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ABSTRACT

Automatic classification of remote sensed data
is a necessity since satellite remote sensors currently
on the design board are expected to gather more data each
hour than could be analyzed by traditicnal methods in a
vear. A machine which could determine the structure of
the sensed envirenment by grouping together similar data
signals and relabeling these signals with the same label
would reduce both storage requirements and transmission
times for the remote sensor in addition to doing pattern
recognition in space or on the ground,

The paper is introduced by a discussion concern-
ing the adaptive process of how predictive madels of an
environment can be generated. This discussion leads
into a mathematical description of such a model for pattern
recognition. The model was programmed for the GE 625
and four possible combinations of transmitted and received
like and complementary polarized K-band radar images of
agriculture in western Kansas were used as data,

Resulis confirm that various categories of vegetation
such as alfalfa, grain sorghum, wheat stubble and com can-
not be distinguished from cne another on the basis of their
structure within the radar data. This suggests that for
patiern recognition purposes, certain categories may be expanded
with little or no information loss and an increase in efficiency
of the pattern recognition process. Further it also suggests
that if the investigator wants to distinguish between the
confused categories such as alfalfa, grain sorghum, wheat
stubble and corn, an additional sensor must be used which
can make the distinction.

Non-imaging sensor systems such as geiger counters magnetometers, gravity gradiometers,
spectrometers, photometers, and particle counters at present are collectively gathering a quarter
billion bits of information per day. Some planned high-resolution imaging systems are expected
to gather by themselves over three biilion bits of information per day. This makes automatic
pattern recognition of remote-sensed data a necessity. Qver one hundred thousand analog tapes
of remote sensed data are stored in ESSA's library and about two hundred additional such tapes
are created daily. The only way such a great volume of information can be utilized is by auto-
matically recognizing the pattern of relationships which exist within the data.

A pattern-recognition system is one kind of system which determines the relationship of

category or type. We will endeavor to describe an adaptive pattern-recognition system, which

needs no teacher, is easily built, and is able to automatically classify data. The system we
describe has been simulated and tested with agricultural radar images, and the results of the test
will follow the description.

A pattern-recognition system takes patterns for inputs and produces outputs which are either
direct symbols for categories or binary M-tuples which form a code for categories. The input
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patterns form N-tuple of measurements {or sometimes their binary code) taken of some environment.
Each component of the N-tuple could represent the output of one sensor system. Figure 1 iilusirates
the pattern recognition process.

We begin with a few elementary definitions. A system is a structured device which produces
an output related to its past and present inputs according to some deterministic or probabilistic
rule. The rule is called the structure of the system. If the output is related only to the present in-
put, the system is memoryless. If the output is related to both the past and present input, the sys-
tem has memory. If the form of the rule at time t depends on some of the inputs before time t, then
the system is changeable; ctherwise, the system is fixed.

An example of a memoryless fixed system could be a radic, the electromagnetic field at its
antenna being considered the input and the acoustical field generated by its loudspeaker being con-
sidered the output. It is memoryless because the output does not depend on previous inputs:
only on the present input. Past radio programs do nct influence the radic's present operation. An
example of a fixed system with memory could be an adding machine, the buttons pushed on the key-
board register being considered the input and the number displayed on the carriage register or paper
tape being considered the output, The adding machine has memory of the sum of all the past inputs.
Examples of changeable systems can be found in any of the self-learning, self-organizing or adap-
tive systems.

A pattern-recognition system can either have a memory or be memoryless, and can be fixed
or changeable. If the system changes its own structure the change will, if it is to be meaningful,
depend on the input-pattern sequence, so that the present state of structure will provide some indi-
cation of past input history; hence, a seli-changeable system is a system with memory. Fixed
pattern-recognition systems have limited use, since the precise transfcrmation from inpui pattern
to category type must be known beforehand. With the present state of the art for imaging sensors,
prior knowledge is a strict requirement. Radar images, for instance, can be calibrated at best to
only 3 db from the initial transmitied signal to the final developed image, Different pictures taken
with the same sensor system of exactly the same environment at two different times can vary by a
two—to—one gray scale variation. A fixed pattern-recognition system would have little use here,
because the data has an unknown bias. All of its information is relative to the bias levels. Thus,
what is needed is some kind of pattern recognition system which can change or adapt according to
the biases and stochastic non-linearities of the sensor system and according to the structure of
the environment sensed, so that the structure of the patiern-recognition system is optimum for the
kind of job it is suppesed to do.

