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Abstract

Image Understanding Systems are complex and
they are composed of different algorithms applied in
sequence. A system for model-based recognition has
three essential components: feature extraction, group-
ing and model matching. In each of these components,
tuning parameters (thresholds) are often used. These
parameters have been traditionally chosen by trial and
error or from empirical data. In this paper we discuss
a methodology for the analysis and design of IU al-
gorithms and systems that follows sound systems en-
gineering principles. We illustrate how the algorithm
parameters can be optimally selected for a given image
understanding algorithm sequence that accomplishes
an IU task. The essential steps for each of the algo-
rithm components involved are: component identifica-
tion (performance characterization), and application
domain characterization (achieved by an annotation).
There is an optimization step that is used to optimize
a criterion function relevant to the final task.

Performance characterization of an algorithm in-
volves the establishment of the correspondence be-
tween random perturbations in the input to the ran-
dom perturbations in the output. This involves the
setup of the model for the output random perturba-
tions for a given ideal input model and input random
perturbation model. Given these models and a cri-
terion function, it is possible to characterize the per-
formance of the algorithm as a function of its tuning
parameters and automatically set the tuning param-
eters. The specification of the model for the popula-
tion of ideal input data varies with problem domain.
Domain-specific prior information on the parameters
that describe the ideal input data is gathered dur-
ing the annotation step. Appropriate theoretical ap-
proximations for the prior distributions are then spec-
ified, validated and utilized in computing the perfor-
mance of the algorithm over the entire input popula-
tion. Tuning parameters are selected to optimize the
performance over the input population.

*Funding for this work from ARPA Contract 92-F1428000-
000 is gratefully acknowledged.

1 Introduction

IU systems are complex and are composed of dif-
ferent algorithms applied in sequence. An IU system
for model-based recognition has three essential compo-
nents: feature extraction, grouping and model match-
ing. In each of these components tuning parameters
(thresholds) are often used. These parameters have
been traditionally chosen by trial and error or from
empirical data. In this paper we discuss details of
the systems engineering methodology for the analysis
and design of IU algorithms and systems. For a given
image understanding task and an algorithm sequence
that accomplishes the task we illustrate how the al-
gorithm parameters can be optimally selected. The
essential steps for each of the algorithm components
involved are: component identification (performance
characterization), and application domain characteri-
zation (achieved by an annotation). There is an op-
timization step that is used to optimize a criterion
function relevant to the final task.

Performance characterization of an algorithm in-
volves the establishment of the correspondence be-
tween random perturbations in the input to the ran-
dom perturbations in the output. This involves the
setup of the model for the output random perturba-
tions for a given ideal input model and input random
perturbation model. Given these models and a cri-
terion function, it is possible to characterize the per-
formance of the algorithm as a function of its tuning
parameters and automatically set the tuning parame-
ters.

We use the term “application domain characteri-
zation ” to describe the process by which theoretical
probabilistic models describing the population of in-
puts to an IU system are derived and estimated from
training data. The specification of the theoretical
model for the population of ideal input data varies
with problem domain. Domain-specific prior informa-
tion on the parameters that describe the ideal input
data can be gathered during an annotation step. The
annotation procedure is one in which groundtruth in-
formation is manually entered by an user. Appropriate
theoretical approximations for the prior distributions
can be then specified, validated and utilized in com-
puting the performance of the algorithm sequence over
the entire input population. Tuning parameters can



be selected to optimize the performance over the input
population.

This paper is organized as follows. First, we provide
a statement of our problem. We then proceed to de-
scribe, in detail, our methodology and the necessary
steps required to design optimal IU algorithms. We
take a concrete example and illustrate the theoretical
models at each stage. The concrete example involves
a chain of processing steps starting from edge finding,
linking, corner detection, classification and building
extraction. This paper discusses the models until the
corner detection stage.

2 Problem Statement

Let A denote an algorithm. At the abstract level,
the algorithm takes in as input, a set of observations,
call them input units Uy, and produces a set of out-
put units Upy:. Associated with the algorithm is a
vector of tuning parameters T. The algorithm can
be thought of as a mapping 4 : (Urn, T) — Uous.
Under ideal circumstances, if the input data is ideal
(perfect), the algorithm will produce the ideal out-
put. In this situation, doing performance characteri-
zation is meaningless. In reality the input data is per-
turbed, perhaps due to sensor noise or perhaps due
to the fact that the implicit model assumed in the
algorithm is violated. Hence the output data is also
perturbed. Under this case the inputs to (and the
outputs from) an algorithm are observations of ran-
dom variables. Therefore, we view the algorithm as a
mapping: A : (ﬁ;m T) — Uput, where the ~symbol is
used to indicate that the data values are observations
of random variables.

This brings us to the verbal definition of perfor-
mance characterization with respect to an algorithm:

“Performance characterization for an algorithm
has to do with establishing the correspondence between
the random variations and imperfections on the output
data and the random variations and imperfections on
the input data.”

More specifically, the essential steps for perfor-
mance characterization of an algorithm include:

1. the specification of a model for the ideal input
data.

2. the specification of a model for the ideal output
data.

3. the specification of an appropriate perturbation
model for the input data.

4. the derivation of the appropriate perturbation
model for the output data (for the given input
perturbation model and algorithm).

5. the specification and the evaluation of an appro-
priate criterion function relative to the final cal-
culation that the algorithm makes to characterize
the performance of the algorithm.

The main challenge is in the derivation of appropri-
ate perturbation models for the output data and relat-
ing the parameters of the output perturbation model

to the input perturbation, the algorithm tuning con-
stants, and the ideal input data model parameters.
This is due to the fact that the specification of the
perturbation model must be natural and suitable for
ease of characterization of the performance of the sub-
sequent higher level process. Once an output pertur-
bation model is specified, estimation schemes for ob-
taining the model parameters have to be devised. In
addition, the model has to be validated, as theoretical
derivations may often involve approximations.

