COMPUTER ARCHITECTURE FOR

SOLVING CONSISTENT LABELING PROBLEMS

J. R. Ullmann *
R.M. Haralick **
L.G. Shapiro **

* University of Sheffield
Abstract

Consistent labeling problems are a family of
NP-complete constraint satisfaction problems such
as school timetabling, for which a conventional
computer may be too slow. There are a variety of
techniques for reducing the elapsed time to find
one or all solutions to a consistent labeling prob-
lem. In this paper we discuss and illustrate sclu-
tions consisting of speeial hardware to accomplish
the required constraint propagation and an asynch-
ronous network of intercommunicating computers to
accomplish the tree search in parallel.

Index Terms

Consistent labeling.

NP complete,

Backtrack search.

Network computer.

Asynchronous sequential circuits.
Programmable logic arrays.

Array processor.

Special Architecture for
Consistent Labeling Problems

Introduction

School-timetabling, subgraph isomorphism, graph
coloring, propositional theorem proving, and scene
labeling problems can be formulated as special
cases of the consistent labeling problem [11]. The
consistent labeling problem is NP-complete, which
means that in the worst case we may have to resort
to exhaustive enumeration in order to find a solu-
tion, and the time needed for this enumeraticn may
increase exponentially with the number of varia-
bles. Despite the possibility of this combinato-
rial explosion, problems such as school time
tabling have to be solved in practice. Smart
searches using look-ahead operators to perform tree
pruning have been devised to mitigate the combina-
torial explosion. This helps, but lock-ahead oper-
ators cannot be guaranteed to keep program execu-
tion time within modest bounds.

In the present paper we explore several possi-
bilities for special architecture using parallelism
to reduce the elapsed time for solving consistent
labeling problems. To aveid brute force enumera-
tion, we use a constraint propagation tree-pruning
technique in which there is an inevitable sequen-
tial part that can make the quest for parallelism

*#Virginia Polytechnic Institute
non-trivial.

El-Dessouki and Huen [2] have considered compu-
ter network architecture for NP-complete problems
of determining extremal values of objective func-
tions. Consistent labeling problems are more prim-
itive in that their solutions have to satisfy rela-
tional constraints that constitute a boolean
objective funection. Restriction to the binary case
broadens the possiblities for special architecture
for solving consistent labeling problems. However,
in this paper we consider the general n-ary rela-
tional constraint case.

Earlier papers on special architecture for soly-
ing the consistent labeling problem include Cherry
and Vaswani (1961) who had actually built special
architecture for a boolean satisfiability problem
[3] (which is a consistent labeling problem [1]).
We believe, however, that the general possibilities
of using special architecture to soften the practi-
cal effects of the combinatorial explosion have not
previcusly been explored adequately, Schmidt and
Stronlein [4] remark that "recent developments in
computer technology and software engineering have
not yet reached the area of time-table program-
ming."

A Formulation of the Consistent Labeling Problem

The consistent labeling problem was formulated
in [1] as an N-ary constraint satisfaction problem
for fixed integer N. In this paper, we generalize
the formulation to allow for multi-dimensional
constraints. Qur new formulation will also aid in
the development of the hardware designs to be pre-
sented.

Let U be a set of objects called units, and L
be a set of possible labels for those units. Let
Tec {fif ¢ U} be the collection of those subsets
of units “from U that mutually constrain one

another. That is, if f = {uT, Uy, 5 8 g uk} is

an slement of T, then not all possible labelings
of u1,...,uK are legal labelings. Thus there is
at least one label assigrment 11, 12, S lk

.

so that U, having label 11, us having label 1oy

" h, having label 1'.(

% is a rorbidden

labeling. T is called the unit constraint set.

Finally, let Re {g{gcU=xL, g single-val!:ied,
and Dom(g) ¢ T}~ be the Set of unit-label mappings
in which constrained subsets of units are mapped to
their allowable subsets of labels. If g =
{(u1,l1),(u2,12), .. ' (uk,lk)} i3 an element of

R, then Usy Un, <y b, are distinct units,

[uT,u2, T uk} is an element of T meaning

Upr Uy, Uy mutually constrain one another,

and u, having label 11, us having label 12,
. , and u, having label lk are all simultane-
ously allowed.

