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Abstract 

Thfi! table look-up rule problem.can be described by 
the qu,stlon: what i_s a good wa.y forthe table to 
repre~nt the decision regions in the N-dlmensional 
measurement space. T~is paper ~escribes a quickly 
implementable table look-up rule based on Ashby's 
representation of sets in his constraint analysis. A 
decision region for category c in the N-dimensional 
measurement space is considered to be the intersection 
of the inverse projections of the decision regions de­
termined for category c by Bayes rule in smaller dimen­
sional projection spaces. Error bounds for this 
composite decision rule are derived:. any entry in the 
confusion.matrix for the composite decision rule is 
bounded above by the minimum of that entry taken over 
all the confusion matrices of the Bayes decision rules 
in the smaller dimensional project spaces. 

Introduction 

In the simple Bayes approach to pattern discrimi­
nation, a pattern measurement d is assigned to category 
c* only if 

P(c*ld);;o.P(cfd) for every c £C. 

There are two distinct ways of Implementing this 
assignment process: In the usual case, we take the 
pattern measurements to be vectors and for each 
category c, we estimate the conditional density P(djc) 
assuming a convenient multivariate form for P(djc). 
When a measurement d arrives for assignment, we plug it 
into the formula for P(djc) and assign it to category 
c* where 

·P(dlc*)P(c*);;o.P(dlc)P(c), for every c £C. 

The only'memory storage needed for this implementation 
process is for the parameters (mean and-covariance) for 
each density. HoWever, since a density must be com­
puted each time a me.asurement needs to be a!is i gn.ed, the 
implementation tends to be compute.:.bound. This is a 
serious disadvantage for pattern discrimination using 
remotely sensed data because the number of measurements 
tends to be so high. 

The other possible implementation procedure is to 
store the decision rule itself rather than the densi­
ties. Define R(d) to be the category the decision rule 
assigns to measurement d. For a Bayes rule, 

R(d) = c* if and only if P(c*jd);;o.P(cjd) for 
every c £C. 

Now when a measurement d arrives for assignment, we use 
d as an address to the tabfe R and. look-up the category 
assignment. When this method is Implemented directly, 
memory storage is needed for the entire measurement 
space. This is a Jot of memory especially when the 
dimension of measurement space gets to be above 4 or 5. 
Also a Jot of computer processing time is needed to set 
up the table since the decision rule needs to be 
applied to each possible measurement to determine its 
assignment. However, since the category assignment is 
retrieved immediately by only an address calculation, 
the implementation tends to:b•i fast. This Is a clear 
advantage for pattern discrimination using remotely 
sensed data. 

In this paper we explore the various ways a table 
look-up rule can be Implemented and suggest a new 
implementation based on Ashby's technique of constraint 
analysis. 

The Direct Table Look-Up Rule 

Brooner, Haralick and Dinsteln (1971) used a table 
look-up (discret.e Bayes rule) approach on high altitude 
multiband photography flown over Imperial Valley, 
Ca I i forn i a. to determine crop types. TheIr approach to 
the storage problem was to perform an equal probability 
quantizing from the original 64 digitized grey levels 
,to ten quantI zed leve Is for each of the three bands: 
green, red, and near Infrared. Then after the condi­
tional probabilities were empirically estimated, they 
used a Bayes rule to assign a category to each of the 
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103 possible quantized vectors in the 3-dimenslonal 
measurement space. Those vectors which occurred too 
few times in the training set for any category were 
deferred assignment. Figure I illustrates the 
decision regions associated with such a table look-up 
discrete Bayes decision rule. Notice how the quantized 
multispectral measurement vectors can be used as an 
address in the 3-dimensional table to look-up the 
corresponding category assignment. 

The rather direct approach employed by Brooner et 
al. has the disadvantage of requiring a rather small 
number of quantI zed I eve Is. Furthermore, it cannot be 
used with measurement vectors of dimensions greater 
than four: for if the number of quantized levels Is 
about 10, then the curse of dimensionality forces the 
number of possible quantized vectors to an unreasonably 
large size. 

