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ABSTRACT

Different image textures manifest them-
selves by dissimilarity in bhoth the pro-
perty values and the spatial interrela-
tionchips of their component texture
primitives. We use this fact in a texture

discrimination system. An image is first
segmented into regions. In each region, a
set of properties 1is calculated. The

regions along with their respective pro-
perties constitute the primitives.

The discrimination between categories
has two parts: the training phase and the
classification phase. Primitives and
relationships obtained from representative

' training images are used to develop crite-
ria for the classification phase. During
classification, the primitives of the test
image are grouped into clusters based on a
minimum distance classifier. Then, each
primitive is assignec to the most likely
texture class given its cluster name and
the cluster names of its spatially neigh-
boring primitives.

INTRODUCTION
Texture discrimination,

a common capa-

bility for the human vision system, con-
tinues to be a difficult problem for
machines. In spite of the fact that a

precise mathematical definition for tex-
ture does not currently exist, many
approaches to texture discrimination have
been suggested.

Some of the methods for texture discri-
mination have been statistically Dbased
while others have centered arcund a struc-
tural approach. (See Haralick [1l] for a
review of statistical and structural
approaches to texture.)

f The reason Ffor texture”
hinges arocund one of the most
Processes in scene analysis,
lmage into meaningful regions. One way to
accomplish this segmentation is through
edge detection [2]. An equally wvalid
approach to region segmentation employs
texture discrimination: different tex-
tures define the different areas.
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This paper will describe a method used
to discriminate between texture classes
based on measurements made on typically

small regions determined by an initial
segmentation. Each region and its mea-
surements constitute a primitive. A

region is assigned to the most likely tex-
ture class given the values of its mea-
surements and those of its spatially adja-
cent neighbors. Some of the c¢riteria
required for the classification phase are
obtained by the analysis of "representa-
tive" samples of texture classes processed
during the training phase.

CLASSIFICATION PHASE - OVERVIEW

The structure of the classification
phase is shown in Fig. 1. Image segmenta-
tion programs based on the sloped facet
model [3] are used to process the test
image to obtain the symbolic image, an
image composed of regions. Each regiocn in
the symbolic image is assigned a unit num-
ber, and a region adjacency graph (RAG),
which contains the adjacent unit numbers
for any given unit, is generated.

Using the test image, the symbolic
image, and perhaps some intermediate
images obtained from the image segmenta-
tion process, a property list containing
a set of measurements for each unit in the
symbolic image 1is generated. Using the
cluster decision rule parameters calcu-
lated in the training phase, each unit is
assigned a cluster code (CL). The updated
property list, the RAG, and the category
decision rule parameters are used to cal-

culate the most likely texture category.
Each unit in the symbolic image can then
be replaced with its texture category
resulting in the <classified symbolic
image. o

CLASSIFICATION PHASE

&

A test image is transformed into a:sym-
helic image whose regions are called
units. The clascification problem is to
assign each unit to the most likely tex-
ture category. A unit is first classi-
fied, based on measured properties, to
belong to a cluster type which has been



defined in the training phase. All of the
units which are spatially adjacent to the
unit under consideration are also assigned
cluster names. From this information, the
most likely texture category for the unit,
given the cluster name (clust) of the unit

and the cluster names of its neighbors
(neigh), can be calculated. Using Bayes
rule, the conditional probability density

can be expressed as
P{cati[clustj,neigh} =

P{neighiclustjcati}P{clustj,cati} oy

P{clustj neigh]
r

For a given unit, the probability in egqua-
tion (1) is calculated. Then, the unit is
classified as category i (cati) if

P{cati}clust-,neigh}>P{catk]clustj,neigh}

J Hi £k
(2)

The terms in equation (1) will be consid-
ered separately to obtain a more mathemat-
ically tractable expression.

We assume that the cluster name assign-
ments for neighboring units are uncorre-
lated. This seems quite reasonable. If
two adjacent units were to exhibit very
Similar characteristics and thus be corre-
lated in terms of cluster names, then the
initial segmentation was wrong; the two
units should have been segmented as one
unit in the symbolic image. With this
assumption, the first term of equation (1)
can be expressed in terms of the product
of the probability density functions for
each cluster type as

C

Tr

k=1

P{neigh|clust.