2.1 IU Algorithm Sequences

Having discussed the meaning of performance char-
acterization with respect to a single algorithm, we now
turn to the situation where simple algorithms are cas-
caded to form complex systems. First we specify the
essential components of typical vision algorithm se-
quences (feature detection, grouping and matching)
and note the similarities between them. Then we dis-
cuss the nature of input and output perturbations at
each stage.

Feature extraction involves the classification of im-
age pixels into atomic feature entities (for example,
edge/non-edge, corner, etc.). The extraction is done
by the assumption of a specific model for the image
feature characteristics. For example, an ideal inten-
sity edge may be modelled as a step function or an
ideal corner can be modelled as being generated by
the intersection of two line segments.

Feature grouping involves the assignment of group
labels to individual atomic feature entities. The basis
for such an assignment is criteria such as proximity,
orientation difference, etc. At a conceptual level all of
these algorithms perform a clustering task, by utilizin
appropriate distance measures (metricsa/non-metrics
that describe similarity between atomic feature enti-
ties. For example, groups of pixels that form line seg-
ments, arc segments, can be visualized as ellipsoids in
the high-dimensional space of feature attributes.

Feature matching also involves the assignment of
categories individual feature entities. Features that
are labelled as the same category are, perhaps, part of
the same (or belong to a class of) object(s). Relative
to the IU task, some of the objects are of interest and
some are of non-interest. From the classification point
of view, at each stage of a typical IU system, features
belonging to both the objects of interest and objects
of non-interest are detected, grouped and passed on to
the matching stage. Relative to the task, one can de-
fine classification errors as follows. The possible errors
in a detection step are:

e Mislabeling a true atomic feature unit, belonging
to an object of interest, as a non-feature unit.

e Mislabeling a true non-feature unit, due to noise
or belonging to an object of non-interest, as a
feature unit.

The possible errors in a grouping step are:
e the introduction of clutter cluster units belong-

ing to objects of non-interest. This may also be
caused by correlated noise.



e the merging of two true cluster units into a single
cluster. This is mainly due to the inability of
the algorithm to dichotomisze the clusters since
the similarity measures used provide reasonable
evidence to suggest otherwise.

e the splitting of a single true cluster unit into mul-
tiple cluster units.

e the disappearance of some part of a true unit of
interest.

An error occurs in the interpretation process if:

o The interpretation process identifies the object in
the image incorrectly. This is misclassification (in
the two category case, misdetection).

o The interpretation process falsely states that
there is an object in the scene due to a ran-
dom match (perhaps to an non-interesting ob-
Ject). This is also a misclassification (false alarm
in the two class problem).

We have posed performance characterization of an
algorithm as analysis of the algorithm’s sensitivity to
perturbations in the input data. We have also stressed
the differences in the nature of the specification of per-
turbation models at different stages in an image un-
derstanding algorithm sequence.

The statement of the problem, in its present form,
does not present the whole picture. The ideal input
data is often specified by a model with parameters
specified by a vector D and the algorithm is often an
estimator of these parameters. First, we note that
the ideal input data is nothing but a sample from a
population of ideal inputs. The characteristics of this
population, i.e. the exact nature of the probability
distributions for D, is dependent on the problem do-
main. The process of generation of a given ideal input
can be visualised as the random sampling of a value of
D according to a given probability distribution Fpy.

Let Py, denote the vector of parameters for the in-
put perturbation model. Let Qou:(T, Pyn, D) denote

the criterion function that is to be optimized !. Then
the problem is to select T so as to optimise the per-
formance measure @, over the entire population, that
is given by:

In the situation where the perturbation model param-
eters, Py, are not fixed, but have a specific prior
distribution then one can evaluate the overall perfor-
mance measure by integrating out Py,,. That is:

am= [aTPrare, (@)

! Note that the input data J7,, is not one of the parameters
in the criterion function. This is correct if all the input data do
not violate any of the assumptions about the distribution(s) of

D and P]-_n.

We now focus on the criterion function and its
choice for different IU algorithms. In general, the
problem solved by model-based IU algorithms involves
the identification and localization of instances of a
given object model. The feature detection, feature
grouping, and model matching steps can be visualized
as classification tasks. Thus, one can use standard de-
cision theoretic methods such as the Neyman-Pearson
theory in our problem. Under Neyman-Pearson the-
ory, one would set the threshold to the value that cor-
responds to a class error probability of @. For example,
one could choose an optimal threshold that would set
the probability of false alarm of an edge operator to
0.05. On the contrary, if one wishes to obtain a bal-
ance between the misdetection and false alarm char-
acteristics the appropriate criterion function could be
a convex combination of the false alarm and misdetec-
tion error probabilities.

2.2 Optimization of Performance of Algo-
rithm Sequences

Let ¢ denote the collection of all algorithms. Let

A®) € &, then A®) : UL — U8 is the mapping of
the input data U }:3 to the output Ug:)n- Note that
the unit for U}:} may not be the same as the unit for

l')*g‘)‘t and perturbations in the input unit type causes
perturbations in the output unit type. A performance
measure, Q(*), is associated with A;. Associated with

each algorithm is the set of input parameters T,
The performance measure is a function of the param-

eters T(1),
An algorithm sequence, S, is an ordered tuple:

S (40, 4@, .., 4
where n is the number of algorithms utilized in the

sequence. Associated with an algorithm sequence is a
parameter vector sequence

T (P, T, T(™)

and a ideal input data model parameter sequence:
D: (D), DA, . T(M)

. The performance at one step of the sequence is de-

pendent on the tuning parameters, and the perturba-
tion model parameters at all previous stages. So:

Qi= -fl'(T(i): T(i_l)a teey T(l), PIn(i_l), ocuiary PIn(l))

So the overall performance of the sequence is given
by: ;

QT Py = fﬂ(T(n), (=), ..., M),
PIn(“—l), SRy PIn(l))'