In the consistent labeling problem, we are look-
ing for functions that assign a label in L to
each unit in U and satisfy the constraints
imposed by T and R. That is, a consistent lzbel-
ing is one which when restricted to any unit const-
raint subset in T yields a mapping in R. In
order to state this more precisely, we first define
the restriction of a mapping. Let h:U-=>L be a
functicn that maps each unit in U to a label in
L. Let f c U be a subset of the units. The res-

triction h{f (read " h restricted by f ™) is
defined by h:f = {(u,l) €h | uG f}. With this
notation, we define a consistent labeling as fol-
lows,

A function h:U —> L is a consistent labeling
if and only if for every f 6 T, hif is an element

of R. (1

A Simple Exgggle
Suppose the inputs to the problem are as fol-

lows:
Uz {1, 2,3, 4; 5]
Lz {a, by o}
T=i0) unnary constraint
{1 2Y; binary constraints
12; 5k
{1, 3, 43} ternary constraint
B={ {(1,a)},{(1,0)1}, unary constraint
{(1,a),(2,a)},
{(1,a),(2,0)}),
{(1,b),(2,0)1, binary constraints
{(2,a),(5,a)},
{L2,8)(558)};
{(1,a),(3,a),(4,e)}, ternary const-
raints
{(1,0),(3,2),(4,a) }}
Then h = {(1,a) (2,a) (3,a) (U,e) (5,a)l is a
consistent labeling. To see this note that
B g4 = (0@ A (1,23 = ((1,2),2,2)}, n |
2,5 ° {(2,a),(5,a)}, ad h | (1,3,4) °

{(1,a),(3,a),(4,c)} are all elements of R.

Some Examples of Real Consistent Labeling Problems

A School Time-Tabling F
scneduling of lessons over
one week, assuming that ciructors have a.. -ady
been assigned to lessons. e problem is to - sign
to each lesson, a time and classroom satisfyirz the
constraints that 1) any pair of lessons z:tended
by the same instructor or students must be at dif-
ferent times and 2) no distinct pair of lessons is
assigned to the same time and room. This problem
fits the consistent labeling model as follows.

em We consider :he
iixed period sucn as

U 1s the set of all 1lessons. If there are
three history lessons, then there are three sepa-
rate elements of U. L 1is a set of pairs of the
form (time, classroom) which inecludes all possible
lesson times and for each time, all possible class-
rooms available at that time. The unit constraint
set T consists of unary constraints and binary
constraints. The unary constraints are for thos-
lessons that a priori cannot be scheduled in a par-
ticular (time, classroom) pair. The binary const-
raints consist of all pairs of distinet lessons
since 1) these are constrained not to meet in the
Same classroom at the same time and 2) a subset of
these are constrained not to meet at the Same time.
From this we get

T 5= T1 u T2

where 1'.l = {{u} | u€U and u cannot be sche-

duled at time t, classroom ¢ for

some pair (t,ec) & L}
and Ty = {{ug,ust b us,us GU and u, £ u.}.
Furthermgre, R l’ﬁz UR T’Uzﬂ where 1 2
1 21 22
Ry o= ({0u, 13} 4 (ub 6 T, and a priori know-

ledge says that label 1
assigned to u}.

can be

R21 = [[(u1,11),(u2,12)}] iu1,u2} [T2 and

l1 £ 12},
and 592 = {{(u Ly (us, 150 1 {ug,un) €T, there
- exiéts a pe;sog who must Sttend both u,
and upy and time(l,) £ time(le)}.
Other constraints can be added ts the model as
required. For instance if there are pairs of les-
Zons that must Se given in consecutive hours, we
z2n define
-7 . 1 [o
T3 = l{U1,d2} L Upu, 6 U and U, must be sche

duled the hour after u.}

and R3 = i{(u1.11),(u2,12)] i [u,,uz} G T3 and

time(l,) = time(l1) plus one nour}.

A Three-Dimensional Packing Problem The problem
is To'TIT 5 given collection of solid objects into
a box. Some of these objects may be placed on top
of others. For simplicity, we partition the inside
of the box into unit cubes, designated by the coor-
dinates of their centers, and assume that all
objects are made up of uniquely named unit cubes
whose sides will always be parallel to the sides of
the box.

