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ABSTRACT

An imoge data set of 54 scenes was obtained from 1/8"
by 1/8" areas on a set of 1:20,000 scale photogrophy.
scenes which consisted of & somples from each of the nine
categories scrub, orchard, heavily wooded, urban, sub-
urban, lake, swomp, marsh, ond railroad yord was ano-
lyzed manually ond automaticatly.

For the automatic onalysls, a set of features meagsur
tng the spatial dependence of the grey tones of neighbor-
ing resolution cells was defined. On the basis of these
features and o simple decision rule which assumed that the
features were independent and uniformly distributed on
identification accuracy of 70% was achieved by training
of 53 somples and assigning on identification to the 54th
sample and repecting the experiment 54 times. This
identification accuracy must be compared with the aver-
age 81% correct identification which five photointer-
preters achieved with the same scenes, afthough the 81%
correct identification is the accuracy achieved when they
used the 9" x 9" photogroph to interpret from. Note that
the photograph is data of considerably higher resolution
having much more context information on it than the
smoll digitized /8" x 1/8" area the automatic onalysis
had available.

INTRODUCTION

The main problem facing us is that of fecture selec-
tion of textural-contextuat information. The features
thet we may. use ore limited not only by the catholic
constraint of practicality*, but also by our heuristic idea
of texture~context Iinformation.

In the next section we briefly go over the feature
selection problem in general and in subsequent sections
present the intuitive idecs behind what we have termed

Fexture-context' features. The mathematical detoils of
these features ore then explained and some simple exom-
ples ore shown. The decision making algorithms that
were used are discussed; results, in:?uding comparison
with interpretations by expert photointerpreters, and
conciusions are in separate sections.

For this study the data sets were comprised of 54
digitized 1/8" x 1/8" sections of standard 1;20,000,
9" x 9" aeriol photography supplied by the United States
Army Engineer Topographic Laboratories. Each image
wes digitized into g 64 x 64 resolution cell matrix {ond
later into a 58 x 58 one becouse of some dark border
offects encountered from the mask used in the digitization

*With regord to this point, it seems oppropriate to note
here that oll feature selection and decision making
algorithms were written in FORTRAN IV and implement~
ed on a PDP 15/20 digital computer with 12K core ond
two DEC tape drives,
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process}, and the levels of digitization ranged from &3 ta

zero. There were six data sets per category and 9 generol
categories: scrub, orchard, heavily wooded, urban, sub-

urban, lake, marsh, swomp, ond railroad yard.

PREPROCESSING AMND FEATURE SELECTING

The *classical' black-box description of an automated
pattem recognition system is based on four main, not
necessarily distinct, subsysterns:

(l{the sensors of measuring instruments
(2) the preprocessors

(3} the feature selectors

{4) the categorizor or decision maker.

The data which the sensors or instruments produce ore
not always in the kind of normolized form with ‘which it
makes sense to work, For example, mony sensors or
measuring instruments produce relative measurements, |.e,
the measurements are correct up to an additive or muylt~
plicative constant, Despite calibration efforts, this §s
particularly true for the comera-film-digitizer system
which protzlce the digital magnetic tape containing the
digitized imag:. Variations In lighting, lens, film,
developer, and digitizer all combine to produce o grey
tone value which is an unknown but usually monctonic
fransformation of the "true” grey tone valve, Under these
conditions we would certainly wont two images of the
same scene, one imoge being o grey tone monotenic
tronsformation of the other, to procKu:e the same results
from the pattern recognition process. It has been
tshown that normalization by equal probability quantizing
puarontees that images which ore monotonic’ transformations
of one another produce the same resuits. Hence, all the
images we used were quontized to 16 levels,

The sensors usually produce many mecsurements, Simple
sensors such as an EKG machine produce 103 ~ 104sampled
values while image sersors produce 104 =107 sensed grey
tones. Compared to the huge omount of data produced by
the sensors, the category distinctions we need to make are
relotively few, say a choice of one out of ten to g hundred
categories. This suggests that the pattern recognition
system should be ab?e? to reduce the dato to a more syc-
cinct form, elimingting much extraneous information (that
information which 1s, in general, not relative to the
discrimination of the given categories). This sort of dota
reduction which produces the Initial features is called
preprocessing or feature selecting and unfortunctely there
exists [ittle or no theory to oid in establishing what this
preprocessing or fegture selecting should comsist of . Rother,
this operation is determined intuitively, rationalized
heuristically ond justified loter progmaticatly and empir-
jecally, In the case of our texture=context problem, the use
of various moments of the spatiol grey tone dependence
matrices corresponds to this sort of preprocessing or initiol
feature selecting.
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grophic Laborateries, Fort Belvolr, Virginia, CON-
TRACT DAAK02-70-C-~0388,



