Accurate Left Ventricle Apex Position and Boundary Estimation
from Noisy Ventriculograms

JS Suri, RM Haralick, FH Sheehan!

Intelligent Systems Laboratory, 'Cardiovascular Research & Training Center,
University of Washington, Seattle, USA

Abstract

This paper describes a methodology by which more
accurate end-diastole and end-systole left ventricle
boundaries can be automatically computed from the
initial boundaries generated by a left ventricle pizel-
based classifier. First, the end-diastole boundary is
estimated from the boundary produced by a pized-
based classifier. Then the end-systole apex position
18 estimated from the end-diastole boundary. The
end-systole boundary is then estimated using the end-
systole boundaries produced by classifier and the es-
timated end-systole apex position. The methodology
also permits a fusing of left ventricle boundary esti-
mates produced by different techniques using a greedy
algorithm.

We used two different boundary estimation tech-
niques having mean errors of 3.631 mm and 3.539 mm
with standard deviation of 8.418 mm and 3.376 mm.
The corresponding fused boundary has a mean error of
3.471 mm with standard deviation of 3.277 mm. The
initial boundary produced by classifier had a mean er-
ror of 6.4 mm with an error of 8.5 mm in apex zone.

1 Introduction

A left ventricle (LV) pixel-based classification pro-
cedure was developed in our laboratory [1], to estimate
the borders of the LV in left ventriculograms (LVG).
Because of the low contrast in the apex zone, high level
of noise due to scattering of X-rays by tissue volume
not related to LV, interference of ribs and diaphram
with LV, and breathing artifacts from the catheteriza-
tion procedure, the classifier failed to yield boundaries
close to as delineated by the cardiologist. The error
was 6.4 mm. The segmented LV boundaries have a
systematic bias errors in shape, position and orienta-
tion.

The overall system of boundary estimation employs
3 sets of algorithms: identical coefficient, independent
coefficient and fusion. Since the borders of the same
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LV is traced at different times in heart cycle, we can
take advantage of the knowledge of the wall motion
of one frame to help estimate the apex position in
another frame. The greedy algorithm for end-systole
(ES) apex estimation is discussed in section 3. The
boundaries estimated from the two boundary tech-
niques utilizing the apex information, is then, fused
to improve the accuracy.

For estimation of boundary and apex error, the par-
tition protocol uses a database of N patients studies
and partitions it into K subsets each containing %
studies. Estimates are then obtained using L of the
K subsets. Rotating through all L choose K combi-
nations, we measure the accuracy of the results on the
remaining K~L subsets. Because of the small number
of patient studies IV, and large number of parameters
(about 200 times N) in the boundary transformation,
there is a danger of memorization rather than general-
ization in the estimation of the transformation param-
eters. With the other parameters IV, K, and L fixed,
there will be an optimal number of boundary vertices
balancing the representation error with the memoriza-
tion error. Our protocol finds this optimal number.

2 Two Boundary Estimators

Ground truth boundaries refer to the hand delin-
eated boundaries traced by the cardiologist. Raw or
classifier boundaries are the the boundaries produced
by the pixel based classification algorithm [1].

In the identical coefficient method (IdCM), the esti-
mated z and estimated y coordinates are computed us-
ing the same linear combination of raw x and raw y co-
ordinates associated with that vertex of the LV bound-
ary. In the independent coefficient method (InCM),
the estimated = and estimated y coordinates are com-
puted as a different linear combination of the raw x
and raw y coordinates associated with that vertex of
the LV boundary. The problem of boundary estima-
tion then reduces to a problem of determining the coef-
ficients of the linear combination. This can be accom-
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plished by solving a regression problem as discussed
below.

2.1 Identical Coeflicient Method (IdCM)

Let g, =[ Zin....xpy | and h'nz[ Yin ----YPr | be the
P-dimensional row vectors of z-coordinates and y-
coordinates respectively, corresponding to the ground
truth boundaries for any patient n, wheren = 1,..., N.
Let r,, and s, be the P-dimensional row vectors of z-
coordinates and y-coordinates respectively for the clas-
sifier boundary for any patient n, where n = 1,..., N.
For the boundary estimation in IdCM we are:

e Given: Corresponding pairs of ground truth
boundary matrix R [2V x P], and the classifier
boundary matrix, Q [2N x (P +4)], respectively:
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where, u’n,v/n, are the vectors for z and y coordi-

nates of the ground truth AoV plane for patient n

and (pn,qn) is the estimated apex coordinates of LV.

e We find A [(P + 4) x P}, the unknown coefficient
matrix that minimizes | R — QA [°.

