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Abstract; 
This  paper describes a methodology by which more  

accurate end-diastole and end-systole lejt ventricle 
boundaries can be automatically computed f r o m  the  
initial boundaries generated by a left ven,tricle pixel- 
based classifier. First ,  the end-diastole boundary i s  
estimated f r o m  the  boundary produced by a pixed- 
based classifier. T h e n  the  end-systole apex posit ion 
i s  estimated f r o m  the  end-diastole boundary. T h e  
end-systole boundary i s  t h e n  estimated using the  end- 
systole boundaries produced by classijier and the es- 
timated end-systole upex posit ion.  T h e  methodology 
also permi ts  Q, fus ing  of left ventricle boundary esti- 
mates  produced by dif ferent techniques using a greedy 
algorithm. 

W e  used two different 'boundary estimation tech- 
niques having m e a n  errors of 3.632 mm and 3.539 mm 
with standard deviation of 3.418 mm and 3.376 mm. 
T h e  corresponding fused boundary has a m e a n  error of 
3.471 mm with standard deviation of 3.277 m m .  T h e  
initial boundary produced by classifier had a m e a n  er- 
ror of 6.4 mm with an error of 8.5 mm in apex zone. 

1 Introduction 

A left ventricle (IN) pixel-based classification pro- 
cedure was developed in our laboratory [l], to estimate 
the borders of the LV in left ventriculograms (LVG). 
Because of the low contrast in the apex zone, high level 
of noise due to scattering of X-rays by tissue volume 
not related to LV, interference of ribs and diaphram 
with LV, and breathing artifacts from the catheteriza- 
tion procedure, the classifier failed to yield boundaries 
close to as delineated by the cardiologist. The error 
was 6.4 mm. The segmented LV boundaries have a 
systematic bias errors in shape, position and orienta- 
tion. 

The overall system of boundary estimation employs 
3 sets of algorithms: identical coefficient, mdependent 
coefficient and fusion. Since the borders of the same 

LV is traced at different times; in heatrt cycle, we can 
take advantage of the knowledge of the wall motion 
of one frame to help estimate the apex position in 
another frame. The greedy algorithm for end-,systole 
(ES) apex estimation is discussed in section 3 .  The 
boundaries estimated from the two boundary tech- 
niques utilizing the apex information, is then, fused 
to improve the accuracy. 

For estimation of boundary and apex error, t,he par- 
tition protocol uses a database of N patients studies 
and partitions it into K subsets each containing $ 
studies. Estimates are then obtained using L, of the 
K subsets. Rotating through all L choose K- combi- 
nations, we measure the accuracy of the results on the 
remaining K-L subsets. Because of the small number 
of patient studies N ,  and large number of parameters 
(about 200 times N )  in the boundar:y transformation, 
there is a danger of memoriza t ion  rather than general- 
ization in the estimation of this transformation param- 
eters. With the other parameters N ,  K ,  and I ,  fixed, 
there will be an optimal number of boundary vertices 
balancing the representation error with the memoriza-  
t i o n  error. Our protocol find:; this o,ptimal number.  

2 Two Boundary Estimators 

Ground truth boundaries refer to the hand delin- 
eated boundaries traced by the cardiologist. Raw or 
classifier boundaries are the the boundaries produced 
by the pixel based classification algorithm [l] 

In the identical coefficient inethod (IdCM), the esti- 
mated x and estimated y coordinates, are computed us- 
ing the sume linear combination of raw x and L ~ Z W  y co- 
ordinates associated with that vertex of the LV bound- 
ary. In the independent coefficient method (InCM), 
the estimated z and estimated y coordinates ,are com- 
puted as a different linear clombination of the raw x 
and raw y coordinates associated with that vertex of 
the LV boundary. The problem of boundary estima- 
tion then reduces to a problem of determining the coef- 
ficients of the linear combination. This can be accom- 
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plished by solving a regression problem as discussed 
below. 

2.1 Identical Coefficient Method (IdCM) 

Let g i = [  XI,  .... zp,  ] and hk=[ VI, .... ypn ] be the 
P-dimensional row vectors of x-coordinates and y- 
coordinates respectively, corresponding to the ground 
truth boundaries for any patient n, where n = 1, ..., N .  
Let r i  and sk be the P-dimensional row vectors of x- 
coordinates and y-coordinates respectively for the clas- 
sifier boundary for any patient n, where n = 1, ..., N .  
For the boundary estimation in IdCM we are: 

e Given: Corresponding pairs of ground truth 
boundary matrix R [2N x PI, and the classifier 
boundary matrix, Q [ZN x ( I p  + 4)], respectively: 

, I  

where, u,,v,, are the vectors for x and y coordi- 
nates of the ground truth AoV plane for patient n 
and (pn,  qn) is the estimated apex coordina,tes of LV. 

a We find A [ (P  + 4) x PI, the unknown coefficient 
matrix that minimizes / I  R - Q A [ I 2 .  