It is impoetant to note thot a primary characteristic
of preprocessing or feature selecting is rﬁe number of
operations needed to be performed in order to obtain the
features. Quick procedures ore characterized by a
number of operations proportionol to the number of data
points needing to be processed, All procedures which we
develop here ore quick in that sense.

The next stage in feoture selecting consists of remov~
ing redundancies from the initial features. If the inijtial
features are N-dimensional vectors in Euclidean N=space,
as they are in our study, then it might be that ctl the
vectors lie in some K~dimensional flat where K Is much
smaller than N, tn this case there are N-K tinear con-
straints to which the initial feature vectors are subject
and it is possible to essentially maintain all the informa-
tion in the features vectors by representing them by their
coordinates in the smoller dimensional subspace or flat,
Such redundancy remaval can be done by principal com-
ponent analysis or by not using those features which do
not contribute additional information for the identification
of the given categories, It is this lotter approach which
we take here.

The various features which we suggest are all @ func-
tion of distance ond angle. The angular dependence
presents o special problem. Syppose imoge A has features
o,b,c,d for angles 0%,45°,90%,135° respectively ond
image B is identigal with imoge A except that image B is
rotated by say with respect to A, Then B will have
features ¢,d,a,b for angles 0°,45°,90°, 135% respectively.
Since the texture-context of A is the same os B, ony de~
cision rule using the ongular depence featyres a,b,c,d
must produce the same results for c;d,0,b (o0 90" rotation)
or for thot matter b,c,d,a {a rotation) and d,a,b,¢
{a 135° rotation). To guarantee this we do not use the
angular dependent feature directly. Instead, we use
some symmetric function of o,b,¢,d: their average,
range, and mean deviation. '

SPATIAL GREY TONE DEPENDENCE

Let L = {1,2,...N, }ond L, = {1,2,...,N_lbe
the x and y spatial domains ond L_ x L, be the sat of
resolution cells, Let G = {0,1,.. .,Ng}be the set of

possible grey tones. Then a digital image | is a function
which a@signs some gﬂg tone to each and every resolu-
tion cell; I:Ly x Lx" .

An essential component of our conceptual framework
of texture is o measure, or more precisely, four ¢losely
related measures from which oll of our texture—context
features are derived, These measures are arroys termed
ongular nearest neighbor grey tone spaticl dependence
motrices, and to describe these orrays we must re~empha~
size our notion of adjocent or nearest neighbor resolution
cells themselves, We consider ¢ resolution cell ==
excluding thase on the periphery of on imoge, etc,~to
have eight neorest neighbor resolution cells as In Figure 1,

*The spatic! domain L xL_ consists of ordered poirs whose

components are row ond column respectively. This con=
vention conforms with the usual two subscript row—column
designation used in FORTRAN,
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We mssume that the texture-centext information in on
imoge | is contained in the over—all or "average" spatial
relctionship which the grey tones in imoge | have to one
onother. More specifically, we shall assume that this
texture=context informotion is odequately specified by
the matrix of relative frequencies Pii with which two

neighboring resolution cells separated by distance d
occur on the image, one with grey tone i and the other
with grey tone |, Such matrices of spatial grey tone
derondenca frequencies are a function of the angular
relationship between the neighboring resclution cells as
well as o function of the distence between them, Figure
2 illustrates the set of atl horizontal neighbering resolu-
tion cells separated by distance 1. This set along with
the image grey tones would be used to caleulate a dis-
tance 1 horizontal spatiol grey tone dependence matrix.
Formally, for angles quantized to 45° intervals the
unnormalized frequencies are defined by:

P62, 07) = PRifk, 1), fmymd) yxl St at M} kom0, [I-nf =d, 16k, 1), i, k=i
P, {0, 45%) 23 (I, B, (m,n})e 3L W )| kmed, Lo ) 6 (ime 4, I-ed),
10, 14, Hem,nj]
(i, 9,900 H{(k, 1), m,nlle (L et xil xL -m =d, l-n=0, i, llm,n)=
PG fd, 1357 'lltcu,u. {m,nHe (L’nl')x(!.,xt.)ii :L .-:: ,N:.I,: -,,Km._n):‘_},,
Yy ® ¥ X ’  I-n==d),
W ) =0, Um,nh= i)

Note that these matrices are symmetric; P(i,j;d,a) =
P(j,i;d,a). The distance metric & implicit in the cbove
equations can be explicitly defined by o({k,1}, (m,n)) =
max {lk-m , li-n} }.