The free parameter selection problem can now be
stated as follows: Given an algorithm sequence S along



with the parameier sequence T' and performance mea-
sure Qy,, select the parameter vector T that mazimizes
Qn . Note that @, is actually the integral:

Qn(T,Pyp) =

f---jfn(T(““),.-.,T(‘),Pln("‘l),‘--.,
P, D=3, DONYFp. .,y ...dFpg)-

Note that at each stage a different set of prior dis-
tributions Fpy(;, comes into play. Also, the per-
turbation model parameters PIn(') is a function
gi(T0=1), Py, =1, DO-1), 46-1)). In other words,
the perturbation model parameters at the output of
stage 1 is a function of the tuning parameters at stage
i— 1, the input perturbation model parameters in the
stage 1 — 1, the ideal input data model parameters,
and the algorithm employed in the stage 1 — 1. It is
important to note that the functions g; depend on the
algorithm used. No assumption is made about the
form of the function g;.

3 Building Detection Example

. We just discussed the problem of setting up appro-
priate tuning constants for an IU system. We now
turn to a concrete problem and illustrate the details.
We assume aerial image analysis as our problem do-
main. Specifically, we take a look at the problem of
recognising buildings in aerial image data.

The input image(s) to a computer vision algorithm
may contain different categories of object classes, with
each object class having an idealisation, an associated
set of free variables also termed as ideal input data
model parameters, and an associated random pertur-
bation model. The same is true for the output data
produced by the vision algorithm.

To illustrate what we mean consider the buildings
on an aerial image. Buildings on an aerial image
constitute an object class. The idealisation of a 3D
building is a polyhedral 3D spatial object whose sides
are vertical and whose roof boundary (not the entire
roof) lies in a horisontal plane. The idealisation of a
building on an aerial image is that of an object whose
boundary is the perspective projection of the 3D build-
ing idealisation. The free variables of the 3D spatial
object model are the length, widths, and angles of the
building faces etc.

The 3D scene has an imaging sensor attached to it.
We can think of deriving a population of images of
a given site by capturing images at various positions
and orientations of the imaging sensor. One could add
time as another parameter as 1t gives an idea of where
the light source (in this case the sun) is with respect
to the world. Thus, the imaging sensor has associated
with it the free variables of position and viewing angle.
The imaging sensor has intrinsic parameters that we
assume are not variable. For example, in the case of a
simple pin-hole camera model the intrinsic parameters
include the focal length, dimensions of the ccd array,
and the number of rows and columns in the sensor
array.

Given the distribution for the values of the sensor
free variables, the distribution of the lengths and an-
gles of the 3D building edges translates into 2D distri-
butions for the length of the boundary segments, the
angles between segments, etc.

We have just described essentially the geometric
part of what the imaging sensor does. Along with
the 3D geometric model, we need to describe the re-
flectance properties of the surfaces of the building.
One assumption could be that the reflectance is con-
stant on each building surface. In addition, one needs
to specify the characteristics of the light source. In
aerial image analysis, we may assume that we are given
the time and the day at which the image was obtained.
Combining this information with the approximate lat-
itude and longitude of the location being imaged, we
can determine the position of the sun. The distri-
bution of light source positions and the distribution
of the sensor positions together induce a joint gray
level distribution on the building faces and the roof.
This model is a stochastic model that may, depending
on the imaging sensor and buildings of interest, de-
scribe the gray-level spatial distribution of the faces,
and assume an independence between the gray levels
of one face and those of another face or roof, or just
describe the contrast of the gray-level distribution be-
tween faces and some measure of the gray-level spa-
tial dependencies. The gray-level spatial distribution
would also specify the distribution associated with the
gradients of step edges and the width of the gradient
regions.

The random perturbation model for the perturba-
tions in the sensor would describe the nature of the
gray level pixel noise, how much of it is additive, how
much of it is replacement, how it is correlated, and
how large it is as an effect. Systematic perturbations
may be introduced in the sensor due to geometric dis-
tortion in the sensor. The probability model for the
boundary segments of an aerial building would give
the probability distributions relating to occlusion?. It
indicates how much of a boundary will appear on the
image, in how many pieces it will appear, and what is
the conditional sise distribution of the pieces.

Next to illustrate a more complete view of how
these data models might be, we take a building recog-
nition sequence consisting of edge detection, edge link-
ing, corner detection, line classification, and building
recognition.

Given a description of idealization of the object
class and of the random perturbation of the object
class, it is possible to analytically determine for a given -
kind of edge operator the conditional probability dis-
tributions for each boundary segment relating to how
much of it' gets detected, how many pieces it is de-
tected in, and the size distribution of the pieces. For
those detected pieces there is the distribution describ-
ing the location perturbation of the correctly detected
edges. Small perturbations can be adequately cap-

?We do not use the term random perturbation model to dis-
tinguish the fact that occlusion is a deterministic process. The
variability in the number of boundary segments that are visible
is due to the variation in the sensor pose and light source pose,



tured by assuming a Normal distribution for the addi-
tive perturbation with a covariance matrix being the
key distribution parameter . In any case, each of these
distributions will be a function of the tuning param-
eters of the edge operator. Thus for a sero-crossing
facet edge operator, the tuning parameters might in-
clude: neighborhood size, order of polynomial fit, ra-
dius within which the sero-crossing is searched for, and
gradient threshold or contrast threshold.

Following edge detection is an edge linking stage
that groups together edges belonging to the same
boundary and at the same time closes some of the
gaps on the boundary. The data at this stage could
be characterized by the length distributions of the
boundary pieces, the location perturbation distribu-
tions, and perhaps the curvature distributions.

Then there is a corner detection stage which seg-
ments the boundaries into lineal pieces. Associated
with the lineal pieces are the distributions relating to
the included angles and the location perturbation of
the detected boundaries relative to the ideal bound-
aries.

Following this there may be a classification stage
which uses the detected lineal segments and the neigh-
boring lineal segments to classify whether or not any
lineal segment is likely to be part of a building or not.
This stage’s results can be characterised by the false
alarm rate and misdetect rate.