The set of all logically possible measurements we will call measurement space, To each
point in measurement space a pattern-recognition system assigns ong category, so that the set of
points which are assigned teo each category forms a cell in a partition of measurement space, as
illustrated in Figure 2.

The pattern-recognition problem is usally presented as follows: The investigator forms I
training sequences Si' i=1,...1 of measurements such that the measurements in the ith sequence

all represent measurements of objects which the investigator knows are in the ith category. The ith

sequence actually is a sample from the ith population, which is a population of objects in the ith

category. It is possible for the same measurements to occur in several sequences so that it is a
problem to decide what category to assign to such measurements. Given the sequence Si’ i=1,...1,

the investigator would like to find a degision rule (equivalence relation) which partitions measure-
ment space inte I cells so that the ith cell contains the set of measurements which are most repre-

sentative of the ith category. A pattern-recognition system is a system which has such a decision
rule for its structure., Since the structure of the system is determined from the training sample we
may say that the system has memory relative to the training sample.

With the problem posed in this way, there is no guarantee that the categories which the
investigator makes up are really representative of the structure of the measurement space. Hope-
fully, the categories and sensors chosen present each category as an isolated cluster in the measure-—
ment space. However, this does not always happen: sometimes there are two clusters in the
measurement space which the investigator groups together as the same category. In this case,
structural information of the measurement space is lost, since once categorization is done there can
be no further distinctions made between these two clusters. Sometimes what the investigator calls
two categories actually form only one cluster in the measurement space. In the first case the
investigator is losing information, and in the second case he is wasting effort.

On the basis of these ideas we will restate the pattern-recognition problem. Given an em-
pirical probability distribution on measurement space, we would like to find a rule (equivalence rela-
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tion) which partitions measurement space so that each cell of the partition represents a cluster or
similarity set in measurement space, Each point in such a set is similar to every other point in the
set because they all belong to the same grouping or cluster.* Pattern recognition, approached from
this perspective, becomes a method of handling data in terms of families of aggregates, each aggre-
gate being a cluster of points.

The information which a measurement conveys to the investigator is not contained in the pre-
cise values of the components of the N-tuple, for those values, if perturbed just a little, would stiil
usually give a measurement conveying as much information to the investigator as in the unperturbed
case. Rather, the information which a measurement conveys to the investigator is centained in the
aggregate family to which it belongs.

We illustrate this idea about information: suppose there are five different kinds of objects
or cecurrences in the environment sensed, Further suppose that to each object or occurrence there
corresponds an ideal measurement, the measurement which would be made if the environment were
not stochastic and if the sensor system were accurately calibrated, completely linear, and ncise-
less. However, due to all the conditions mentioned, measurements of the same object or occurrence
will deviate a little from the ideal, distributing themselves around the ideal as illustrated in Figure 3.
Since these deviations were caused by the random effects of the environment, thermal noise in the
sensors, etc,, the investigator is not interested in their exact values. In a classification problem
the only item of interest is: which object or occurrence caused the measurement we made--i.e.,
which aggregate family does the measurement come from?

A pattern-recognrition system which would handle the data in terms of aggregate families
would have large application to the remote sensing field. Withouf any knowledge or training from
the investigator, the system could transmit back the occurrence of an aggregate family instead of
the actual measurement made. This would yvield a large saving of channel capacity and preserve
the information in the structure of the envircnment sensed.

The problem, then, is how to go about designing such a system., The key o this lies in our
understanding of similarity. Similarity of measurements means that the difference between the
measurements is statistically unimportant. The reason the difference is unimportant is that two
measurements which are similar both belong to the same cluster {to the same aggregate family), and
what characterizes the location of the cluster alse characterizes the location of the measurements
within it. Thig is the basis of similarity.