2.2 Independent Coefficient Method

Using the same notations as above, g;z, h’n, r; and s;L,
for boundary estimation of the LV in InCM we are:

e Given: Corresponding ground truth boundaries
R [N x2P], classifier boundaries Q [N x (2P +7)]
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e We find A [(2P+7)x2P], the unknown coefficient
matrix that minimizes || R —~ QA ||%.

Thus for any classifier boundary matrix Q, the es-
timated vertices of the boundary are given by QA,
where A is the estimated coefficient matrix. The above
two methods are different in the way that the estima-
tion model is set up. The classifier boundary matrix
Q in IdCM is of size 2N x (P-+4) while in InCM is
of size N x (2P+7). For IdCM, the number of coeffi-
cients estimated in the A matrix is (P+4) x P. For
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InCM the number of coefficients estimated is (2P+7)
x 2 P. Thus InCM requires around 4 times the num-
ber of coefficients of IdCM to be estimated, and this
difference represents a significant factor in the ability
of the technique to generalize rather than memorize
for our data set size which is N=312. Using the par-
tition protocol and generalizing for any frame ¢, the
minimizing Atr and estimated boundaries Ry, on the
test set Qq., are:

Ay = (QF, Q) Q) Rur, Rie = Qi Ay (1)

Ay, is calculated using a singular value decomposition.

3 ES LV Apex (p,¢) and LV Boundary
Estimation R;.: Greedy Approaches
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Figure 1: Left: Computation of the ES LV apex posi-
tion using ED boundary information (dependence ap-
proach), Right: Computation of the apex position
using the farthest vertex algorithm.

(a) ED Boundary Estimation: We first estimate the
ED boundaries using IdCM and InCM models with-
out apex padding (fig. 2), that is (p,q) are not taken
into consideration. (b) ES Apex Estimation: Now we
use the InCM model, || R¢r — Qrr Az ||2, for estimat-
ing the transformation parameters A;, required in the
ES apex estimation. Here, R;, is the training ground
truth ES apex coordinates, and Q¢ is the training ED
apex coordinates along with the coordinates of the se-
lected ED boundary vertices. We use a greedy ap-
proach for ED boundary vertex selection, subject to
minimization of error between the estimated ES apex
position and the ground truth ES apex position (fig 1,
left). A is calculated the same way as in Eq. 1 but
this time, the Ry and @y, matrices are determined
by first computing the ED apex and ES apex using
the estimated ED and ground truth ES boundaries.
From these boundaries, the apex position is given as
that vertex on the bottom (3)"* LV boundary which is
farthest from the midpoint of the AoV plane (see fig.




1,right). The greedy algorithm for ES apex estima-
tion is as follows: Let S be the set of all the vertices,
Seq be the set of vertices in the ED pool, Scom be
the set of vertices in the combination pool which con-
tains the combination of ED LV apex, ground truth ES
AoV plane, and selected vertices of the estimated ED
LV boundary. Initially the ED apex without any ED
boundary vertex is considered and the error is com-
puted. Denote its error by €.q. Now we select that
vertex from ED pool which when linearly combined
with current combination pool vertices yields an esti-
mated ES apex having an error lower than €.4. This
procedure is repeated until there is no further improve-
ment. Note each time a new ED LV vertex is trans-
ferred from ED pool to the combination pool, we de-
sign a new @, perform estimation and performance.
Using the same partition protocol, we then run the al-
gorithm *C}, times so that each partition becomes a
test set.
Greedy Apex Estimation Algorithm
cn=0 /* combination number */
For all Combinations, (¥Cy)
cn++; Seq=9; Scom=0¢, =0, gc=0
€eq = InitialErrorNoEDeca{ Qir, Rir, Gir, Nir, Nee Diy,
Rie, Qie, Rie, Gie, N, P)
While (e < e.q) do
ge++ /* greedy counter */
For each i € Seg
Sed=Sed ‘{@'}i Scom:Scom U {l}
Rir= GenerateR({ Gy, Ny, P, gc)
Qir= GenerateQ( Dy, Niv, P, Sed, Scom, gc)
Atr= LinearCalibrator( Q:,, R¢r, Nir, P, gc)
Rie= Estimator(Ay,, Qu., Nic, P)
ei= Performance(Ri., Nic, P, Ric )
CurrentApexLocation(i):7@2e
end /* end of the for loop */
ArgMin Comp: Min. error & best vertex j selection
(Emin, j) = ArgMin(e[d], (P-gc) )
if ( €min < €) then
Sed=Sed — {.7} 5 Secom= comU {.7}
Latest ApexPosition=Current A pexPosition(j)
else break; endif
end /* end of the while loop */
OutputESapexCoordinates(Latest ApexPosition, Ree)
end /* end of all combinations */
(c) ES Boundary Estimation Utilizing Apex: Utiliz-
ing the above estimated ES apex position, we esti-
mate ES boundaries using boundary algorithms, IdCM
and InCM, as shown in fig.2. (d) Boundary Fusion:
The final ES boundary is now estimated by fusing
the above estimated ES boundaries using the greedy
boundary estimator [3], where we select a fixed sub-
set of estimated vertex positions from each technique
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Figure 2: Boundary estimation system utilizing apex
position. Boundary data is first sampled from 100 ver-
tices to P,, then partitioned into training (L) and test-
ing (K-L) sets. A,, is estimated off-line and Ry, is
estimated on-line. 1 pixel= 0.39 mm.