Finally at the last stage there is building recogni-
tion. This stage selects and groups together line seg-
ments which had previously been classified as likely
to be part of buildings. It determines those groupings
which are consistent with being part of the perspec-
tive projection of the kind of polyhedra we initially de-
scribed. This operation results in a building misdetect
and false alarm rate. And for the correctly detected
buildings there are associated measures of the distri-
bution for the number of faces and number of bound-
ary lineal segments that are correct and the number
that are not correct. And for the correctly detected
segments there is a covariance matrix associated with
the line segment end point positions.

In the case of scalable vision systems, there is an-
other element of complexity with respect to the tuning
parameters of the algorithms. Here, one of the tuning
parameters will be associated with scale. And the al-
gorithm must adaptively set this parameter based on
what it can learn by probing each spatial area with
operations over different neighborhood sizes. How the
algorithm adaptively sets the scale parameter will typ-
ically depend on another algorithm free parameter.
Hence we see that this does not change the nature
of the perturbation models or the idealisations of the
data at any point in the vision algorithm sequence. It
only changes the complexity of the perturbation prop-
agation calculation.

In summary, we have seen that computer vision al-
gorithms have multiple steps. Each step typically has
some tuning parameters. The input data to each step
can be considered to be randomly perturbed. The
random perturbation on the output data produced by
each step is a function of the input random perturba-
tion and the tuning parameters. Associated with the

purpose of the vision algorithm is a criterion function
that is with respect to the final quantity calculated by
the vision algorithm. The tuning parameters must be
chosen to optimise the criterion function for the given
kinds of input random perturbations.

4 Theoretical Models

We have discussed in the previous section a con-
crete algorithm example and the types of perturbation
models that could be devised in each step of the algo-
rithm sequence. In this section we discuss the detailed
models for the idealisations and the perturbations in
each component of our algorithm sequence. In addi-
tion, we will elaborate on the prior distributions for
the ideal data model parameters for the Radius appli-
cation domain. These prior distributions were derived
from empirical distributions obtained from the Radius
Model-Board Imagery. Also included are discuasions
of appropriate criterion functions and the derivation
of the expression for the criterion function averaged
over the prior distributions for the population of ideal
input(s).

4.1 Edge Detection
4.1.1 Ideal Data & Perturbation Model

Our ideal edge is a ramp edge of scale (width of the
ramp) K pixels. Specifically in 1-dimension, the in-
tensity values are viewed as a function I : D —
Z. Here the domain of the function is the spec-
ified by the 1D-interval neighborhood around the
edge pixel. The domain is the index set, D =
-—EK— 1)/2,...,0,...,(K — 1)/2. We assume that X
is an odd integer K — 1 is even.

I(z) = a+G:z
forz=-K-1/2,...,.K—-1/2
= a—-G(K—-1)/2forz<—-K-1/2
= a+Gy(K~-1)/2forz>K—-1/2

In the analysis that follows, we assume that no other
edge is present within an interval of width W (W >
K) pixels around the center of the current edge pixel.
This is done to make the analysis a little simpler. It is
possible to relax this assumption and rigorously an-
alyse effects of interfering edges. Assuming that a
neighborhood operator of appropriate window size K
is used (refer to the facet model chapter in [4]), the
1D estimate of gradient magnitude (for perfect data)
would be the sequence of values G(z) and it is clear
that G 0}{is maxirmum within a 1D interval neighbor-
hood o pixels wide. Thus, where appropriate we
will use G'(a?,z = —(K —1)/2,...,(K —1)/2, a8 the
true value of the gradient magnitude at pixel z. Note
that G(0) = G and G(z) < G, Vz # 0.

In 2D, the ideal model has to account for the orien-
tation of the edge. It is assumed that the ideal image
data is a function, wherein the gradient magnitude is
given by G, and the edge direction is ug. The ideal in-
put image values are given by I;(r, c) = par+pgc+py,
where po = Gicospy and pg = Gysinpy and p, is the
mean gray value in the K by K neighborhood.



The input image gray values are assumed to be cor-
rupted with noise which may be modelled as a Gaus-
sian distribution with zero mean and standard vari-
ance o. That is:

I(r,c) = L(r,c) + n(r,c)

where, I(r, c) is the observed image gray value, I;(r, c)
is the true gray value and #(r,c) is the noise com-
ponent. 7(r,c)’s are independent and identically dis-
tributed Gaussian random variables with zero mean
and standard deviation o. This noise model is realistic
when one is dealing with standard gray-scale cameras.

4.1.2 Ideal Output Model & Perturbation
Model

The ideal edgel output is characterized by two param-
eters its true position (r,c) and orientation §. The
ideal output edge image can be viewed as a func-
tion O : (Z, x Z;) — {0,1} x [0,2 % 7). The ideal
edge image is specified by the function that maps all
ideal edge pixel location integer tuples to the label
27 (Edge) and an ideal orientation attribute 3. Let
D, = {(r,¢)|O(r,e) =1} C Z, x Z.. D, is the set of
all true edge pixels.

Viewing the edge detector as a functional that takes
in a function as input and produces a function as out-

put, we can see that the output function O is a per-
turbed version of the ideal expected function O. The
characteristics of the perturbations are:

o Misdetection — An ideal edge pixel was not de-
tected. This means that if (r,c) € D,, then the
output function estimate (7, &) is not an element

of D,.

e False alarm — An ideal non-edge pixel was de-

tected. This means that if (r,¢) € (Z, x Z2.)—D,,
then (#,¢) € D,.

o Detection — For those edge pixels correctly de-
tected, we have an error in the estimated location
of the edge pixel. Due to gray scale perturba-
tions, the estimated orientation is perturbed and
the estimated location of a gradient maximum is

also perturbed. This is also reflected in D, and
in the estimated function O.