Clusters could be located by finding subsets of measurement space whose general location
alsc characterizes the measurements within it. Location implies a given metric, however, the gen-
eral preklem may have a measurement space which can have no metric on it at all. The generali-
zation of location may be easily done with measures of concomitant variation, an example of which
follows. Suppose we have in mind a subsel which we think is a cluster. Every time a measurement
occurs which is in the subset, we will designate it "a.” Every time a measurement occurs which
ig not in the subset, we will designate it "b." Here there is a 100% concomitant variation of the
measurements in the ciuster designated by the letter ”a." If we wanied to remember these associa-
ticns, we could store all those points designated by the letier "a" in one place in memory and
those points designated by the letter "b" in another place in memory. However, if the measure-
ment space has high dimensionality, as in multi-sensor systems, it would have s¢ many points with-
in it that storing all the associations would be almost impossibie if not a waste of machinery and
money.

Thus we divide each measurement inte @ number of characteristics, just as we could divide
the perception of a chair into a number of characteristics which describe it. For the chair, these
might be:

characteristic 1-2 == number of legs, 3 or 4

characteristic 3 -= hack or no back

characteristic 4 ~=if back, is it hard or soft

characteristic 5 -- gsoft or hard seat

characteristic 6 ~-— arms or armless

chatacieristic 7-14 -- color of vpholsiery; red, orange, vellow

green, blue, indigo or violet

characteristic 15-18 -- material of upholstery (cotton, leather,
or plastic}

*We will use the concepts cluster and similarity set interchangeably. When the emphasis is on geo-
metric compaciness we will use the concept cluster. When the emphasis is on the similarity of the
points within a cluster, we will use the concept similarity set.
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Now we try to find the association between the letter "a" and each one of the characteristics .
If "a" is always associated with the occurrence of the ith characteristic, then a measure of concomi-
tant variation between the letter "a" and the ith characieristic would attain its maximum. If it is
never associated with the occurrence of the ith characteristic, then a measure of concomitant varia-
tion between the letter "a" and the ith characteristic would attain its minimum. To find the total
measure of concomitant variation between a measurement and the letter "a, " we could appropriately
sum the individual measures between each of the characteristics and the letter "a." If we wanted
to compare the general characteristics of the subset (associated with the letter "a "} with any one
of the measurements belonging to it, we could use the measure of concomitant variation backwards
We could ask: given that we have a measurement which has been assigned the letter "a," is each
characteristic more likely to be associated with the letter "&" or is it more likely not be asscciated
with the letter "a"? To answer the question, we could look at the measure of concomitant variation
between the ith characteristic and the letter "a." 1If it is larger than its neutral concomitant-variation
value, then we could answer by saying that the ith characteristic is indeed associated io some extent
with the letter "a"; if it is less than its neutral concomitant-variation value, then we could answer
by saying that the ith characteristic is not associated with the letter "a.” Using such a measure of
concomitant variation, a system could find a cluster by finding a subset of measurement space for
which the general characteristics of the subset are sufficiently related to its measurements . This
relatedness is a relation of prediction or estimation.

A subset of measurement space can be called a cluster if we are able to predict or estimate
the kind of measurements which are representative of it from the characteristics we have chosen.
The kind of system we seek, then, is one which produces an output from which it can predict the in-
put measurement or some similar measurement. Such a system is an adaptive system with a predictive
criterion.

An adaptive system is one which examines its own output, evaluating it according to some
built-in criterion, and then modifies its structure in a way which tends to improve the evaluation of
the output. A predictive criterion is one which attaches high value to the ability of the system to
predict or estimate the input pattern or some similar patfern, given only the ocutput,

We nowproceed to design a system of the type we just described, Itis a ftwo-layered*
adaptive system with a predictive criterion, First the following definitions are in order: let

N.
L, = {1..} Y, i=1,...K be the set of possible quantized measurements from the ith sensor in a total

ijid_
j=1
of K sensors. Measurement space G is the set of all possible measurements; G = L1 X L2 X, 00X I’K'
For any subset A of G, AcQG, define A, = Acwhen d=1 Construct characteristic or feature sets
! ! d A” whend=-1"

Ei, i=1,...K such that the probability of Ei is strictly greater than zero P (Ei) >0, and for every

&
1 N
geG where P {g) > 0, there exists a vector § (g) =<§2> such that {g} = N Eiﬁ . Let the pattern set
= i
Sn

Abe the set of all such possible vectors. A pattern here, is considered ta be, not the measurement
vector itself, but a binary-coded N-tuple of the measurement vector.