Consider Figure 3-a, which represents a 4 x 4 image
with four grey tones, ronging from 0 to 3. Figure 3-b
shows the general form of any grey tone spatial depen-
dence matrix. For example, the element in the (Z,1)-st
position of the distance 1 horizontal Py, matrix is the

total number of times two grey tones of value 2 and 1
occurred horizontally adjacent to each other, To deter~
mine this number, we count the number of pairs of ’
resolution cells In RH such that the first resolution cell

of the pair has grey tone 2 and the second resclution cell
of the pair has grey tone 1. In Figures 3-c through 3-f
we calculate all four distance 1 grey tone spatial depen-
dence matrices,

If needed, the oppropriate frequency normalization for
the matrices ore easiry computed. When the relationship
is neorest horizontal neighbor (d=1 ond a=0°), there will
be 2(N_=1) neighboring resclution cell pair on each row
ond thefe ore N rows providing a fotal of 2N (N -1)

nearest horizontal neighbor pairs (see Figure 3). When
the ralationship is naarest right diogonal neighbor {d=1,
a=45°) there will be Z(Nx- ﬂ 459 neighboring resolution

cell pairs for each row except the first, for which there
are none, and there are N rows. This provides a tetal

of 2(N -l)(Nx-l} nearest right diogonal neighbor poirs
{see Figure 4), By symmetry there will be 2Nx(N o )]
nearest vertical neighbor pairs and 2(Nx-l)(Ny-1Ynect-
est left diagonal neighbor pairs.

Let us now consider how 1o use such spatial dependence
information. We have suggested generating
a homogeneity and unhomogeneity image from the origi-
nal imoge on the basis of the grey tone dependence matrix.
{The homogeneity image is an enrnanced display of ol



the homogeneous areas while the unhomogeneity image
is on enhanced display of all the unhomogeneous areos.}
At any resolution (m,n), the homogeneity image Iy, has

an integer valuved grey tone O to 8 depending on how
many of resolution ce{l (m,n¥s B nearest neighbors on

the original image ! have respective grey tones which are
"sufficiently similar" to the grey tone at {m,n) on image
I. Similerity of two grey tones i ond | is determined on
the basis of whether the grey tones occur next to each
other sufficiently often; that is, if the element P(i, ) of
the spatial dependence matrix is lorge encugh. At any
resolution cell {(m,n), the unhomogeneity image Iu has

a grey tone 0,1,2,3,4,5,6,7 or 8 depending on how
mony of resolution cell {m,n)'s 8 nearest neighbors on
the original imoge | have respective grey tones which are
“sufficiently dissimilar” to the grey tone at {m,n}) on
imoge . Dissimilarity of two grey tones i and | is deter-
mined on the basis of whether the grey tones occur next
to each other sufficiently rarely, that is, if the element
P(i,i) of the spatial grey tone dependence matrix is

small enough.

The idea of lorge encugh or small encugh implies o
thresholding of the grey tone dependence matrix and
depending on what level the threshold is set the resuiting
homogeneity and unhomogeneity images appear differ-
ently. Thus undesirable arbitrory thresholds must be
introduced. Fortunately, it is possible to do away with
thresholding. Instead of defining similority os an all or
nothing offair, we can define the similarity between
grey tones i and { to be P(i,{), the frequency with which
i and | co~occur next to each other, some function of
P(i,{) such as IogP](i,i) or perhaps even some function of
i and j such as . Dissimilarity between i ond j

T+(i"i)2
can be measured by {i=j)".