The parameters that characterize these perturbations
include: the probability of misdetection, probability
of false alarm, and the covariance matrix of estimated
edge position and orientation. We assume that per-
turbations in the edge position are dominant along the
direction of the edge intensity profile. Thus, we ap-
proximate edge positional deviations to be along the
direction orthogonal to the direction tangent to the
edge element (edgel).

3This orientation attribute can normally be inferred to a spe-
cific precision from the topology of the set Do = {(r,c)|0(r,c) =
1}, but we show 8 as an attribute for specific reasons. It is not
exactly clear what the orientation is at junctions, or in corners.
So we assume that the ideal edgel orientation is specified as a
separate attribute.

4.2 Edge Detector: Performance Character-
wzation

In this section, we provide the relationship between
the output perturbation model parameters and the in-
put perturbation model parameters in an edge detec-
tor. Specifically, we write the probability of misdetec-
tion and the probability of false alarm as a function
of the gradient threshold, the true edge gradient, and
the noise variance.

4.2.1 Probability of Misdetection of a Gradi-
ent Edge

Under the assumed ideal edge model and noise model,
it was shown in [8] that the shown that the ra-
tio G3%,E.r3/c? is distributed as a non-central chi-
square distribution. with 2 degrees of freedom and
non-centrality parameter C' = (ua? + pg?)/0s2. Here

the estimate for G2 is equal to &*+ /32 and & and § are
estimates of the coefficients of the best fitting plane to
the image grayvalues within a neighborhood of size K
by K. The term X,X.r? denotes the summation of
r? over the discrete index set (r,c) € N, where N is
the domain of the K by K neighborhood. When K is
odd, this sum is equal to: K?(K —1)(KX + 1)/12. The
probability of misdetection is given by:

T?%,.2.r2

Prisdetection = Prob (x;z(C) < —O-Z—r) .

4.2.2 Probability of False alarm at the edge
detector output

To determine the probability of false alarm, we as-
sume that the input data at the edge detection step
is a region of constant gray tone values with additive
Gaussian noise. Since a pixel is labelled an edge pixel
if the estimated gradient value, G, is greater than a
specified threshold, T, the probability of false detec-
tion is Prob(G > T). Specifically, the probability of
false alarm is given by:

2 2 .
Pfaiualarm = Prob ()(22 > T_E’A)
o3

4.2.3 Edgel Orientation Estimate Distribu-
tion

When the orientation estimate § is estimated by the
expression:

=tan~

(/&)

it can be shown that the distribution of the orienta-
tion estimate under our perturbation model assump-
tions is the VonMises distribution. In fact, the condi-
tional distribution for the orientation estimate given
the estimated gradient and the true gradient value is:

P(é = 9|90: a,q, §) =

1 xcos(6—-8o)

. e i
2WIO(~)ea:p r<<7



Here & is equal to: g3, .r?/o?, 6y is the true orien-
tation value and Io(z) is the modified Bessel function
of first kind and order 0. It is clear from the above ex-
pression that the orientation estimate has significantly
high variance when the true gradient magnitude is low.
It can be seen that as g tends to infinity the precision
parameter tends to infinity. As g — 0, the distribution
function approaches the uniform distribution.

4.3 Hysteresis Linker:Performance Charac-
terization

We illustrated in [7] how the above analysis can

be used to derive expressions for the false alarm and

misdetection probabilities when the hysteresis linking

idea of Canny [1] is used. Canny uses two thresholds:

e a high gradient threshold, T}, to mark potential
edge candidates, and

o alow gradient threshold, T3, that assigns edge la-
bel to pixels if there exists at least one pixel in the
pixel’s neighborhood that has gradient magnitude
greater than 1.

More formally:
O(r,e) = 1if G(r,c)>Tior

if G(r,c) > T; and

3(R,C) € N;. > G(R,C) > Th.

= 0 elsewhere

Let F, denote the cumulative distribution function for
the gradient magnitude. Let W denote the number of
pixels in the neighborhood. Then the probability of
labelling a pixel as an edge pixel is given by :

1— Fy(T1) + ((Fy(Tx)
—Fo(T2))(1 — {Fy(T)}' 1)

The term 1 — F,(Tl) is the probability that the gra-
dient magnitude 1s greater than ;. The rest of the
term is the probability that the current pixel being
examined has a gradient magnitude between T3 and
T, and there exists at least another pixel with gradi-
ent value greater than T;. Here we assume that the
candidate pixels considered in the window have simi-
lar orientation estimates. That is, their edge orienta-
tion estimates are close to each other. One can relax
this assumption and include the effects of the noise on
the orientation estimate. The cumulative distribution
would then be on two variables, the orientation and
gradient magnitude.

P(edge) =

4.3.1 Probability of misdetection

Using the above equation we can write the expression
for the probability of misdetection (when hysteresis
linking is used) as:
Prisdetection = Fg(T2) = (Fg(T]_)
—~Fy(T)) Fy(T)"

A glance at the above expression indicates that this
probability is going be smaller than the misdetection
probability for an edge operator with a single gradient
threshold. The probability of misdetection, when hys-
teresis linking is not used, is given by F,(T}). Since T}
is much less than T, Fy(T3) is less than Fy(T}). The
second term in the above expression can gbe atmost
equal to Fy(T1) — Fy(T3). Hence gp <= F,(Ty).

4.3.2 Probability of false alarm

Using the above derivations we can write the expres-
sion for the probability of false alarm as:

= 1= Fo(T1) + ((Fos (T1) -
Fos (T3))(1 = {Fos(T0)}¥ 1))

where F,¢ is the cumulative distribution function for
the gradient magnitude when the input data is a flat
graytone surface with additive noise. The above ex-
pression indicates that the probability of false alarm
is higher than when a single gradient threshold of T}
is used.