2.2 Independent Coefficient Method 

Using the same notations as above, g,, h,, r ,  and s:, 
for boundary estimation of the LV in InCM we are: 

e Given: Corresponding ground truth boundaries 
R [N x 2P], classifier boundaries Q [N x (2P+ 7 ) ]  

( 1 ,  

R 

respectively: 

a We find A [(2P+7) x2P] ,  the unknown coefficient 
matrix that minimizes ( 1  R - Q A  ( I 2 .  

Thus for any classifier boundary matrix Q, the e:- 
timated vertices of the boundary are given by QA, 
where A is the estimated coefficient matrix. The above 
two methods are different in the way that the estima- 
tion model is set up. The classifier bounda,ry matrix 
Q in IdCM is of size 2N x (P+4) while in InCM is 
of size N x (2P+7). For IdCM, the number of coeffi- 
cients estimated in the A matrix is (P+4) x P. For 

InCM the number of coefficients estimated is (2P+7) 
x 2 P. Thus InCM requires around 4 times the num- 
ber of coefficients of IdCM to be estimated, and this 
difference represents a significant factor in the ability 
of the technique to generalize rather than memorize 
for our data set size which is N=312. Using the par- 
tition protocol and generalizing for any frame t ,  the 
minimizing At ,  and estimated boundaries R t ,  on the 
:est set Qte, are: 

(1) A t ,  = ( Q: Q t T ) - l  Qg R t r ,  R t ,  = Qte A t ,  - '- 

At, is calculated using a singular value decomposition. 

3 ES LV Apex ( p , q )  and LV Boundary 
Estimation Rt,: Greedy Approaches 

I rLZ,,,, Apex Computnhon 
?S Apex E s t m t m  Using ED Apcx and ED Boundary 

ngltudinal 
15 of LV 

Figure 1: Left: Computation of the ES LV apex posi- 
tion using ED boundary information (dependence ap- 
proach), Right: Computation of the apex position 
using the farthest vertex algorithm. 

(a) ED Boundary Estimation: We first estimate the 
ED boundaries using IdCM and InCM models with- 
out apex padding (fig. Z), that is ( p ,  q )  are not taken 
into consideration. (b) ES Apex Estimation: Now we 
use the InCM model, 1 1  Rt,. ~ !&, At, I\', for estimat- 
ing the transformation parameters .At, required in the 
ES apex estimation. Here, Rt, is the training ground 
truth ES apex coordinates, and Qt,  is the training ED 
apex coordinates along with the coordinates of the se- 
lected ED boundary vertices. We use a greedy ap- 
proach for ED boundary vertex selection, subject to 
minimization of error between the estimated ES apex 
position and the ground truth ES apex position (fig 1, 
left). At, is calculated the same way as in Eq. 1 but 
this time, the Rt, and Qt,  matrices are determined 
by first computing the ED apex and ES apex using 
the estimated ED and ground truth ES boundaries. 
From t,hese boundaries, the apex position is given as 
that vertex on the bottom ( i)'d LV boundary which is 
farthest from the midpoint of the AoV plane (see fig. 

258 



].,right). The greedy algorithm for ES apex estima- 
tion is as follows: Let S be the set of all the vertices, 
S e d  be the set of' vertices in the ED pool, S,,, be 
the set of vertices in the combination pool which con- 
tains the combination of ED LV apex, ground truth ES 
AoV plane, and selected vertices of the estimated ED 
LV boundary. Initially the ED apex without any ED 
boundary vertex is conisidered and the error is com- 
puted. Denote its error by €,d. Now we select that 
vertex from ED pool which when linearly combined 
with current combination pool vertices yields an esti- 
mated ES apex having an error lower than t e d .  This 
procedure is repeated until there is no further improve- 
ment. Note each time $3 new ED LV vert,ex is trans- 
ferred from ED pool to  the Combination pool~, we de- 
sign a new QtT, perforni estimation and performance. 
Using the same partition protocol, we then run the al- 
gorithm  KC^ times so that each partition becomes a 
test set. 
Greedy Apex Estimation Algorithm 
cn=O /* combination number */ 
FW all Combinations, ( K  C L )  
cn++; S,d=S; S,,,=$, ci=O, gc=O 
E& = InitialErrorNoEDe,,d( QtT, Rtr, Gtr ,  Nt,., Nt, DE,, 
* t e ,  Q t e ,  R t e ,  Gte, N ,  p) 

While (e 5 e e d )  do 
gc++ /* greedy counter */ 
For each i E Sed 

S e d = S e d  - { Z } ;  lSConl=Scom U (2 )  

Rtr= Grenerat,eR( Gt,., NtT,  P ,  gc) 
QtT= GenerateQ( Dt,, M t p ,  P ,  Sed, 8Scom, gc) 
Atr= LinearCalibrator( Q t r ,  Et,, Nt,, P ,  gc) 
7&,= Estimator(&, Q t e ,  Nt,, P )  
Q= Perform.ance(Rt,, Nt,, P ,  Rtr ) 
CurrentApexLocation(i)=;7Zte 

end 
ArgMin Comp: Min. error & best vertex J' selection 
( e m z n ,  j) =: ArgMin(e[i], (P-gc) ) 
i f (  emzn < e) then 