(IdCM and InCM) which when fused together, mini-
mizes the resulting error between the fused estimated
polygon boundary and the physician traced LV bound-
ary. For the final ED LV boundary, we simply fuse
the ED boundaries estimated from IdCM and InCM
algorithms (step a) using the same greedy boundary
estimator [3]. The fused boundary for any frame (ED
or ES) is now B-spline fitted and interpolated back
from P, to 100 vertices. The last stage of the system
(fig. 2) undergoes performance evaluation using the
polyline distance metric discussed below.

4 Performance: Results & Discussions

The polyline distance D;(B1:B>) between two poly-
gons representing boundary B; and Bj is symmetri-
cally defined as the average distance between a vertex
of one polygon to the boundary of the other polygon.
To define this measure precisely, first requires having
defined a distance d(v, s) between a point v and a line
segment s. The distance d(v, s) between a point v hav-
ing coordinates (o, yo), and a line segment having end
points (x1,y1) and (z2,ys) is:

d(U,S) — { EffdlvdZ}?

where dy, ds are the distance between coordinates
pairs (1'0,?}0), ($1,y1) and (moayO)v (12)92)7

if A<0A>1
if 0<a<t1, @

) = @2-y)(o—y)+(za—n1)(wo—a1)
- (za—21)?+(y2—y1)? 3
gt = We=y)(@=wo)+(z3—21) (wo-11) (3)

V(@z=21)2+(y2-y1)2
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The distance dj (v, By) measuring the polyline distance
from vertex v to the boundary B is defined:

dp(v,B;) = L, mm d(v, s) (4)
The distance dy(Bi, B2) between the vertices of poly-
gon By and the sides of polygon By is defined as the
sum of the distances from the vertices of the polygon
B to the closest side of Bs.

dw(B1,By) = >

vE vertices By

d(’U,Bg) (5)

On reversing from By to Bi, we can similarly com-
pute dys (B2, By). Using Eq. 5, the polyline distance
between polygons, D;(B:B2) is defined by:

. _ dos (B, Ba) + dus (B2, B1) .
Do(By1: Ba) = (Fvertices € By + #vertices € By

Using the definition of the polyline distance between 2

polygons, we can now compute the overall mean error
oly

of the system. It is denoted by ¢’ and defined by:

NFP

epoly _ Zle 25:1 Ds(GnhCnt) (7)
NFP Fx N

where, Ds(Gpi, Cne) is the polyline distance between
the ground truth G,; and estimated polygons C,,; for
patient study n and frame number ¢t. Using Eq. 7,
the over all mean is plotted in Fig. 3. We compare
our ruler of polyline distance metric with centerline
method [2] developed by Sheehan, and found that we
are better at the 37¢ decimal place. As the number of
boundary vertices P, increase, we observe that result-
ing boundary error first drops for all three algorithms
and then starts rising again. The greedy algorithm
that fuses IdCM and InCM boundaries performs bet-
ter. The optimal number of vertices was 25. The mean
error was 3.471 mm with a std. deviation 3.277 mm.
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Figure 3: Optimization curves for 3 algorithmis, IACM,
InCM and Greedy utilizing the apex position infor-
mation. Calibration Parameters: N=312, K=156,
L=155, F=2, P, =100, 5 < P, < 40.

(al) ED Frame: GT and Classifier or Initial

(a2) ED Frame: GT and Calibrated (Estimated)

Figure 4: Results of greedy algorithm after apex inte-
gration. Upper: (al) Classifier (thin) vs. GT (thick).
Bottom :(a2) Calibrated (thin) vs. GT (thick). Back-
ground: gray scale X-ray image. Estimation Parame-
ters: N=312, K=156, L=155, F=2, P, =100, P,=30,
Mean end frame error (@—;—rﬁ) =1.30 mm, Mean er-
ror ' =3.471, Std. Deviation=3.277 mm.

260