4.4 Edge Detection:
Characterization

We have illustrated the component identification
step for the edge detector and hysteresis linker. In
this section, we describe how one can derive an ap-
propriate statistical model for the prior distributions
of ideal edgel parameters. These prior distributions
describe the variability in the input image population.
Prior distributions for these parameters can be de-
rived from the groundtruth annotations. Thornton et
al, [14], describe how the groundtruth annotations
were obtained and the types of distributions that can
be derived from the annotations. In the discussion
that follows, we outline details of the empirical dis-
tributions we obtain from annotations, illustrate the
analytic approximations to these distributions, and es-
timation schemes to estimate the parameters of the an-
alytic approximations. We do not discuss the nature
of the prior distribution of ideal edge scale parameter
here. We have found that a 5 pixel wide neighborhood
is an adequate scale in the Radius data and in our al-
gorithm the neighborhood size for the edge operator
is assumed to be 5 by 5. We plan to include schemes
for estimating the empirical distribution of the edge
scale parameter in the future.

Pfahcalurm

Application Domain

4.4.1 Empirical Distributions for feature at-
tributes

We have seen that the ideal data model parameters
for an edgel is specified by the true gradient magni-
tude, G, and gradient direction, 6. The prior distribu-
tions for the squared gradient magnitudes for various
classes of boundaries were derived for annotations of
the model-board imagery. The classes we currently
consider are “buildings” (features of interest), “clut-
ter” (features of non-interest, but an annotator per-
ceives the boundary feature), and “background” (fea-
ture of non-interest, the annotator does not perceive



the boundary feature). We obtain the empirical dis-
tributions of the squared gradient magnitude estimate
(over 5 by 5 neighborhoods) for each class. * These
empirical distributions are shown in figure 1.

4.4.2 Theoretical Approximations to Empiri-
cal Distributions

Theoretical approximations to these distributions can
be obtained. It can be seen from the empirical data,
that an exponential approximation to the distribution
of squared gradient estimate for the gradients in the
background is appropriate. In addition, the method
assumes that the squared gradient magnitude distri-
bution for edge features of interest can be modelled as
a Gamma distribution with parameters a; and b;,, We
obtain estimates of the mean of the exponential dis-
tribution (background gradient variation due to shad-
ing, texture) A, by computing the average squared
gradient obtained from the least squares planar fit-
ting done over the chosen 5 by 5 neighborhoods men-
tioned in the previous section. The parameters of the
Gamma distribution, a, and by, are estimated by us-
ing the method of moments [6]. By computing the
least square fits over 5 by 5 neighborhoods centered on
the locations specified by edge pixels in the annotated
images we obtain estimates of the squared gradient
values and compute their second and third moments,
denoted by mg and ma. Then:

& = 4m,3
& = m32

~ nl,s

b, = —
g 2ma

4.4.3 Estimation of o2

Let an annotated edge image be denoted Iy. We per-
form a morphological dilation on Iz by a 5 by 5 box
structuring element. The resulting image is used as a
mask. In order to estimate the noise variance o?: we
choose 5 by 5 neighborhoods on the image that do not
overlap with any pixel on the mask and compute the
least squares planar fit over the neighborhoods. Let
the average residual error be eyyy. Then the estimate
62 is given by: e€aug/22. Here 22 is the number of
degrees of freedom.

4.5 Edge Detection:
Threshold Selection

In this section, we specify a criterion function at
the edge detector output. We wish to set the high
gradient threshold in the hysteresis linking step such
that the probability of false alarm is below a given
value a. In order to reduce the fragmentation among

Criterion Function &

4Note: This distribution is not exactly the same as the ideal
prior distribution because the effect of noise is seen in the esti-
mate, This distribution will approximate the ideal prior if the
noise variance is low. In fact, it is scen that the noise variance
is rather small since the errors are mainly due to quantization
effects. )

detected boundaries, we set the low threshold so that
the probability of misdetection is below a given value
B. We need to derive the expected probability of false
alarm and misdetection over the entire population of
images. This can be done by using the theoretical ap-
proximations for the prior distributions of ideal edgel
parameters.

4.5.1 Expected Probability of False Alarm

In order to derive the appropriate thresholds, we will
utilize the theoretical expressions given in the edge
detector component identification step. It was shown
that under the assumption that the image pixels were
corrupted with additive i1.i.d Gaussian noise having
zero mean and variance o?, the distribution of the gra-
dient estimate is related to the non-central chi-squared

distribution. Specifically, for a square neighborhood,

it was shown that. G2 Z(,lc)rﬂ/az is a non-central
chisquared distribution with 2 degrees of freedom and
non-centrality parameter C = g2 2ati o) r?/o?. Here
g is the true gradient value in the neighborhood.
~ 3 ~
Let 01 = 3, ,r?/o® and G = G?/oy®. Then
C = g?/o1%. In reality, there is a distribution on
the observed values of ¢ and . We have seen that
the squared edge gradient distribution in the back-
ground areas can be modelled as a exponential distri-

bution with mean parameter A,. Under this assump-
tion, it can be shown that the the conditional density

~ 3
of G’ [0}, is given by:

%3 1 -
P o = 2 —_— FAgC(ey,

( T ld’l) = ——-—2)" :(0'1,:\9)8 5O 71 Ay (3)
Here C(a,b) = 3i; + . The gradient threshold T

1
2

corresponding to a given probability of false alarm, a,

is:

203

T | X, =3 | (—loga 4
( +2(«,=)T)( oga) (4)

The threshold parameter can be seen as a product of
one factor that is dependent on the probability of false
alarm and another that is dependent on the noise vari-
ance and the non-edge gradient distribution. The term
3 AR r? depends on the neighborhood size employed

in the operator.

4.5.2 Expected Probability of Misdetection

In this section, we derive the expression for the proba-
bility of misdetection of an edge operator over an im-
age population. Specifically, we determine the prob-
ability of misdetection at a given threshold t by as-
suming a prior distribution for the edge gradient for
features of interest. We have seen in a previous section
that the prior distribution of the squared edge gradient
in areas of interest can be modelled as a two param-
eter Gamma distribution with parameters a, and b,.