Texture-context features ave ecsily derived from the
homogeneity or unhomogeneity imoge. For example, the
greater the total homogeneous region area, then the
darker the homogeneity image. Hence, the meon grey
tone of the homogeneity image provides o measure of the
"smoothness" of the origina! image. The grey tone
variance of the homogeneity imoge provides a measure
of how the homogeneous oreas are spread out on the
image. Low varionce would indicate large area uniform
homogeneity while high varionce might indicate many
small area homogeneous regions.

it con be shown that the computation of the averoge
grey tone on the homogeneity or unhomogenelty image J
can be done without having to have the image J gener-
ated. The average grey tone can be computed directly

o a function of the spatial grei: tone dependence matrices.

In this paper we explore only these features which con be
computed directly from the spotial dependence grey tone
matrix and do not require the homogeneity or unhomo-
geneity imoge to be determined.

In the discussion which follows on the use of the
spatial grey tone dependence matrices as texture context
featyres for imoge dota, we shall be concerned with
forms such as
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s the comelation between neighbering
grey tones {COR);

Note: #R is the number of neighboring resclution cells.

The ASM feature is the sum of the squared terms of
the grey tone spatial dependence motrix normalized
by the tota! number of possible adjocencies, #R, for the
given angle, For each spatial dependence matrix, there
is a corresponding ASM but there has been o greot
reduction of data becouse each ASM (s each ASMD
and ASMID) is only a number not on arrey. The ASMD
feature is the sum of the members of a grey tone spatial
dependence matrix, each member multiplied by the
squared difference of the grey tone values and normal-
ized os before, The ASMID feature is the sum of the
members of a grey tone spatial dependence matrix, each
member divided by one plus squared grey tone difference.
The correlation feature COR is actually the velue of
the two-dimensional autocorrelotion function of the
picture where the outocorrelation function is evaluated
for a particular distance and angle lag.

Each of these features is a function of the angle ond
distance between what we consider to be neighboring
resolution cells. We consider 4 angles, 0%, 45°, %09,
and 1359 at distances of 1, 3, and 9 resolution cells.
This provides an initial set of 48 features. The number
of fegtures is thus reduced by calculoting the meon,
range, and meon deviation of each type of feature of
a given distance over the four angles. The features
which are actually first considered by the decision
rule are ASM, ASMID, ASMD, COR evaluated ot
distances of 1, 3, and 9 resolution cells with the
average, range, and mean deviation for each feature
and distance calculated over the four angles, This is a
tota! of 36 features. Figure 5 illustrates the calculation
of three representative features of the image of Figure
3a.

AUTOMATIC SCENE IDENTIFICATION

Automatic scene identification using the 34 texture
context features presents a difficult problem because of
the relative sparcity of the data: for each of 9 cate=
gories there are only 6 samples with each samrle having
a 36 dimensional feature vector. The difficulty is
really pwofold: (1) There are so few semples that it is
diffi cu‘t to leorn anything about the patterns which ore
characteristic of the category, {2) The decision rule
must contain a minimum of parometers so thot the deci=
sion rute does not "memorize” the data. Hence the
approach we take relies on the simplest type of data
statistics: the minimum ond maximum volue each featurs



can take on for megsurements in a given category .

Figure 6 illustrates for each pair of categories which
variable will separate them, Figure & shows that variable
4, ASMID ot distance 1, has its averoge, ronge ond meaon
devlation oppearing o total of 56 times in separating
categories, Of those categories which are not seporated
by the distance 1 ASMID features, COR at o distance i
hes its overage, range ond meon deviation appearing o
total of 8 times in seporating categories, Of those cate~
gories which ore not separated by the distance 1 ASMID
or COR fegtures, ASM at distance 1 has its averoge,
range ond meon deviation appecring a totol of 4 times
in separoting categories, Of these categories which are
not separated by distance 1 ASMID, COR or ASM fea-
tures, ASM at distance 3 hes its average, range ond medn
deviation appearing a total of 1 time in separating cote=
gories. Hence, of the initiol 36 features, we use only
the following 12 features:

ASM AVG

ASM RANGE

ASM DEV

COR AVG

COR RANGE DISTANCE 1
COR DEV

ASMID  AVG

ASMID  RANGE

ASMID  DEV

ASM AVG

ASM RANGE DISTAMNCE 3
ASM DEV

For gutomatic identification, we use a decision rule
which is @ maximum likelihood decision vule under the
assumptions that the 12 feature vorichles ore independent
having uniform distribuﬂorﬁ. Under this assumption, the
density function for the \th category is