/* end of tbe for loop */ 

S e d = S e d  -- { j }  ; s c o m = s c o m  U { j }  
LatestApexPosition=CurrentApexPosition(j) 

else break; endif 
end / *  end of the while loop * /  
OutputESapexCoortlinates( LatestApexPosit,ion,~~~ ) 

end /* end of all combi-nations * /  
( c )  EX Boundary Estimation Utilizing Apex: Utiliz- 
ing the above estimat,ecl ES apex position, we esti- 
mate ES boundaries using boundary algorithms, IdCM 
and InCM, as shown in fig.2. (d) Boundary Fusion: 
The final ES boundary is now estimated by fusing 
the above estimated ES boundaries using the greedy 
boundary estimator [:I], where we select a fixed sub- 
set of estimated vertex positions from each technique 

EQTJNDARY CALIBRATIQN SYS'I'' 
P U Q I x  

Tot 11 stuides 
Total vcrt,cen 

Figure 2: Boundary estimation system utilizing apex 
position. Boundary data is first :sampled from 100 ver- 
tices to P2 , then partitioned into training (L) and test- 
ing (K-L) sets. A+r is estimated off-line and ELt, is 
estimated on-line. 1 pixel= 0.39 mm. 

(IdCM and InCM) which when fused together, mini- 
mizes the resulting error between the fused estimated 
polygon boundary and the physiician traced LV bound- 
ary. For the final ED LV boundary, .we simply fuse 
the ED boundaries estimated fiom IdCM and IhCM 
algorithms (step a) using the stame greedy boundary 
estimator [3]. The fused boundary for any frame (E:D 
or ES) is now B-spline fitted and interpolated back 
from P2 to 100 vertices. The last stage of the system 
(fig. 2 )  undergoes performance evaluation usin.g the 
polyline distance metric discussed below. 

4 Performance: esults & :Discusshns 
The polyline distance D ,  (B1:Bz) beiiween two poly- 

gons representing boundary B1 and 132 is symmetri- 
cally defined as the average dist,ance between a vertex 
of one polygon to the boundary of the other polygon. 
To define this measure precisel;y, first requires having 
defined a distance d(v ,  s) between a point w and a line 
segment s. The distance d(w, s )  between a point 2i hav- 
ing coordinates (zo, yo) , and a line segment having end 
points ( ~ 1 , y l )  and (z2,ya) is: 

(3) 
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The distance &(U, B2) measuring the polyline distance 
from vertex v to  the boundary I32 is defined: 

min d(v,s) (4) s E sides Bz 
db('U,B2) = 

The distance dvb(B1 ,  Ba) between the vertices of poly- 
gon B1 and the sides of polygon B2 is defined as the 
sum of the distances from the vertices of the polygon 
B1 to the closest side of B2. 

dVb(B1,BZ)  = c d(v,B2)  (5) 
W E  ver t ices  B1 

On reversing from B2 to  B I ,  we can similarly com- 
pute dvb(B2,B1). Using Eq. 5 ,  the polyline distance 
between polygons, DS(B1:B2) is defined by: 

Using the definition of the polyline distance between 2 
polygons, we can now compute the overall mean error 
of the system. It is denoted by and defined by: 

where, Ds(G,t, C,t) is the polyline distance between 
the ground truth Grit and estimated polygons C,, for 
patient study n and frame number t .  Using Eq. 7, 
the over all mean is plotted in Fig. 3. We compare 
our ruler of polyline distance metric with centerline 
method [a] developed by Sheehan, and found that we 
are better at the 3rd decimal place. As the number of 
boundary vertices P, increase, we observe that result- 
ing boundary error first drops for all three algorithms 
and then starts rising again. The greedy algorithm 
that fuses IdCM and InCM boundaries performs bet- 
ter. The optimal number of vertices was 25. The mean 
error was 3.471 mm with a std. deviation 3.277 mm. 
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Figure 3: Optimization curves for 3 algorithms: IdCM, 
InCM and Greedy utilizing the apex position infor- 
mation. Calzbratson Parameters: N=312, K=156, 
L=155, F=2,  P,=100, 5 5 P, 5 40. 

( a l )  ED Frame: G T  and Classifier or Initial 

(a2) ED Frame: GT and Calibrated (Estimated) 

Figure 4: Results of greedy algorithm after apex inte- 
gration. Upper: ( a l )  Classifier (thin) vs. GT (thick). 
Bottom :(a2) Calibrated (thin) vs. G T  (thick). Back- 
ground: gray scale X-ray image. Estimation Parame- 
ters: N=312, K=156, L=155, F=2, P,=100, P,=30, 
Mean end frame error (7) =1.30 mm, Mean er- 
ror e N F p  =3.471, Std. Deviation=3.277 mm. P O L Y  
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