The general Gamma distribution has three parame-
ters. We set the third parameter describing the left
most cutoff point of the distribution to be zero, since
we assume that there are features of interest that have
significantly low gradient values. That is:

(gn)(“l“l)e:‘,;_

P(gz) = b§'P(a,) (5)

Under this assumption, it can be shown that the prob-
ability of misdetection is given by P, =:

1 ~  D(m+a,)I(T?/01? m+1) ©)
5,77 T(ay) 2 (Boa)mmiC(ay, 5y)™erT(m + 1)

where I(z, k) is the incomplete Gamma integral given
by the equation I(z, k) = f; 2F-le=2dz,

In order to select the second hysteresis threshold
one has to use the information about the standard de-
viation in the gradient along the true edge pixels. It is
clear from our discussion on hysteresis linking that the
lower bound for the probability of misdetection after
hysteresis linking is given by the probability of misde-
tection for a threshold of T;. We select this hysteresis
threshold by making the P,,(T3) = a3. That is, we
find the threshold T3 satisfying the equation aj =:

oo

1 Z T(m+a)I(Te?/o1?, m+1)
by**T(ag) = (201)mmiC(ay1, bg)m+esT(m + 1)

7)
In the special case where the distribution for 131:
squared edge gradient is also exponential with param-
eter A,, the threshold T3? can be shown to be equal
to:

. a 202 " —
min (T ; (A, + _—_E(r,c)rz) (—log(1 2))) (8)

4.6 Corner Detection
4.6.1 Ideal Data & Perturbation Model

The ideal corner is the intersection point of two ideal
line segments and in the continuous domain these two
lines are specified by the equations: rcosé, + csinfé; —
p1 = 0 and rcosfy + csinf; — p; = 0. The quanti-
ties in the expression 64, 83, p1, p2 can be derived from
the coordinates of three points: (ry,c;), the starting
point in line 1, (3, ¢3), the intersection point of lines
1 and 2, and (r3,c3), the end point of line 2. The line
segments are sampled to obtain a discrete sequence of

points: § =< ( 2‘ Y E=d, e X (#&) E Ba e 1,
where Zr X Z¢ is the image domain, and I is the
number of points. An observed sequence of points §
is assumed to be obtained by individually perturbing
points (r;,¢;) with i.i.d Gaussian samples with zero

mean and standard deviation ¢. Each point has a
unique orientation specified by the orientation of the

line segment in which the point belongs. The pertur-
bations in the points are assumed to be introduced in
the direction perpendicular to its orientation. Pertur-
bations on the two line segments can be expressed by:
Ti = ri+ micosfy; & = ci+msinby; i=1,.., k7 =
r; + micoslly; & = c; +misinby,; i = k+1,..., I, where
n; ~ N(0,0%) and the ideal breakpoint is assumed to

be at index k.

4.6.2 Ideal Output Model & Perturbation
Model

The ideal corner output is characterized by the param-
eters: the corner position (r,c), the included angle 6,
the line parameters (8y, p1, 62, p2). The characteristics
of the perturbations are:

e Misdetection — An ideal corner pixel was not de-
tected. Typically, we assume that a given ideal
corner was not detected if there exists no detected
corner within the region defined by a circle with
radius of € centered at the true corner.

e False alarm — An non-corner pixel was labelled as
a corner pixel.

e Detection — For those corner pixels correctly de-
tected, we have an error in the estimated location
of the corner pixel. Due to edge pixel perturba-
tions, the estimated location of the corner pixel
is perturbed and the estimated included angle is
also perturbed. In addition, the estimated line
parameters are also perturbed.

The parameters that characterize these perturbations
include: the probability of misdetection, probability
of false alarm, and the covariance matrix of estimated
corner position, included angle and the line parame-
ters.

4.7 Corner Detector: Performance Charac-
terization

In this section, we provide the relationship between
the output perturbation model parameters and the in-
put perturbation model parameters in a corner detec-
tor. Specifically, we will derive an analytic expres-
sion for the probability of false alarm as a function of
the corner detector aposteriori probability threshold,
and the pixel noise variance. Before we derive this
probability we summarize the details of Zhang et al’s
Bayesian Corner detection scheme [15].

4.7.1 Bayesian Corner Detector Details

Zhang et al assume the ideal corner model and pertur-
bation model specified above. In addition they assume
that the prior distribution for the corner angle is of
the form of a VonMises distribution with mean angle
6 = /2 and a precision parameter . If one is work-
ing with aerial images of buildings, detecting rectan-
gles or projections of rectangles would be of interest,
and thie distribution is appropriate for the problem
domain. The prior distributions for the true line pa-
rameters are assumed as follows. A, non-informative,



uniform distribution in the interval [0, 27| is assumed
for the true line orientation. Similarly, the distribu-
tion for the perpendicular distance of the line from
the origin is assumed to be uniform within the image
domain and gzero elsewhere. Zhang et al,[15], show
that the MAP estimates for the breakpoint location
and the line parameters can be obtained as solutions
to a system of nonlinear equations. Their objective
function is given by: f(61, p1,62,p2,k) =

k
Y (i cosy + G sinby — p1)* +

i=1

Y (Ficosf; + ésin; — pa)* — 9(61,6:) + K
i=k+4+1

Here g(6,,02) is a factor that depends on the prior
distribution of #; — 8, and K is a constant.

Taking partial derivatives of the objective function
with respect to the parameters 6y, p1, 62, and pa, we
get a system of non-linear equations. The system is
solved by using gradient search. The solution provides
the breakpoint and the parameters of the two lines
forming the breakpoint. To handle the problem where
multiple corners are present along the pixel chain, the
algorithm is applied recursively to find breakpoints. In
order to determine whether the breakpoint is signifi-
cant or not, they compare the aposteriori probability
estimate with a probability threshold T;. The param-
eters that are used in this algorithm are:

¢ Standard deviation o, of the pixel error.
e Probability threshold Tj.
e Context Window Length cwl.