Recognizing the grey level prec1s1on restriction 
forced by the quantizing coarsening effect, Eppler, 
He I mke, and Evans ( 1971 ) suggest a way to ma.,i nta in 
greater quantizing precision by defining a quantization 
rule for each category-measurement dimension as 
follows: 

1. fix a category and a measurement dimension 
component> 

2. determine the set of all measurement patterns 
which would be assigned by the decision rule to the 
fixed category; 

3. examine all the measurement patterns in this set 
and determine the minimum and·maxlmum grey levels for 
the fixed measurement component;. 

4. construct the quantizing rule 'for the fixed 
category and measurement dimension pair by dividing the 
range between the minimum and maximum grey levels Into 
equal spaced quantizing intervals. 

This multiple quantizing rule in effect determines 
for each category a rectangular parallelepiped In 
measurement space which contains all the measurement 
patterns assigned to it. Then as shown in Figure 2, 
the equal interval quantizing lays a grid over the 
rectangular parallelepiped. Notice how for a fixed 
number of quantizing levels, the use of multiple 
quantizing rules In each band allows greater grey level 



quantizing precision compared to the single quantiza­
tion rule for each band. 

A binary table for each category can be con­
structed by associating each entry of the table with 
one corresponding cell in the gridded rectangular 
parallelepiped. Then define the entry to be a binary 
I if the decision rule assigns a majority of the 
measurement patterns in the corresponding cell to the 
specified category; otherwise, define the entry to be 
a binary 0. 

The binary tables are used in the implementation 
of the multiple quantization rule table look-up in the 
following way. Order the categories in some meaning­
ful manner such as by prior probability. Quantize 
the multi spectra I measurement ·pattern using the 
quantization rule for category c 1. Use the quantized 

pattern as an address to look up the entry in the 
binary table for category c1 to determine whether or 

not the pre-stored decision rule would assign the· 
pattern to category c 1• If the decision rule makes 

the assignment to category c 1 ·the entry would be a 

binary I and, all is finished. If the decision rule 
does not make the assignment to category c 1, the ·entry 

would be a binary 0 and the process would repeat in a 
similar manner with the quantization rule and table 
for ~he next category. 

Formally, this kind of table look can be described 
as follows. let D be measurement space, the set of 
all possible N-tuple measurements. Let C be the set of 
categories. F~~ each category c~C, let Dc be the 

9uantized (discrete and finite) measurement space for 
category c. Let qc be the quantizing rule for 

category c; 

qc: D+Dc 

Note that qc could quantize some of the components of 

the N-tuple d to one possible value, In effect exclud­
ing that component from consideration. 

Let Tc be the decision rule assignment for 

category c; 

where 

T : D +{0,1}. 
c c . 

Tc(qc(d)) if and only if P(cjqc(d))~ 

P(c'Jqc,(d)) for every c'~C 

= 0 otherwise. 

Then a measurement d Js assigned to category c if 
T c (qc (d)) .. 1. 

One advantage to this form of the table look-up 
decision rule Is the Hexibi Jlty to use different sub­
sets of bands for each category look-up table and 
thereby take full advantage of the feature selecting 
capability to define an optimal subset of bands to 
discriminate one cat;egory from all the others .. A 
disadvantage to this .f.orm of the table look-up decision 
rule is the large amount of computational work· 
requir:ed to.determine the rectangular parallelepjpeds 
for each .~at;egory and, the sti II large amount of 
memory storage required (about 5,0008. bit bytes per 
category). 

Shlien (1975) used a table look-up approach by 
storing in the table only the category ~signments for 
measurement vectors which frequently occur. ·He used a 
hashing function to map the measurement vector into the 

table and reported that if the table is kept at no more 
than 75% full two distinct vectors are not likely to 
map to the same table address. Collisions were treated 
by using the independent double hashing technique 
described by Amble and Knuth (1974). Shlien indicated 
that most of the time about 6000 vectors in the table 
accounted for about 90% of the vectors occuring in an 
ERTS scene. 