Of course, measurements are not naturally hinary but usually analog. At some point in the
recognition process, if only during transmission the analog measurement is quantized and converted
to binary form. The binary code is determined by using information-theory technigues on channel
capacity and noise distribution. However, the binary N-tuples which we have called patterns
have little to do with such transmission codes. Rather, the binary codes which form the patterns
have to do with feature or characteristic sets. We illustrate this in Figure 5, where the large
rectangular area represents measurement space. The fine partition on measurement space represents
the quantizing. Each measurement which occurs within a particular cell of the partition will have
the same quantized value. The outlined area represents a connected subset of measurement space.
Each point within the subset is close o other points within the subset. Such a subset can be called
a feature or characteristic set, since it characterizes in this particular case what we can loosely
call the upper-left-hand corner of measurement space. If a measurement is made which belongs to
the characteristic subset, we can coede the ith component of the pattern corresponding to the measure-
ment as a binary 1; otherwise, as a binary 0.

* The term layer is used in accordance with the terminology Rosenblatt developed for his perception
devices. In the perception, a laver refers to a grouping of associative units which function together.
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This kind of coding is quite different from a regular binary code. Suppose that the measure-
ment vector has twe components and that each component is bounded by 0 and 4 inclusive. Measure-
ment space quantized by unit intervals is illustrated in Figure 5. A regular binary code for the guan-
tized measurement can be formed as follows:

{©,0) 00 00 (2,0 10 00
{¢,1) 00 01 (2,1) 10 01
{0,2) 00 10 2,2) 10 10
{0,3) 0D 11 2,3 10 11
(L,0) 0i 00 (3,0 1l 00
{1,1) 01 01 (3,1 11 01
(1,2 10 01 (3,2 11 10
(1,3 01 1% (3,3 Bl 11

The first two binary bits represent the binary code for the first component while the last twa binary
bits represent the binary code for the last two components,

Figures 6, 7, 8, and ¥ illustrate the characteristic sets which would correspond to the first,
second, third and fourth binary bits in the code,

In general such codes do not have corresponding characteristics which actually characterize
a connected neighborhood in measurement space, In fact, the 2nd and 4th bit just indicates whether
the first and second components are even or odd. Whether a quantized measurement is even or odd
does not have the slightest bearing on recognizing categories such as corn or wheat.
Y1
For any S-dimensicnal real vector V =| v, | let the funstion Sgn: 8° {-1. l}S be defined
Vs
B +1 if v, -
by Sgn (V) = By | where Py =

<1<

>0 S n
50,1=1,...Sandv= Zvi. Letn=| 5, | be the
i=1

o=

-1 if Vi~
M
binary {—l ,1} code for the output categories. The form of the structure for the first layer of the
adaptive system is defined by the equation n = Sgn (QTS) where Q= (qij) is the matrix of concomi-

tant variation coefficienis and 5 is the input pattern vector. The first layer is illustrated in Figure
19.

Each qij is a measure of the concomitant variation between the ith pattern characteristic with

the jT-h similarity set characteristic. If it generally happens that when a pattern has the ith charac-
teristic, the similarity set intc which it is classified has the jth similarity set char%gteristic, then
q,. will be positive. If it generally happens that when a pattern does not have the i™ pattern
cHaracteristic, the similarity set into which it is classified does not have the jt similarity set

characteristic, then qij will also be positive. In the other two cases qij will be negative. Thus

N

z f’i qij is an overall measure of concomitant variation between the input pattern & and the jth

i=1

similarity-set characteristic. If this sum is great enough, the system will decide that the similarity

set to which it will classify § will have the jth similarity set characteristic: otherwise it will
decide that it does not.

The binary {-1,1} vector n is the output of the system. p is a function of the input 6 and
the present Q matrix, which is conditioned by past inputs. The system tests its output 1 by forming
a prediction or estimatior of 8. This is done in the second laver of the system whose structural
form is described by the equation § = Sgn (Qn), and is illustrated in Figure 11, The vector ¥ is the
system's prediction or estimation of &, the input pattern. The output is evaluated by comparing §
and % component by component. The system then modifies the appropriate elements in the Q matrix
in @ way which tends to improve the prediction or estimation, %. An adaptation rule of the sort

qij (t+ 1) = qij {t) + ¢ 8, n |6i - ﬁ“i | can produce just such a change. Suppose 8 = ’81., then there

would be no change since |ﬁi - %i | = 0. Suppose 6, =1 and ’3‘1 = -1, an error situation. In order
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M
for this to happen, E 9 My is small; therefore, the system increases each term in the sum by an

k=1
appropriate change in each Ui s k=1,...M. To increase each term gy ™y the system must increase

