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Abstract

Given a set of corresponding points from a
moving object is two perspective projection images.

The paper completely solves the two view
motion problem. We show how to use the corres-
ponding point set to determine mode of motion,
rotation, translation orientation and relative depths.
Also we give a noise robust algorithm which works
well under small perturbations.

1. Introduction

It is well known that the two view motion
analysis has a special and basic importance in robotie
vision. Lots of contributions have been made in
recent years ([11,[2],03)). Unfortunately, most of
researches neglect, among other things, importance
of exploring the general solution of Two View -
Motion Equation and differentiating modes of motion.
It leads to imperfect or even incorrect results.
Without a satisfactory theory it is impossible to
develop a sound algorithm.

This paper briefly reviews results obtained
recently by authors [1] which comprise a complete
solution to the two view motion problem. Besides, a
noise robust algorithm which works well under small
perturbations is included.

II. General Solution of Basie Two View - Motion
Equation. Surface Assumption

Assume that a rigid body is in motion in the
half-space 2z<0 . Take a particular point p on the
object. Let (x,y,z) be the spatial coordinates of p
before the motion and (x}y}x') be the coordinates
after the motin. Let (X,Y) be central projective
coordinates of p before the motion (and (X',Y') after
the motion) onto the plane z=1 with the projective
center at origin 0. The following projection equations
relate the 3-D point coordinates and corresponding 2-
D projective point coordinates:

X =x/z, Y = y/z
= XI/ZT, Y! = yI/Zr

As known, any 3-D rigid body motion M is
equivalent to a rotation R, followed by a translation

To such that

(x',y',z"t = Ry (x,y,2)t + To
where R, is a 3X3 orthonormal matrix with det
(Rg)=1 and T, is a 3X1 vector. 't' represents the
transposition operation. From the motion equation it
is easy to obtain

T ¥ (XLYLI = Ty x [RG(X,Y. )Y
and hence the following Two View - Motion Equation

(X1,Y',1) § T x [Re(X,Y, DU} = 0 M
Let

To = ( 5Xg, L¥gs 820 M

o -Lzg Lyo}

Go=| b2 0 -LXg
I_—L'.yo £Xg 0

It is easy to verify that for any 3X1 vector v there
holds
Tg X V = Ggv

As a result, Two View - Motion Equation turns out to
be a familiar form

(X911 G Rg XY =10
which is established in [2], [3]. Let
By = Gglts
Now it is clear that for any projection point corres-
pondence pair [(X,Y,), (X',Y")] the following equality
always holds:
(X,Y",1) Eq (X,Y, 1)t = 0
Conversely, if a real 3X3 matrix E satisfies
(X',Y",1) E (X,Y,)t = 0 (2)

for a set of projection point correspondence pairs,
denoted by P, then we have (see [1])

Theorem 1. E =«Eg («any real number) when Ty ¥
0 or GR, (G any skew symmetrie matrix) when Tq =
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0 if and only if Surface Assumption holds, that is, the
surface pateh or the group of surface points S which
produces P cannot be contained in a quadratic surface
of form

(x,y,2) U xy,2t + vixy,2)t = 0
with [JU+Utll + Il v Il = 0 and TtRGU=VL.
Let
A= (XX',YX',X',XY‘,YY‘,Y',X,Y,I)
w= YL AtA (>0, as easily seen)

h = (hy,hg,...,hg)t

hy hp b3
E = h4 h5 hB
hg hg hg

Then, it is proved (see [1]) that E satisfies with {2) for
[(X,Y),(X',Y"] & P if and only if h satisfies with
Wh =10 3)

Theorem 2. (see [1]) Under Surface Assumption there
are 8 element largest linear independent A's denoted
by Aq,...,Ag such that

Rank (W) = Rank ( L At Ap) =8

and hence the general solution h is one parameter if
and only if T,¥0 and there are 6 element largest
linear independent A's denoted by Aj,...,Ag such that

Rank (W) = Rank (¥ A;t A;) = 6 and hence the general
solution h is three parameters if and only if Ty=0.

As a result of Theorem 2 at least 6 (8) point
pairs must be contained in P depending on whether or
not T, is zero. More projection point correspondence
pairs are preferable to guarantee Surface Assumption
and to smooth out any noise effects. The general
solution h (or the same, E) of (3) has two and only
two decompositions (see [1],[2]):

E = TxR = (-T)xR’ o
where both R and R' are orthonormal matrices of the
first kind. One of them equals Ry, and depending on
whether or not Ty is zero T is any real vector or
equals 4T, with « any real number. (Note: TxR
=[Txry,Txrg,Txrg)l. A direct procedure for decom-
posing E is given in [1] and Section IV.

1II. Determination of Mode of Motion, Rotation,
Translation Orientation and Relative Depth

Theorem 3 {Mode of Motion) (see[l]) Assume that
M=(To,Ro) and E(=TxR=(-T)xR') is a nonzero solution
of Two View - Motion Equlation. Then, (Tg,Rg) =
(o,R) holds if and only if for any two projection point
correspondence pairs [(X;, ¥y, (X', Y')] (i=1,2) there
hold

vy /vl = Rvp / llvill = o (i=1,2)  (5)
where

Vi = (X'Y'DY and vi = (X3, Y00

Theorem 4 (Rotation and Translation Orientation
when Ty ¥ o) (see [1])

Assume that M = (Tq,Rg) with T ¥ 0 and

E (=T x R = (-T) x R') is a non zero solution of Two
View - Motion Equation. Then, Rg = R and T / gl
= 2T/ ||TI| hold if and only if for any two projection
joint correspondence pairs [ YLK, Y] (i=1,2)
there hold

HT x Rwill vi5 =1l T x v'j Il Rvj & JIv'y x Ryl T=0
(i=1,2) (6)
Theorem 5. (Relative Depth) (see[1]) Assume that M
= (TR and E(=TxR=(-T)xR') is a non zero solution

of Two View-Motion Equation. Then the relative
depth is given by:

z/z = |Ivil / lIvll  when Tg = 0 (7)
zi/z = IIT x Rovll / IIT x v'l| when T ¥ 0
Let

{A(V,V‘,R) = |lv/itvil - R/ dlvil I @)
H{v,v',T,R) = |l iTxRvll v' - |ITxv'||Rv

+ |[v'xRv||TI!