12

1
for all
nil 1 [ank— nk]

(x'llx2; “ae ,xlz) SUCI'\ that

r(x‘,x2' --c,x‘z‘k) =

bnks XS Opr n=1,2,...,12,

where b, ond a_, define the minimum and maximum
nk nk

values of the uniform distribution on the nrh com=

ponent.
Hence, o mecsurement (x],xz, ...,xm) is assigned to
category k if and only if

2?2 and

() bnk.<. X, S Sokr n=1,2,...1

o ¥ o, 12 1
n-:“ [onk- |"|kj n=1 :cni- n'lj
for all j such that bni‘-’-x“ < Qg n=1,2,...12.

If there exists no k such that bnké X &g n=1,2,...12,
then (x],xz, . .xlz) is mssigned to category k if and only
if

.pected
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12
Z min ‘ ixn_'mnkt ’ |xn—an} (ank-bnk) E
n=} -

12
Zmin | ‘xn-onil ’ lxn-bni]i (uni—bni),
n=1 ~ie1,2,0 00K
The minimum and maximum statistics 9k and bnk

are estimated in the following way:

Leto, = the maximum nth component for all measure=
ments designated in k’h category;
Bk = the minimum ni"' component for all measure=

ments designated in k'h category.

Assume that category k has My measurements, then

by = Bk - L Bnk)
M -1
Ok = ank + (“nk -Bnlt:"l
M1

Notice that a 4 is larger than the maximum by some
fraction of the range and bnk is smaller than the minimum

by some fraction of the range. Hence. the range
ank~brk is larger than ﬂ"lf Bk, Under the assumption
that the varioble has a unitorm distribution, the expected
value of ank-ﬁnk s M-l - (irue range) while the ex-~
M T

value of onk ~bnk is the true ronge.

The identification experiment was done in two ways
using the cbove declsion rule. In the first case the
entire set of 54 samples was used to troin on, i.e. gather
the statistics @1, Pk’ we=1,2,...12, k=1,2,...9, and

then on the basis of the rvnk's ond ﬂnk's calevlated, each

sample was assigned to o category . Figure 7 illustrates
the contingency table of the resulting assignments. A
total of 53 out of 54 samples were correctly identified.
We shall have more to say cbout the interpretotion of
53/54 in o moment.

In the second cuse, the identification experiment was
repeated 54 times, each time using a different set of
53 samples to train on. The 54th sample wos assigned
to a category on the basis of the minimum maximum sta~
tistics gathered from the othes 53 samples. Figure 8
i{lustrates the contingency table resu ting from these
ossignments, A total of 38 out of 54 samples were cor~
rectly identified for a percentage of approximately 70%.

To help interpret these results a sequential decision
algorithm in the form of a dichotomous key waos tried.
A dichotomous key successively splits a group of meo-
surements in two based on whether a given component
is greater than or less thon some value. The dichotomous
key itself is iilustrated in Figure 9. It takes 13 decision
points to perfectly separate the 54 measurements into
their designated categories. If the 5 decislon points,
whose sole function is to correctly separate mecsurements



which were incorrectly assigned, are removed, then it

takes B decisions to correctly assign 49/54 measurements, d{N-1) = 12x53 210 = 2'43
Under the gssumption that the twelve varigbles are inde- N-T.1 553 ¢ X
pendent at each decision stoge, and that the two cate- 271 273 2
gory groups being split have the same uniform distribu-
tion, Figure 10 illustrates the contingency toble resulting

from these assignments. Under the assumption that the Hence our ability to perform the cotegory separation
twelve varicbles are independent at each decision stage, with such a small chance of availoble portitions is
and thet the two category groups being split have the significant.

same uniform distribution, the probability of being able
to achieve perfact separation of two cotegories in two
decisions is less than 10712,

The automatic texture-context scene cnalysis exper-
iment wos compared with the identification which five
photointerpreters were able to make with the same data
set. The photointerpreters were given the original
9"x9" photographs and were allowed to use as much
context information os they could in making the identi-
fication. These experiments yielded an overage of
81% correct identification for the five photointerpreters.

DISCUSSION AND CONCLUSION

An image data set of 54 scenes consisting of 6 som-
Eles from each of the nine categories scrub, orchard,
eavily wooded, urban, suburban, lake, swamp, marsh,
and railroad yord wos analyzed manually ond aute-
matically.

