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I. Introduction

What is an edge in a digital image? The first intmitive notion is that a digital edge occurs on the
boundary between two pixels when the respective brightness values of the two pixels are significantly
different. Significantly different may depend upon the distribution of brightness values around each of
the pixels.

We often point to a region on an image and say this regiom is brighter than its surrounding area,
meaning that the mean of the brightness values of pixels inside the region is brighter than the mean of
the brightness values outside the region. Having noticed this we would then say that an edge exists
between each pair of neighboring pixels where one pixel is inside the region and the other is outside
the region. Such edges are referred to as step edges.

Step edges are not the only kind of edge. If we scan through a region im a left right manner
observing the brightness values steadily increasing and then after a certain point observe that the
brightness values are steadily decreasing we are likely to say that there is an edge at the point of
change from increasing to decreasing brightness values. Such edges are called roof edges.

It is, therefore, clear from our use of the word edge that edges refer to places in the image where
there appears to be a8 jump in brightness value or a jump in brightness value derivative.

In some sense this summary statement about edges is quite revealing since in a discrete array of
brightness values there are jumps in the literal sense, between neighboring brightness values if the
brightness values are different, even if only slightly different. Perhaps more to the heart of the
matter, there exists no definition of derivative for a discrete array of brightness values. The only
way to interpret jumps in value and jumps in derivatives when referring to a discrete array of values is
to assume that the discrete array of values comes about as some kind of, sampling of a real-valumed
function of defined on a bounded and connected subset of the real plane R™, The jumps in value and
jumps in derivative really must refer to points of discontinuity of f and to points of discontinuity in
the partial derivatives of f.

Edge finders should then regard the digital picture function as a sampling of the underlying
fonction f, where some kind of random noise has been added to the true function values. To do this, the
edge finder must assume some kind of parametric form for the underlying function f, use the sampled
brightness values of the digital picture function to estimate the parameters, and finally make decisions
regarding the locations of discontinuities and the locations of discontinuities of partial derivatives
based on the estimated valnes of the parameters.

Of course, it is impossible to determine the true 1locations of discontinnities in value or
derivatives based upon a sampling of the functions. The locations are estimated by function
approximation. Sharp discontinuities will reveal themselves in high values for estimates of first
partial derivatives. Sharp discontinuities in derivative will reveal themselves in high values for
estimates of the second partial derivatives. This means that the best we can do is to assume that the
first and second partial derivatives of any possible underlying image function has known bounds.
Therefore, any estimated first or second order partials which exceed these known bounds must be due to
discontinuities in value or in derivative of the underlying function.

In this paper, we assume that in each neighborhood not having discontinumities in value or
derivatives the underlying function f takes the parametric form of a polynomial in the row and column
coordinates and that the sampling producing the digital picture function is a regular equal interval
grid sampling of the square plane which is the domain of f.
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These underlying functions are easy to represent as linear combinations of the polynomials in any
polynomial basis set. That polynomial basis set which permits the independent estimation of each
coefficient would be the easiest to use. Such a polynomial basis set 1is the discrete orthogonal
polynomial basis set.

In section II.1 we discuss the one dimensional family of discrete orthogonal polynomials. In
section IT.2 we discuss how arbitrary two dimensional polynomials can be computed as linear combinations
of the tensor product of one dimensional discrete orthogonal polynomials. In section II.3, we discuss
how the discretely sampled data values are used to estimate the coefficients of the linmear combinations:
coefficient estimates for exactly fitting or estimates for least square fitting are calculated as linear
combinations of the sampled data values.

Having used the pixel values in a neighborhood to estimate the underlying polynomial function we can
now determine the value of the partial . derivatives at any location in the neighborhood and use those
values in edge finding. Having to deal with partials in both the row and column directions makes using
these derivatives a little more complicated than using the simple derivatives of one dimensional
functions. Section III discusses how a direction isotropic magnitude of the first and second derivative
can be defined in terms of the respective first and second order partials. The assumption that the
underlying function f has bounded derivatives can now be precisely stated: the direction isotropic
magnitudes of the first and second order derivatives at locations inside any regions are smaller than
some specified number, Any neighborhood, therefore, which produces an estimated function whose
direction isotropic magnitude of first and second order derivatives exceed these bounds has an edge in
the neighborhood at those locations where the bounds are exceeded.

Thus, the question of finding an edge reduces to the question of whether at any location the
direction isotropic magnitudes of the first and second order derivatives of the estimated underlying
function exceed certain bounds. This question is not as easy to answer as it might seem on the surface.
The pixel values are random variables becanse of noise. This randomness propagates itself to the
calculated estimates of the coefficients of the linear combinations of the polynominals taken from the
discrete orthogonal polynomial set and finally to the direction isotropic derivative magnituodes which
are based on these coefficients. A future paper will discuss the statistical discrimination problem.