Jcati} =

nlnz...nc

n
[P{neighborEclustk[clustj cat,}} k (3)

where neighbor denotes a
tially adjacent to the unit under consid-
eration, n® is the number of spatially
adjacent neighbors of the unit under con-

neighbor spa-

sideration whose cluster name is k, N is
the total number of neighboring units, and
¢ is the number of cluster types. The

multinomial coefficient is calculated by

N N!
i (4)

Ming ... ng ming! ... n_t
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The next term of equation (1) can be

expressed as

P{clustj,cati} = P{clustjlcati}P{cati} (5)

The denominator of equation (1) will be
identical for all categories. It adds no
information to the classification process
and can, therefore, be ignored in the dis-
criminate function resulting in

P{catilclustj,neigh} &

KP{neighlclustj,cati}P{clustj[cati}P{cati}

(6)
where K is a constant. Thus, equations
(2), (3), (4), and (6) are required for

unit classification.

In order to classify a unit as a member
of a texture category, the following
information is required:

1) P{cati}

The a priori probability of a tex-
ture class can be obtained in three
ways. First, there may be some
texture categories for a given
problem which are known a priori to
be more 1likely than others. Sec-
ondly, this probability may be cal-
culated from the representative
training data. Lastly, when no
information is available, all cate-

gories may be assumed equally
likely. In this 1last case, the
P[cati} in equation (6) is ignored

and its value is absorbed into the
constant K.

2) P{clustjlcati}

From some representative sample
images, the number of occurrences
of cluster j which occur for units
known to be from category i can be
caunted. The normalized result is
an estimate of this required condi-
tional probability density func-
tion.

3y P{clustjlclustk,cati}

This term is estimated from the
training data by calculating the
normalized ‘occurrence matrix of

cluster names for category i.



TRAINING PHASE

The training phase, shown in fig. 2, is
required in order to calculate the parame-

ters necessary for the classification
phase as described in the previous sec-
tion. The initial processing for the

training phase parallels that of the clas-
sification phase. From a training image,
a symbolic image, a RAG, and a property
list are generated. The main difference
in the training phase occurs when the user
manually selects regions from the training
image which are representative of each
texture category.

The property 1list is updated so that
category number i is written into the
appropriate column for all units previ-
ously declared to belong to the training
set for texture class i. Given all of the
' samplie units belonging to a texture class,
a minimal spanning tree can be generated
with the subsequent clustering resulting
in a relatively small number of cluster
types. 1In other words, a set of prototype
cluster names for each class is generated.
Thus, the properties associated with each
unit can be assigned to one of the proto-
type cluster names based on a criterion
such as minimum Euclidean distance. The
prototype cluster vectors along with the
minimum Euclidean distance classifier
constitute the cluster decision rule.

This process rule is now applied to
each set of the training texture classes
with the results stored in the property
list. Using the property 1list and the
RAG, a cooccurrence matrix of cluster code
vs cluster code can be calculated for each

texture class. The (i,3)t" element of
each matrix is the number of times that
adjacent units in the training data were
labeled cluster i and cluster j for that
texture class. Each matrix is then nor-

malized by row.
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Thus, the cluster decision rule parame-
ters, which indicate the prototype values
for cluster types, and the category deci-
sion rule parameters, Picat;},
P{clusts|clusty,caty} P{clusts|cat;}, have
been generated. This is all &F the infor-

mation required for the classification
phase.
CONCLUSION

This paper has described a methed to
assign regions to texture categeories based

on measured property values and spatial
interrelationships of the texture primi-
tives, The preliminary results appear

quite encouraging.

The method appears to be sufficiently
general for a wide class of images.
Furthermore, the flexibility of the
processing methods should facilitate eval-
uation of alternative Procedures. For
example, using the same training and test
images, different methods for the image
segmentation process can be compared and
evaluated. Further investigation into the

property measurements which provide the
most information is required.
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