The Indirect Table look-Up Rule 

·The limitation of the direct approach to the 
table look-up rule is memory storage. If only some 
assumptions could be made about the·'shape of the deci­
sion regions or some assumptions about the way a 
decision r·eglon can be represented, or some assumption 
about the form of the conditional probabilities; per­
haps there could be some reduction in storage space 
associated with the table look-up rule. 

Bledsoe and Browning (1959) suggested the 
following way to approximate the form of the joint 
probabi I ities without making a parametric assumption. 
Let H functions h1 ,; .. ,hH be selected which map theN-

dimensional measurement space to smaller K-dimensional 
discrete and finite feature spaces F1, •.. ,FM respec-

tively. Because of the discreteness and small dimen­
sionality of feature space Fm' it is possible to store 

in tables all the joint probabilities Pm(c,f) of a 

feature fFFm and a category c~C. To assign a category 

to a measurement d, the H features h1 (d), ... ,hH(d) are 

determined and for each category c, the feature hm(d) 

is used as an address to retrieve the probab.ility 
Pm(c,hm(d)). Then an assignment is made to category c* 

only if 

H H 
n P (c*,hm(d))~ n Pm(c,hm(d)) for every c~C. 

m-l m mo=l 

This method is similar to the probability product 
approximations of lewis (1959) and the more general 
product approximations of Ku and Kullback (1969). 

Epp I er ( 1974) discusses a boundary tab I e look-up 
rule which enables memory storage to be reduced by five 
times and decision rule.assignment time to be decreased 
by 2 times. Instead .of pre-storing i11 tables .a . 
quantized measuremerit space image of·the decision rule, 
he suggests a systematic way of storing in tables. the 
boundaries or end-points for each region in measurement 
space satisfying a regularity condition and having all 
its measurement patterns assigned to th~ same category. 

Let Dq = o1 x o2 x ... x DN be quantized measure­

ment space. A subset R£D1 x o2 x ... x DN is a regular 

region if and only if there exists constants L1 and H1 
and functions L2 , L3, .•• , LN' H2, H3, ••. ,· HN, Ln: D1 
x 02 x •.. x D 1+(-a>,..,), H : li1 x D2 X• •• x D 1.+.(-oo,"') ·n- n n-
such that 

R .:. {x1 , ... ,xN)~DjL 1<xt'o;H 1 
L2 (xl )<x2<H2 (xl) 

LN(xl ,x2, ... ,~,..J)<xN 

<ltN(xl ,x2, ... ,xN-1)} 
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From the definition of a regular region, it is 
easy to see how the boundary table look-up decision 
rule can be implemented. Let d = (d 1, ... ,dN) be the 

measurement pattern to be ass I gn'ed a category. To 
determine if d lies within a regular region R associ­
ated with category c we look up the numbers L1 and H1 
and test to see if d1 lies between L1 and H1• If so, 

we look up the number L2(d 1) and H2(d 1) and so on. If 

all the tests are satisfied, the decision rule can 
assign measurement p~ttern d to category c. If one 
of the tests fails, tests for the regular region 
corresponding to the next category can be made. 

The memory reduction in this kind of table look-up 
rule is achieved by only storing boundary or end-points 
of decision regions and the speed-up is achieved by 
having one-dimensional ·tables whose addresses are 
easier to compute than the three.or more dimensional 
tables required by the direct table look-up decision 
rule. However, the pri'ce paid for these advantages is 
the regularity condition imposed on the decision 
regions for each category. This regularity condition 
is stronger than set connectedness but weaker than 
set convexity. (See Figure 3.) 