For this problem, we let U be the set of unit
cubes that make up the objects and let L be the
set of possible (x,y,z) coordinates specifying
those positions in the box that can coincide with
unit cube centers. The unit constraint set T
consists of two kinds of constraints. First, for
each object, there is a set of unit cubes repre-
senting that object. For each such element of T,
there are in R, mappings corresponding to each
positional shift and each allowed rotation of the
object represented by that element. If, for exam-
ple, we wish to prevent a particular cbject from
being packed upside down, then we allow in R no
mapping of the unit cubes of this object to coordi-
nates wnich place the object in an upside down
position. The second kind of constraint in T 1is
that all pairs of units are constrained not to have
the same label. Thus we have

Tz T1 U T2 where

-]
'I‘1 = [{u1,u2,....uni} P Uy ey uni
are the unit cubes of the i'th object}
and

T2 - [[uj,uk} P Uy e U, J £ Kkt
for unit constraints. For allowed mappings, we
have

= R, U R, where

R
Ry = {{(u1,l1),(u2,12),...,(u 1)4

ni' ny
[u1,u2,...,uni} ¢ T and positioning the
center of cube u, at leocation 11, the

center of cube u, at location 12,...,

at loecation 1

the center of cube u
ny n

represents an allowable
object I in the box) and

placement of

Ry = {[(uj'.lj).(uk,ikn ! [uj,uk} ¢ T and 1

2 1.

We can determine how to pack the box by finding
3 2onsistent labeling. If no consistent labeling
zan be found, then it is not possible to pack all
of the given objects in the box.

further examples of consistent labeling protblems
have been formulated mathematically elsewhere [1].

A Constraint Propagation Algorithm for Consistent

Labellng Problems

Various algoritims have been theoretically and
experimentally explored in (1] and (5]. In the
present paper, we will consider just one simple and
computationally efficient approach.

In the standard backtracking tree search to find
a consistent labeling, a mapping (initially empty)
is extended by adding a new unit-label pair so that
the partial mapping defined so far satisfies all
the constraints. Such a search can investigate
mary useless branches of the tres when a partial
labeling is consistent alone, but actually has no
consistent extension to the remainder of the units.
Many times such partial mappings having no exten-
sions can be discovered with a small amount of
constraint propagation work. In these cases, the
subtree to be searched below the partial labeling
can be eliminated as not containg any consistent
labeling, and the tree search can continue by try-
ing the next label for the current unit or, if
there are no labels left, then backtracking.

The constraint propagation technique is the
natural generalization to forward checging dis-
cussed in [5] and corresponds exactly to forward
checking for the case of binary constraints. The
constraint propagation is done immediately after a
label is instantiated for t.e current unit., It is
the constraint of this assigmment combined with the
older label assigrments which is propagated forward
further constraining label possiblities for future
units. The unit constraints participating in the
propagation are those unit constraints f T con-
taining the current unit and having at least cne of
their units be a future unit. We call the set of
constraints participating in the propagation Q.
The constraint propagation consists of restricting
gach unit's current or future possible label
assigrmment to exactly those labels common to the
set of labels permitted by each of the constraints
participating in the propagation., If as a result
cf the propagation, there is no label for some
unit, then the current ‘partial labeling cannot be
completed to a consistent labeling and the tree
Search must continue by instantiating the next
label for the current unit or, if there is none, to
backtrack.

We denote by UF (future units) the set of units
not instantiated. These are the ones having no
labels assigned so far. The set Q of constraints
participating in the propagation is defined by Q=
{(fE€T) (FNUF) £ @ and f contains the cur-
rent unit}.

We denote by H, H ¢ Ux L, the relation of pos-
sibie label assigrments currently permitted for

e}
2ach unit. If u ¢ UF° then

(1) {u,1) S H implies that 1
instantiated label for unit u

12y {u,1) S H and (u,n) S H imply n =
1 since only czne label can bhe
3ssigned to an instantiated unit

is the

If u 6 UF, then u is a unit yet to bhe
instantiated and H(u) i3 the set of labels still
permitted for unit u. The way H and the const-
raint propagation work in the tree search, it is
guaranteed that H is defined everywhere (H(u) £ @
for every u).