II Discrete Orthogonal Polynomials
II.1 Discrete Orthogonal Polynomial Construction Technigue

Let the index set R be symmetric in sense that rsR implies —rgR. Let P (r) be the nth order
polynomial. We define the construction technique for discrete orthogonal polynomials iteratively,

Define Pu(r) =1,

Suppose P,(zr),..., Pn— (r) have been defined. In general, P (r) = r® + a rn—l + ... +a,r+ 2.

Pn(r) must be orthogonal to each polymomial Po(r),....Pn_l(r). Hénce, we mustnh%ve the n equations

ERPk(r)(rn + am__.lrn-_1 t..e.tar+a,) =0, k=0,...,2-1
re

These equations can be solved for the n coefficients ao,...,an_l.
The first five polynomial functions formulas are
Po(r) =1
Pl(r) =r
P, (r) = r2 ~ nat
2 2’Ho
- 3_
Ps(r) =r (u4/u2)r

4 2 2
T et 4 Guope -~ p, )

P4(r) =
Hokg = By

where
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IT.2 Two Dimensional Discrete Orthogonaj Polynomials

Two dimensional discrete orthogonal polynomials can be created from two sets of one dimensional
discrete orthogonal polynomials by taking tensor products. Let R and C be index sets satisfying the
symmetry condition reR implies —rsR and ceC implies -ceC, Let {Po(r),...,P (r)} be a set of
discrete polynomials on R. Let {Q (c),...,QM(c}} be a set of discrete polynomials on C. Then the set
{Po(r)Qﬂ(c),....Pn(r)Qm(c),....PN(r?QM(c)] is'a set of discrete polynomials on RXC.

The proof of this fact is easy. Consider whether Pi(r)Qﬂ(c) is orthogonal to Pn(r)Qm(c). when n #
iorm# j. Then J

rgk } P, (£)Q, ()P (£)Q (c)

ceC

= §R PiOIB() ) Q;(e)q (e,
TE ceC

Since n # i or m # j one or other of the sums must be zero.

Examples
Index Set Discrete Orthogonal Polynomial Set
{(-1/2, 1/2} {1, r}
(-1, 0, 1} {1, r, 2 - 2/3)
{=2/3, -1/2, 1/2, 3/2) (1, r, 22 - 514, 23 - 427201
-2, -1, 0, 1, 2} 4, v o2 -2, -1y,
r o+ 3r” + 72/35)
2 2
{-1.,0 ,1} x {-1 ,0 ,1} {1,rp,¢, °-2/3, rc, o - 2/3 ,

r(c2 - 2/3), g(z° - 2/3),
(£™ = 2/3)(c” - 2/3)}
II.3 Fitting Data With Discrete Orthogonal Polynomials
Let an index set R with the symmetry property reR implies -reR be given, Let the number of
elements in R be N. Using the construction technigue, we may comstruct the set {Po(r),...,PN_l(r)J of

discrete orthogonal polynomials over R.

For each reR, let a data value d(r) be observed. The exact fitting problem is to determine
coefficients 8gs+--s8y 1 such that

NEJ

d(r) = a P (r)

n=0

The orthogonality property makes the determination of the coefficients particularly easy. To find the

value of some coefficient, say L multiply both sides of the equation by Pm(r) and then the sum over
all reR.

N=-1
}R P, (D) =)a ER P,
TE n=0 TE

Hence,
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2 = Ekpm(r)a(:)/ ERPi(r)
I e. Ie.

The approximate fitting problem is to determine coefficients BD""'aK’ K { N-1 such that

K
o2 »  Talel = Y e P ()12

Te n=0

is minimized. To figd the value of some coefficient, sey a , take the partial derivative of both sides

of the equation for e with respect to 8 - Set it to zero and use the orthogonality property to find
that again
a = Eg P (r)d(r)/ Pz(r)
m m m
TE re
The exact fitting coefficients and the least squares coefficients are identical for m = L § U o

Fitting the data values {d(r)|reR} to the polynomial

K
Q(r) = } anPn(r)
n=0

now permits us to interpret Q(r) as a well behaved real-velued function defined on the real line. To
determine

da
= {r.)
dr %

we need only to evaluate

N dPn
2 8 -;—(ro)
n=0 ol

In this manner, any derivative at any point may be obtained. Simarily for any definite integrals.

