotches are a bit "grainier” than are targets. (Here graininess is used analogously to the term in film photography,
though the physical mechanism is very different.)

B4: Mottle Background. A relatively infrequent phenomenon, mottle results from scattering of the illumination
within the water column. It is distinguished by compact, light, generally target-sized "islands" close together with
narrower dark bands "channels” separating them. There are also a few target-sized dark areas, larger than the
channels (although these blotches are very different from those of the previous section, which were due to actual
objects.)

B5: Glint_Dark_Blotch Background. These backgrounds, found mainly in data sets 03 and 05, occur when
the physical processes creating extensive glint leave target-sized dark voids between the glint.

B6: Sparkle Background. Sparkle is an extreme form of glint. The potential difficulties are two. First the very
dark voids between glint "peaks” could appear as strong, well defined targets. Secondly, the glint appears in such
large clumps, and with so much very bright area, that the glint removal algorithms are at least partly foiled. Relative
valleys within areas of surviving glint peaks are then potentially prone to false recognition as targets.

B7: Dry Inland Background. This background, found only in data sets 13 and 15 taken at site 2, was on the
one hand highly textured with a variety of dark (and to a lesser extent light) shapes, and on the other hand
essentially impenetrable. Virtually every target was difficult for a human, with high-level vision skills, to discern
(e.g. In Figure B-1, there is only one target in either of the dry inland examples -- in the second of the two, about
25% of the way from left to right, and 40% up from the bottom.) Visually, the predominant texture was undulating
in character, which is to say many mild peaks or indentations existed. These, coupled with the extremely low
contrast of actual targets, mitigate against a good detection rate without excessively many false positives.
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FIGURE B-1. BACKGROUND TYPES, AS DESCRIBED IN APPENDIX B TEXT
Row 1: Types B1, B2, B3; Row 2: Types B4, BS, B6; Row 3: Type B7 (two examples)
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