For the automatic analysis, a set of features for
texture context was defined ond on the basis of these
features and o simple decision rule, on identification
accuracy of 70% was achieved. This identification
accuracy must be compared with the average B1% cor-
rect identification which five photointerpreters achieved
with the same scenes, although the 81% correct identi-
fication is the accuracy achieved when they used the
9x9" photograph to interpret from, The photograph is
data of considercbly higher resolution having much more
context information on it than the small digitized
1/8"x1/8" area the outomatic onalysis had available,

Furthermore, the 70% correct identification arose in
the case when the outomatic technique trained on 53
samples and ossigned an identification to the 54th
sample and repeated the experiment 54 times. This meons
that for each experiment, there was one category which
had 5 somples instead of 6 somples, For this cotegory,
there is a probability of 1/3 that for each feature the
missing sample had minimum or maximum value over all
samples for the category. Hence there is a high prob-
ability that the missing sample provided significant
information which is not cvuilaEie in the sample without
it.

Locking at the situation another way, 100% correct
identification was achieved by the optimal dichotomous
key which required 13 decision points. The probabitity
that such good identification could happen by chance is
very small, In fact, the number of 2 celled portitions
which the simple hyperplanes used could generate for
N samples in a d-dimensional space js cinl d(N-1) and
this number should be comporecr?o 2N- —(, the total
number of non-trivial distinct 2 celled partitions pos-
sible. In our cose d=12, N=54 ond the ratio

&54
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Figure 5 illustrates the calculation of texture context fea— RACE S MM S :
tures at distance | for the imoge of Figure 3a, FAVE 3 pEv 7 DISTANCE
. SCRU ORCHR SCRU"'SWAM™ TORCHR TLAK W wdo supum | AVG A AvG 8
AVG ) VG 5 ave I hygoe SURUR L AVS £ aw 9 139
bEV 7 AVG 2 AVG 2 ave 2 AvG 7 awe 12 KRN IS5
AVG % RANGE H DEV 3 AVG 3 AVG 8 FEATURE ASMD 2610
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SCRU ¥ 0D RANGE 3  AWS 5 pey a AVG 3 ASMID 4 8 12
AVG 3 bEw .3 DEV 7 avs A AVG 19
AVG T AVE 3 aw B avc 5 URBA RAILY KEY TO VARIABLE NUMBERS
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Ave 1 DEV 4 DEv 8 DEV &
“Gt. 2 AVG 4 AVG 9 RANGE 8
Igg: Eo4 Al 3 Mo 2 DEV ; Figure &b is a continuation of Figure 6a and tobulates
avs : DEV 3omMGE 2 aw . for each category pair which of the 36 feature
i Bev 3 Mveee € DRV T voriables con seporote the cotegory pair.
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.;’G . ;zﬂ Ag ] R‘:GE 3 AVG g ASIGHED IDERTIFICATION
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AVG ? QRCHR URBA  AvVG 2 . pe .
AVE 9 AVG ' AvE 3 Figure 7 shows con: mgeﬂq‘1 table of trye identification
JScRu s ORCHR SUBUR  RANGE 4 when statistics are gothered from the full 54 samples
paGE 3 e 2 aw X and the assignments are moade on all the 54 somples,
£V 3 Ava 5
AVG a4 RANGE A4 DEV 5
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Figure éa tabulates for each category pair which of the 36
feature variobles can seporate the cotegory pair.
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Figure B shows contingency table of true identification

versus assigned identificotion when the following
experiment is repeated 54 times; statistics are gathered
from 53 samples ond an assignment is made on the

54th somple.

P e

N T n
}_‘_-!l_j_j,—lzji 0153AN0E Y

ey 13 Lhl R TR

| b e
wi ) 7l 1% |
g,z b e I_I._ﬂ__snlsuaﬂ!.

\ 1
o arsh — A @.Jl_..'
I

1

f B

M e am m ==

i SCRUY

e RoIELELY

[}
[ L

¥
[FREL L)

Figure 9 diagrams the Optimal Dichotomous Key (Sequen~

tial decision rule).
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Figure 10 shows contingency toble of true identification
versus ossigned identification for the dichotomous key
of 8 decision points. The total probobility of correct

. ..
identification is =y or 33%.
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