IIT. Direction Isotropic Derivatives Magnitudes

In this section we seek to determine those linear combinations of squared partial derivatives of two
dimensional functioms which are invarient under rotation of the domain of the two dimensional funotionm.
To illustrate what we mean, let us first consider the simple bilinear function
f(ric’) =1kg + kpr' + kze'. If we rotate the coordinate system by 8, and call the resulting
function g we have in the row (r!c') coordinates

' r cos & + ¢ sin ©

T
¢! = -r s5in B + ¢ cos 6
and g(r,c) = kl + kz(r cos 8 + ¢ sin 8) + k3(—r sin 6 + ¢ cos @)

= kl + (k2 cos 6 - k3 sin 8)r + (k2 sin @ + k3 cos @)c

af 2 af 2 2 2
Now, [5;7(:50')] + [EET(I:G')] = kj + k3
ag 2 dg 2 2 2
and [—=(zjc’)] + [——(ric’')] = (k,cos® - k,sin®)” + (k.sin® + k cos8)
2 3 2 3
ar dc -
2 2
= k2 + ks
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Hence the sum of the squares of the first partials is the same constant 2 4 kz for the original

function or for the rotated function. This direction isotropic derivative magnitude is immediately
recognized as the squared gradient. In the remainder of the section we explicitly develop the direction
isotropic derivative magnitude for the first, and the second derivatives of an arbitrary function. Then
we state the theorem giving the formula for the isotropic derivative magnitude of any order.

Proceeding with the first order case, upon writing the rotation egquation with r and ¢' as the

independent variables we have

r = r'cos@ - c'sin®
¢ = + r'sin® + c'cosé

Let the rotated functions be g. Then glr,c) = flzle').

of of
Now expressing 3;7(r5c') and EET(I:G') in terms of
af af
—(r'c’') and —(ric') we have
ar dec
ot _ 2f dr_ af e _ 3E _af
or' - r ar' i dc ar' ar Gaas: ¥ de sind
af af ar af de _ of af
;F = E;— 5-0—" + a—‘;— 'a"c'—,‘ = 5-"' sin® + "'5; cos®
Then,
2 2
g£—(1:’::' + gE—(::c')
ar’ c
't af 2 (st af z
=| —(r!c’)cos 8 + —(z}c’')sin @ +| ——(z'c')sin 8 + ———(zic’')cos8
ar de ar dc
of 2 3 5 af af
= | =—(zlc") (cos2@ + sin2@) + |z=—(zic')z—(xr}c’')(cos® sinb - cos@sin 8)
ar ar dc
2
+ g'f--—(r::c') (sin2@ + cos6Z8)
B iy # ot . 2 _ fag o) 2 (3% z
< (Br (ric!) + ao(r.c') = (ar(r.c ) ¥ ac(xic')

Thus for each point in the unrotated coordinate system
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2 2
(gf—,(r:c')) + g—f-,—(r:c‘l)

produces the same value as

2
g'f(r:c')) + £E(r}c’)

in the rotated coordinate systems, where g(r,c) = flric’),

Proceeding in a similar manner for the second order partials we have

2 2 2 2
ioc 48 - B0f cos2 g + 2 i cos & sin 9+—Q—£- sin? g
ar'2 ar2 drdc a'c2
62f —azf ﬂzf 2 2 62f
e I — C0S @ sin @ + ————__ (cos“® sin 9)+ T"T37" cos 8 sin ¢
dr'gc’ ar’ drdc d'c
8¢ a2s s a%s "
T = o———— sin“ g - 2 — cos 6 sin @ + T3 cos” @
dec! dr drdc dc

Looking for some ¢onstant A which makes

azf 2 azf 2 a,2 2
—— + Al ——— +
ar'2 dr'dc?’ ar’2
- azf ) 2 azf~ 2 azf 2
— i SR 1] (R + P
Br2 drde 6c2

we discover that there does exist exactly one and its value is 3 = 2. Thus for each point in the
uwnrotated coordinate system,
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a2s 2 a2 * afls 2
(rle)| + 2| ———(xlc’) +| ——={zric*)
ar’ dr'dec’ dc’2

produces the same value as

2%t 2 a2¢ ? ar’s 2
—(xict) + 2{ ——(z}ec’) + ——E—(r:c’)

ar? ardc e

The direction isotropic second derivative magnitude is, therefore,

— R + e

drdc dc2

a2 \3 a2e \2 ate {2
5 2
ar2

Higher order direction isotropic derivative magnitudes can be constructed in a similar manner. The
coefficients of the squared partials continue in a binomial coefficient pattern for the dimensional case
which we have been discussing. To see this consider the following theorem which states that the sum of
the squares of all the partials of a given total order is equal, regardless of which orthogonal
coordinate system it is taken in. Specializing this to two—dimensions and third order partials, the
direction

a3f 2 an 2 33 2 33 2
+ + Al [—
dcdrdr dcdrde dcdcdr drdcdc
33f 2 an z Bsf il o 4 a3 3f 2
+ | ————— | ———
dcdrdr dcdrdc dcdcdr drdcdc
a3t 4 a3 \? ady )\ ? ¥ 2
=1 — - + 3l + 3| - + | ——5—
3r3 arzac drdc \ de

It should be clear from this example that the binomial coefficients arise because of the commutivity of
the partial differential operators.
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