A more efficient and even stronger procedure to
detemrine the mode of motion, the rotation and the
translation orientation comes out:

Theorem 6. (See [1]) Assume that M =(Tg,Rg) and E
= TxR = =T) xR') is a nonzero solution of Two View=-
Motion Equation. Then

(To,Rg) = (0,R) holds if and only if for any n (>2)
pairs (X3, Yih(X'pY'P) & P (i = 1,2,...0)

n n
T A(vi,Vi,R) < T A V'LRY,
1

i=1 i=

n n

¥ H(v, V', TR) , T H(vi v'i-T,R), )
i=1l i=1l

n n
?:I H(Viiv'i,—T,R') ) %H(Vi,v‘i,T,R')
i= ==
and
(To/lIToll,Rg) = (£ T/IITI,R) holds if and only if

n n
T H(vi,v'y, £ T,R) < ¥ Alvi,v'i,R),
i=1 i=1

1 n . (w)
T A(viV'iRY, T H(v;,v'j + T,R)
i=1 i=1

n n
Y, H(v;,v';,~T,R"), ¥ H(vj,v';,T,R")
i=1 i=1
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Theorem 6 is important since, based on it, a noise
robust algorithm is developed. See next section.

IV.  Algorithm

Step 1. Solve min htwh with |lhf] = 1
Step 2. Let

Ly = [hy,hyh,)

Ly = [hyhghg]

L3 = [h7,h8,h9]
[L,]

E =L,
IL;]

Step 3. Let
o= (lIL,)]2 + HL4l12 - |IL,112)/2
B=dIL,l12 « NLylI2 - |IL,l12)/2
T= (ILyl12 + || )2 - lIL4112)/2
Step 4. If || ) [B1, 171, then let
[ Jx 1
6
rp = [(LxLy)xL; +f (LxL NANTI)
ty = [(LxL,)xL, “J{LoxL ) /-1 TH )
rz2 = (ryxL,)/J
£z = ryxL,)/ I
r3 = (eyxL )/ J&
£y = HryxL /AR

GO TO STEP 7
(Where ¢ -2 [Epresents the scalar product between
two row vectors. For convenience the cross

product operation 'x' also acts on two row vectors
and produces a row vector.)

Step 5. If lPi 2171, then let
[~<L,,L>/JB 1
T
l—<L2,L3>/J'§'J

2 = [(LyxLy)xL, +J§(L3xLI)]/(HTH2JF)
t2 = [(LyxLy)xL, -\I"E(L3XLI)]/(—HTH2JF)
ry = (rzxLB)/JF

£y = roxl AL

ry = (rzxLI)/JF

rf = -(rzxLI)/‘J?

GO TO STEP -
Step 6. Let

N o
L g
r3 = [LyxLoxi, +ﬁ(LIxL2)]/(IIT112f‘T)
s = Mo xly BV
= (r3xL )/ 7
1= ‘(fg,"Lr)/ﬁ
2 = (e3xL)/ Jy

ry = -(r3xL2)/ﬁ

L]
-
I

-y
=t
I

1

Step 7. Let

Step 8. If (T A(vj,v',R) < Z’A(vi,v'i,R').
T H(viv';,T,R), T H(vj,v'{,-T,R),
T H(vi,v'j,-T,R"), T H(vj,v'{, T,R")

then { the rigid body motion M is a pure rotation
with

Ro = R and zYz = ||v|| / Hv'];

GOTO Step 12 }

Step 9. If( T Alvi,v'i, R)SE Alvy, vy, R),
ZH(vi,V’i,T,R), L H(vj,v'i,-T,R),
EH(vi.V’i,-T,R'). z H(v;, vy, T,R"))

then { the rigid body motion M is a pure rotation
with -

Ro = R' and z'/z = ||v|| / [v'l;

GOTO step 12 }
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Step 10. If ( ¥ H(vj,v';, £T,RIK T Alvi,v'i,R),
T Alv,v'j,RY, ¥ H(v;,v';, ¥ T,R),
T H(vi,v'y-T,R"), L H(viv'yT.RD)

then{ (Tq / IIToll.Rg) = (£T / ITIL,R) and

z'/z = ||TxRvIl / [ITxv'l];

GOTO Step 12 }

Step 11. If (¥ H(vy,v'j + TR <TAv;, V'R,
T Alvi,v',RY, ¥ H(v;,v'y,T.R),

Y H(vi,v'3,-T,R), L H(vi,v'i, FT,RD)

then { (To / IITolL,Rg) = (X T / IITILRY) and

21z = ITxRIL/ 11Tl

Step 12. STOP

V. Coneclusion

It seems that two view-motion problem for a
single rigid body is completely solved. In [4], [5]
optic flow-motion problem for a signle rigid body is
completely solved, too. In [6] authors prove equi-
valence within three problems: two view motion
analysis, stereo vision and a moving camera's posi-
tioning. Authors expect that not very long two view-
multi rigid body motion problem could be solved.
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