The constraint propagation replaces H by a
relation that is possibly smaller and certainly no

larger. The new H is given by
H<— () RH,D
feQ
where
R(H,f) = {(u,1l) 6Ux L |
either 1Y ugf
or 2) ué& f, and there exists g ¢ R with
(u,1) g, satisfying dom(g) = f and
g = H }.
Thus 3(H,f) is the set of unit-label pairs

“hat the constraint f does not rule out. By the
definition of consistent labeling, a funetion
h:U-=>L is a consistent labeling if and only if
for avery f ¢ T, h:f is an element of R. From

this it immediately follows that a funetion h
satisfies h = Jﬁ\ a(h,f) if and only if h is a
eT

consistent labeling. This relationship for h is
interesting in that it shows that one part of h
does constrain another part. From this relation-
ship it follows that the single-valued completion
of any incomplete labeling H must 1lie in f’\

f T
R(H,f'). Thus, if this intersection is not defined
everywhere, then the partial labeling H so much
constrains the labels of the future units (those
not yet having a fixed label) that there is some as
yet future unit that has no possibilities left for
its label.

To illustrate the backtracking algorithm employ-
ing the look-ahead technigue, we give a recursive
procedure. The inputs to procedure TREESEARCH are
UF: the set of units requiring labels (initially
all the units), T: the unit constraint set, R:
the allowable unit-label mappings. and H: the par-
tial or incomplete labeling (initially H = ({u,)
¢ Ux L i (u,1) 1is not ruled out by any constraint
in R}. Note that all umary constraints have been
removed from T and used to produce the initial
H.

The predicate ISEMPTY returns true if its argu-
ment is an empty set and false otherwise. The
predicate DEFINED-EVERYWHERE returns true if {ts
argument 1is a set of unit-label pairs including
every unit and false otherwise. The procedure OUT-
PUT outputs a mapping. The function LELETEFIRST
removes and returns the first element of its argu-
zent set. The function RESTRICT inputs a binary
relation H, aunit u and a label 1 and returns
a new binary relation consisting of all pairs
(v,m) such that if v = u, then m = 1. Procedure
TREESEARCH is given below.

procedure TREESEARCH (UF,T,R,H)
u:= LELETEFIRST(UF);
Qi={f €T | f FUZ£8anduc¢ £}
S:= {1} (u,1) ¢ H};
while not ISEMPTY(S) do

begin -

1= DELETEFIRST(S);
H, ; = RESTRICT(H,u,1)

H' = R(H)
A/;\Q u,l

if DEFINED EVERYWHERE(H')
then if SINGLE VALUED(H')
" then QUTPUTTH')
else call TREESEARCH(UF,T,R,H’)endif
endif’;
end;
return;
end TREESEARCH

For the simplified example of Section 2, we have
initially
UF = U = {1,2,3,4,5},

T = {{1,2},(2,5},{1,3,4}}
(the unary constraints have been removed ,
since they will be used to determine the
initial H),

R= [f(1.a),(Z,a)}.[(1.a),(2.b)},[{?.b),(E,b)},
{(2,3),{5,8)}.{(2,b),(S,C)}q{(1sa},(3ra)1
(4,e)},{(1,b),(3,a),(4,a)}}

(the unary unit-label pair sets have been
removed here also), and

Hii= {(T,a),(1,b),(2,a),(2,b),(3,a),(u,a),
(4,0),(5,a),(5,e)}
(the initial R was used to determine the
legal labels for each unit.)

In the first call to TREESEARCH, u
1, UF to {2,3,4,5}, and S to {a,b}.
set to a, S reduced to {b},

is set to
Next 1 |is
and Hu 1 becomes

{(?,ai,(2,a),(2,b),(3,a),(4,a),(N,C),(S,a),(S.c)}-
Now the constraint propagation calculates

RCH, 1, (1,2 = Tbtysh B2,
(2,0)1(3,a),(4,a), (4,0),(5,49 (5. 03]

R(Hu {2,510 = {(1,a),(2,a),
(2,0),(3,3),(4,8), (4,0, (5,40 .(5.00]

A(H 3,4 {(1,a),(2,a),

,(1,3,4) -
Y21b),(3,2),(4,0),(5,8), (5,00} |

Thus the intersection H' becomes

qr = {(1.3),(2.8).(2,b),(3,a).(N,C),(S.a),fS.c)}.
Since H' is defined everywnere but not single-va-
lued, TREESEARCH is called again. This time we
nave

UF = {2,3,4,5},

T and R remain the same, and

H=1(01,2),(2,2),(2,b),(3,a),(4,e),(5,a),(5,e)}.