4.7.2 Probability of False Alarm

In this section, we compute the probability of incor-
rectly identifying a corner pixel in a given pixel chain
when there were no corners. If we assume that 8; = 6,
this corresponds to the case where the observations are
perturbations of points from a single line segment. In
this situation, the equation for the objective function
becomes:

I
Z(ﬁ- cosfy + ¢;sinby — p1)? — g(61,61) + K

i=1

Thus, for all k’s, the objective function, X4, is equal
to:

‘.=I
(z ﬁf) —g(6:,0,)+ K
=1

The algorithm accepts the pixel location minimising
the objective function as a valid corner pixel if the ob-
jective function is greater than: (—log(T,)—g(61,62)+
K). Here T, is the probability threshold and K is

the factor that depends on the product of the scale
factors for the probability density functions of the
random variables #;. The probability: Prob(]z” >
(—logT, — g(61,61) + K))is given by the probability
that a chisquare random variable with I degrees of
freedom is greater than (—logT, — g(6y,6:) + K)/o?.
That is:

Pk (xfz > —(logT, + g(6,,6:) — K))

o3

4.7.3 Other Performance Characteristics

In the previous section we have just outlined the
derivation for the probability of false alarm of the cor-
ner detector. The theoretical expressions for the prob-
ability of misdetection, the probability distribution of

the estimated breakpoint index, k, are the subject of
another paper [12]. The theoretical expression for the

variance of the detected corner location is derived in
[15].

4.7.4 Corner Detector:
Threshold Selection

In order to determine the significance of a detected
breakpoint, we compare the objective function value
against a given threshold T,. We set the corner de-
tector’s threshold T, such that the probability of false
alarm (derived above) is less than a small value . In
reality, since we do not know the true line parameter
6; we evaluate the objective function at the estimates
6, and @, and the minimum value is compared against

T, to determine whether an identified breakpoint is a
corner or not.

Criterion Function &

4.7.5 Corner Detection:
Characterization

Application Domain

Since our corner detector is a Bayesian one, it is possi-

.ble to incorporate domain specific prior distributions

into the corner detector. Indeed, our assumption that
the corner angle is VonMises distributed was made
after taking a look at the empirical distributions of
included corner angles for the model-board imagery.
The fact that the mean parameter was /2 was moti-
vated by the fact that most of the images were nadir
views of buildings. In order to set up the context win-
dow length properly, one needs to obtain the empirical
joint distributions of lengths of line segments forming
the corners. We are in the process of generating these
distributions.

5 Results on RADIUS Dataset

In this section, we provide some of the results ob-
tained by following the above methodology on RA-
DIUS imagery. Following the methodology, we es-
timated the edge gradient distribution(s), the noise
variance, and computed the threshold for various false
alarm rates ((e.g) 20, 10, 5, 1 percent).

The empirical distributions of the edge gradient for
features of interest and features of non-interest were
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Figure 1: Empirical Distribution of Edge Gradients

obtained from the annotated images. Figure 1 shows
the distributions. For areas of non-interest, there is a
peak in the empirical distribution around edge gradi-
ent of zero and the distribution is approximated by an
exponential distribution. This approximation is not
exactly correct because the empirical distribution has
a fat tail (since there were few regions in areas of non-
interest that have significantly high edge gradient). A
more appropriate distribution is a mixture distribu-
tion, a mixture of exponential and linear. It can be
seen that the empirical distribution for the edge gra-
dient in areas of interest is a fat-tailed distribution. It
was seen that the Gamma distribution approximates
the empirical distribution poorly for low values of edge
gradient and the approximation is good at intermedi-
ate values of edge gradient and at the tail. Theoretical
expressions for the probability of false alarm should be
derived assuming that the prior distribution is a mix-
ture distribution. It can be seen from Figure 2 that
the chain length distributions are approximated as ex-
ponential distributions. The approximation is appro-
priate for clutter chain lengths and is less appropriate
for chains of interest. Again, it is possible to model

the chain length distribution for features of interest as

a mixture distribution. The edge detector and linker
results obtained for various false alarm rates are shown
in figure 4. Note that part of the segments belonging
to the building are miesing. We see that most of the
segments are detected when the mean gradient (for
clutter) is set to zero (thus setting the threshold only
based on noise variance). On the other hand, when
we take into account that the clutter gradient distri-
bution, the threshold for a given false alarm rate is

Clutter chain length Probability
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Figure 2: Empirical Distribution of Chain lengths

significantly higher and more segments that are part
of the building are missed. This is because the thresh-
olds have to be significantly higher in order to reduce
the amount of clutter pixels (a.s the mean of the prior
distribution of the edge gradient of clutter features is
quite high). We don’t provide results from the cor-
ner detection stage since the results are provided in
another paper in this proceedings [15].

6 Conclusion

In this paper we have discussed a methodology for
automated selection of IU algorithm tuning parame-
ters. We illustrated the essence of the methodology
using an algorithm sequence involving edge detection,
linking and corner detection. As we apply the method-
ology we are learning and gaining insights into the fun-
damental limits of current algorithms. For example,
the results on edgel orientation estimation has moti-
vated the development of a new edge detector. Details
of the edge detector can be found in another paper in
this proceedings [11]. Discussions on groundtruthing
and its essential part in the methodology can be found
in Thornton et al [14]. We have begun to integrate our
analysis of feature extraction algorithms with other
analysis of matching algorithms in the current litera-
ture. We do not claim that we are at a point where
we can illustrate the methodology for an entire system.
We are gearing ourselves to the development of a sys-
tems engineering equivalent to Image Understanding.



Figure 3: Pixel chains detected for an example image.
Subimage of a model board image, Detected edges by
setting A, = 0 and false alarm rate of 10 percent and

misdetect rate of 5 percent (top right)

Figure 4: Detected edges for false alarm/misdetect
rate of 10 percent.
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