Uik if = 1l and decrease qik if n = -1. Suppose ﬁi = =1 and E'i =1, alsc an error situaticn. In
M
order for this to happen, z %y M is large; therefore, the system decreases each term in the sum hy

k=1
an appropriate change in each qik' k=1,...M. To decrease each term qik e the system must de-

drease AR if . = 1 and increase o if m = -1. We may summarize these changes in the table of

figure 12 and compare them with the change ¢ 'Si 7 [5i - % produces .

i |

An adaptive pattern-recognition system of the kind just described was simulated with the
GE-825 computer, using K-band radar imagery with polarizations HH, HV, VV taken in July 1366
over agricultural areas in western Kansas. Since automatic image digitization equipment was not
available, a few line scans across each field were manually taken at random with a micro-densito-
meter. The average of these scans was used as an estimate for the average radar return for each
field. A total of 253 such fields consisting of land-usage categories of bare ground, wheat stubble,
wheat stubble-weeds, wheat stubble-mulch, weeds, corn, alfalfa, grain sorghum, pasture, and
sugar beets were examined.

Measurement space in this example consisted of all possible three-tuples, the first compo-
nent being the average return from HH, the second component being the average return from HV, and
the third component being the average return from VV. From our data the minimum, Mi’ and the range,

Ri, {maximum minus the minimum) for the it component, 1 =1, 2, 3 was determined. The charac-

ol
teristic sets were defined as: £3 jRi G+ 4) Ri
Eijkm_ X= x, Mi+—§x.gM.+—-—-— and
*3

0 i i 10
mRk {m + ﬂl)Rk
My + 95 < =My + —5

i=1,2;j=0,...,5tk=1i+1,3; m=0,...,5. The gecmetric configuration of the characteristic
sets are displaved in figure 13,

The adaptive pattern-recognition system worked as follows. For each iteration a measurement
from the set of 253 measurements was chosen at random. Given the definition of the characteristic
sets, the system determined the § vector which corresponded to the randomly chosen measurement.
Via the first layer of the adaptive system, n, a 3 x 1 binary {—l,l} vector, was computed from
3gn Q'6. Via the second layer of the adaptive system ¥, the prediction of § given n, was computed
from 8gn Qr. The system then compared & and % and reinforced the elements qij of @ appropriately

and started another iteration.

The reinforcement parameter ¢ was chosen at .002. Values of ,009 and .02 were also tried
but they made little difference in the final classification., (There was a random shift of at most seven
points with the different values of €.} The cycling of iteration after iteration was kept up until the
total classification for all the data points, based on the updated Q matrix, did not change for more
than 30 cycles. It tock 189 cycles to reach this situation.

Figure 14 illustrates a scattergram of the data, and figure 15 illustrates a scattergram of the
data coded by their respective land-usage categories as determined from ground truth. The axes
of the scattergrams are the first two normalized eigenvectors of the covariance matrix for the data.
These axes are usually called the first two principal axes. A frequency chart, as determined after
189 cycles, of similarity sets versus the land-usage categories is shown in figure 16. Similarity
sets II and III are closely related, their difference mainly being that 01 has all the corm while II
has most of the wheat stubble-weeds. Tor illustration and basic interpreiation purposes we group
together similarity set II and III as in the chart of figure 17, If we now group together those cate-
gories which appear to occur in mostly the same similarity sets, we will obtain the chart in figure
18. Scattergram of the similarity sets {clusters) which the adaptive system determined is shown in
figure 19,

Bare ground had formed a cluster of low returns; wheat stubble, wheat stubble-weeds,
wheat stubble-mulch, and pasture formed a cluster of medium-low returns which meshed with each
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other almost completely and coverlapped with bare ground; alfalfa, grain serghum, weeds and corn
formed a cluster of medium returns; and sugar beets formed a cluster of high returns,. The chart in
figure 20 shows the conditional probability of the category group given the similarity set. The pur-
pose of this chart is to arrive at some quick intuitive interpretation of the goodness of the results.
Basically the chart indicates that the similarity sets correspond to the category groups with about an
85% probability. :

These resulis show that, without a priori knowldege, categories of vegetation such as:

(1) wheat stubble, wheat stubble-weeds, wheat stubble-mulch, and bare ground
{2) grain sorghum, corn, weeds, and alfalfa

cannot be distinguished from one ancther solely on the basis of their structure within the K-band
radar data taken during the month of July. However, from empirical knowledge, we know the returns
from bare ground are probably less than the returns from wheat stubble, wheat stubble-weeds and
wheat stubble-mulch; therefore, we may further partition the cluster of low returns into two parts,
the first part being bare ground and the second part being the wheat stubble, etc. Also, we know
that the returns from alfalfa are probably less than the returns from corn, so that we may partition the
cluster of medium returns inte twe parts, the first part being alfalfa and the second part being corn.
it is impossible to separate grain sorghum and weeds from any part withkin their cluster, so if they
must be recognized, an additional sensor must be used which can detect them separately from the
returns of other categories.

The confounding of categories within a cluster leads to the conclusicn that a pattern-recog-
nition system of the type we have described should preserve to some extent the information contained
by the locality of the pattern within the cluster. This leads to a pattern-recognition system which
finds clusters and then sets up a principal coordinate axis for each cluster, The cutput of such a
system would consist of two pieces of information, the first being the ¢luster in which a pattern
cccurs and the second being the projection of the pattern onto the principal axis of that cluster.
Figure 21 illustrates the principal axis idea. It would allow for a natural categorization by the
clusters and a finer categorization using the principal axes, where the finer categorization depends
on our empirical knowledge of the environment sensed.

The operation of such a system would closely correspond to the way our perception system
works. When we see an environment we first see the environment in an appropriate general frame
of reference. Then we examine the environment in fine detail from the perspective of this frame
of reference. The appropriate general frame of reference is analogous to the determination of
cluster (similarity set). The finer examination is analogous to the determination of the location of
pattern relative to the cluster {similarity set), i.e. the projection of the pattern on the principal
axis for the cluster.
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FIGURE 15. SCATTERGRAM OF CODED DATA PROJECTED ON FIRST TWO PRINCIPAL AXES
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SIMILARITY SET smmm‘w SET
CATEGORY I I Lt v EaTEcoRY 1 11+ 111 v
BARE GROUND 52 I i} ’ 0 BARE GROUND 52 3 0
CORN 0 0 7 2 CORK 0 7 2
veess Sl 1 2 2 0 weens Tl 10 n 0
ALFALFA a 14 15 Q ALFALFA 1} 29 [}
ggaénun 1 ) 47 1 GRAIN SORGHUM 1 69 1
R s | 0 wo o] | .
WHEAT STUBBLE 9 5 0 0 WHEAT STUBBLE 9 5 4
WEEDS 0 5 4 ¢ WEEDS 0 9 0
PASTURE 1 3 2 ¢ PASTURE 1 5 0
SUGAR BEETS 0 Q 3 11 SUGAR BEETS 0 3 1
Flowee 16: FREGUENCIES | 1 OF CATEGORY SIMILARLTY SET FIGURE 17: }c_:g:aE:Ez[;grs_Anou OF CATEGORY AND SIMILARITY SET

SIHILAR[|TY SET
CATEGORY 1 1+ 111 v

LERGUP A

BARE_GROUWD
WHEAT ﬁrumsus 70 11 0

ULC!
WHEAT STUBBLE

JEROUP B

CORN
:s WEEDS
LFALFA
GRAIN SORGHUM 12 143 3

WEEDS

PASTURF

TvRDUP <

SUGAR BEETS 0 3 1

FIGURE 18: CROSS TABULATION OF CATEGORY GROUF SIMILARITY SET
FREQUENCIES
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FIGURE 19.

CLUSTERS THE ADAPTIVE PATTERM RECOGNITION SYSTEM FOUND

CATEGORY

MILARITY SE'!I

11+ 1rt

GROUP A

BARE GRODUND
WHEAT STUBBLE
MULCH

WHEAT STUBBLE

1854

A76

GROUF B
CORN
GRAIN SCRGHUM
WEEDS

PASTURE
GROUP

146

\910

214

SUGAR BEETS

W02

786

FIGURE 20}

SEMILARITY SEY

COMDITICNAL PROBABILITY OF CATEGORY GROUP GIVEN
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Figure 2. Clusters and Principal Ads Idsa
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