In this activation, 1 becomes 2, UF becomes
(3,4,5}, S becomes {a,b}, 1 becomes a, S 1is
reduced to {b}, and Hu,l beccmes

{(1,a),(2,a),(3,a),(4,e),(5,a),(5,e)}. Now the
constraint propagation calculates

R(H, 1,{2,5D = {(1,a),(2,a),(3,a),(4,e),(5,a)}.

R(H, 1+{1:3,4D) 1is not calculated since unit 2
4

is not an element of {1,3,4}. The intersection
H' becomes {(1,a),(2,a),(3,a),(4,c),(5,a)}. It is
defined everywhere and single-valued, s0 a consis-
tent labeling has been found. The procedure will
go on to find a second consistent labeling also.

In the next seetion we discuss the way in which
special hardware can implement the constraint pro-
pagation as part of the tree search extended by a
single CPU and the way in which multiple CPU's can
be connected in a network to execute ‘the tree
search 1n parallel.

Hardware for Solving the Consistent
Labeling Program

Hardware can be designed to speed up the tree
search by using multiple CPU's and to speed up the
constraint propagation by using special purpose
memories. Section 5.1 discusses how the constraint
propagation can be implemented in hardware, and
Section 5.2 discusses how multiple CPU's can be
used to execute the tree search in parallel.

Constraint Propogation Hardware

In the hardware implementation of the constraint
propagation discussed here and shown in Figure ¥
sets and relations will be represented by bit vec-
tors and arrays. Suppose that there are N units
in U, The set of future units will be represented
by a bit vector UF of length N. Formally, UF: U
—> {0,1} 1is defined by UF(u) =1 if u is not
instantiated and UF(u) =0 if u 1is instanti-
ated. Likewise, a unit constraint element ¢ is a
bit vector, f(u) being 1 for all units u which
participate in the unit constraint. The relation
H storing currently allowed labels for units is
represented by a bit array of N rows by K
colunns, where K is the number of possible
labels. H: Ux L —> {0,1} 1is defined by H(u,l)
= 1 if label 1 1is still permitted for unit u
and otherwise.

The unit constraint set T is a bit array whose
rows are the bit vectors f, each row representing
some particular unit constraint. The number of
rows in T 1is the number of unit constraints. T
is stored in a special memory called the unit
constraint nemory, whose words are the rows of T

and which has associative memory operations. The
associative memory operations consist of a load
operation and a pop operation. Load inputs the bit
vector UF wnich has ones in those positions cor-
responding to uninstaniated units. After a load, a
pop operation outputs into the buffer register the
next unit constraint bit vector in memory having
some bit position with value 1 and not covered by a
1 in" the corresponding bit position of the bit
vector UF which was last loaded. Associated with
the pop operation is an empty status signal to
indicate whether there was in fact a word which was
popped or whether there were no words left to be
popped. This status signal is 1like g stack empty
status signal.

If the empty status signal indicates that a
constraint vector was popped and loaded into a buf-
fer register, the operation continues in a special
memery called the unit 1label constraint memory,
which accepts for its inputs the unit constraint
vector f just popped and the current labeling
array H. The memory returns R(H,f), a bit array
of unit label pairs like H, and ANDS this into the
register in which H resides. If a combinational
logic check succeeds indicating that every unit in
the modified H has some label not yet ruled out,
then the cycle continues retrieving the next const-
raint from the unit constraint memory. If the com-
binational logic check fails, then the tree search
must continue by instantiating the next 1label for
the current unit or, 1if there are none, by back-
tracking.

The combinational logic check, which produces
this signal called the propagation status indica-
tion, is itself simple. Since each row of H
holds the labels not yet ruled out for the unit
associated with the row, the combinational logic
check must OR the values across the row and then
AND these ORed values down its column. If the
resulting bit is a 1, the propagation status indi-
cator is a 1. ¢ If the status is a 0, then there
is some unit having all labels ruled out and the
tree search must continue in the next subtree.

Network Computer Implementation

Even after setting the problem up with const-
raint propagation, the execution time may be into-
lerably slow for man-machine interactive school
timetabling er for real-time control of an auto-
matic packing machine. To reduce elapsed time for
finding consistent labelings, we can subdivide the
Search tree into N 3ubtrees and use N separate
processors to search these subtrees simultaneously,
with no need for any synchronization between these
fully independent processors. Each processor could
have its own constraint propagation hardware as
discussed in the previous section as well.

A specific method for this is to partiticn the

label set L into N subsets. L yoesglags The
first processor would try to solve 'the consistent
labeling problem, restricting the label assigned to
the first unit to come from L1. The second proces-

sor would try to solve the consistent labeling
problem restricting the label of the first unit to
come from L2, and so on. Each processor would, to

avoid memory access delays, have its own memory
containing copies of all required data and code,
and would execute the backtrack algorithm of sec-
tion IV, thus searching a disjoint subtree.

Unfortunately this simple idea may not make
optimal use of the N processors to find all con-
sistent labelings in minimal elapsed time. For it
is the case that even if each of the N Subsets
contains the same number of possible labels, the N
processors may not all take an equal amount of time
to complete their subtree search, exactly because
of differences in the effectiveness of tree prun-
ing. Practical experience with algorithms of this
type suggests that the elapsed time for one proces-—
sor may turn out to be many times greater than that
for another. Processors that have finished their
work may wait idly for others to finish. Thus by
using N parallel processors we may not succeed in
reducing the overall elapsed time by a factor of
N.

Overall elapsed time could be further reduced by
interconnecting the N processors in a computer
network as in [2]. (One of the many possible oper-
ating policies 1is that when a processor completes
its subtree search it interrogates all other pro-
cessors that are still searching and then takes
over half of the remaining search of the processor

REFERENCES

(1] R. M. Haralick and L. G. Shapiro, "The consis-

tent Labelling Problem, Part 1", IEEE Trans.
Pattern Anal. Machine Intell. VoI. PRANTI-T,
pp. 173-18%, 4pr 79, Part II, IEEE Trans.
Pattern Anal. Machina Intell., VoI. PAMI-Z,

Y. 3, pp. 193-203, May 1980.
{2] 0. I. El-Dessouki and W. H, Huen, "Distributed
cnumeration on Network Computers", IEEE Trans.
Comput., Vol. C-29, pp. 818-825,™ September
1980. '

[3] C. Cherry and P. K. T. Vaswani, "A New Type of
Computer for Problems in Propositional Logic,
with Greatly Reduced Scanning Procedures",
Information and Control, Vol. 4, pp. 155-168,

September 16987.

(4] G. Schmidt and T, Strohlein, "Timetable Con-
struction - An Annotated Bibliography", T[he
computer Journal (British Computer Society),
olume 23, pp. 307-316, Novermber 1980.

{5] R. M. Haralick & G. L. Elliott, "Increasing

Tree Search Efficiency for Constraint Satis-~

faction Problems", To be published in Artifi-

cial Intelligence,

N

whose search is furthest
this processor to

from completion, leaving
complete only the other half of
1ts subtree search. Wnen this network starts oper-
ating, with all processors searching (hopefully)
equal-sized subtrees, there are at first no delays
due to exchange of messages between processors.
When more and more processors finish Searching sub-
trees, more and more messages are exchanged, and
this eventually constitutes a significant overhead.
To prevent this overhead frem exploding, we impose
a restriction that no processor ever starts search-
ing a subtree of less than a threshold size: 1if no
subtree greater than or equal to this size is
available for a processor then this processor
becomes idle and i3 in effect deleted from the net-
work. The threshold size should of course be cho-
3en so as to minimise overall elapsed time.

This networking policy depends on splitting the
subtree whose search is furthest from completion.
How far a processor is from completion of a subtree
search 1s easily determined by the number of not
yet instantiated units.

Simulation of a variety of network architectures
uniformly indicates that all other things being
equal, (1) processors should eXecute the search in
a depth first rather than breadth first manner so
that there are as large subtrees as possible which
the busy processors can give to a free processor,
(2) busy processors should first hand off Subprob-~
lems to the free processors least centrally lecated
in the network wherever there i3 a choice.

empty
status
indiecator p!np llad
v Tree Search
N cry
| i
select load/AND Propagation
Status
Indicater
Unit Label
Zonstraine H

Figure 1 illustrates a block diagram of the

constraint propagaticn hardware.