Another approach to the table look-up rule can 
be based on Ashby's (1964) technique of constraint 
analysis. Ashby suggests representing in an approxi­
mate way subsets of Cartesian product sets by their 
projections on various smaller dimensional spaces. 
Thus, a subset of a Cartesian product set can be 
approximated by the larger set formed as the inter­
section of the inverse projections of the projections 
of the subset onto the smaller dimensional spaces. 
Using this idea for two-dimensional spaces we can 
formulate the following ~ind of table look-up rule. 

Let Dq = Dp x 02 x •.• x ON be quantized measure­

ment srce, c be the set .of categories, and J~{J ,2, 
... ,N}. be an index set. for the selected two-dimen­
sional spaces. Let, the probability threshold a be 
given •. Let (i ,j)E'J; for each (x1 ,x2)E'oi x Dj define 

the set Sij(x1, x2) of categories having .the highest 

conditional probabilities given (x·1, x2) by 

siJ(x1, x2) = {cecjP(cjx1,x2)>aiJ)}, where aij is 
the largest number which satisfies 

Sij(x1,x2) is the set of likely categories given that 

components I and j of the measurement pattern take 
the values (x1, x2). 

The sets of Sij' (i,j)E'J, can be represented in 

the computer by tables. In the ( i ,j) th tab I e S .. 
IJ 

the (x 1,x2)th entry contains the set of all categ~ries 
of sufficiently high conditional probabilIties given 
the marginal measurements ex, ,x2) from measurement 

components i and j, respectively. This set of 
categories is easily represented by a one word table 
entry: a set containing categories c 1, c

7
, c

9
, and 

c
12

, for example, would be represented by a word having 

bits I, 7, 9, and 12 on and all other bits off., 

The decision region R(c) containing the set of all 
measurement patterns to be assigned to category c can 
be defined from the sij sets by 

R(c) • {(d 1, d2 , ••• , dN)eo1 x o2 x ••. x DNI 

{c} • n s .. (d.,d.)} 
(i ,j)E'J IJ I J 

This kind of a table look-up rule can be implemented 
by using su~cessive pairs of components (defined by the 
index se~ J) of the (quantized) measurement patterns 
as addresses in the just mentioned two-dimensional 
tables. The set intersection required by the defini­
tion of the,decision region R(c) is Implemented by 
takingthe Boolean AND of the words obtained from the 
table look•ups for the measurement to be asslgned a 
category. Note that this Boolean operation makes full 
use of the natural parallel compute capability the 

computer has on bits of a word. If the kth bit is the 
only bit which remains on in the resulting words, then 
the measurement pattern Is assigned to category ck. If 

there is more than one bit on or no bits are on, then 
the measurement pattern is deferred i.ts assignment 
(reserved decision). 

Thus we see that this form of a table look~up 
rule utilizes a set of "loose" Bayes rules in the lower 
dimensional projection spaces and intersects the 
resulting multiple category assignment sets to obtain 
a category assignment for the measurement pattern 'in 
the full measurement space. 

Because of the natural effect which the category 
prior probabilities have on the category assignments 
produced by a Bayes rule it is. possible for a measure­
ment pattern to be the most probable pattern for one 
category yet be assigne~ by'the.f~yes rule to another 
category h~ving much higher prior probability. This 
effect will be pronounced in the table look-up rule 
just described because the elimination of such a cate­
gory assignment from the set'of possible categories 
by one table look-up will completely eliminate it from 
consideration because of the Boolean AND or set inter­
section operation. However, by using an appropriate 
combination of maximum I ike I ihood and Bayes .rule, 
something can be done about this. 

For any pair (l,j) of measurement components, 
fixed category c, and probabi I ity threshold a, we can 
construct the set of T11 (c) having the most probable 

pairs of measurement values from components I and j 
arising from category c. The set T .. (c) is defined by: 

IJ 
Tij(c) • {(x1, x2)eDi x DjjP(x1, x21c)>aij(c)}, 

where a .. (c) is the largest number which satisfies 
IJ 

l; P(x1,x2 jc);;;. a 

(xl ,x2)eT i 1 (c) 

Tables which can be addressed by (quantized) measure­
ment components can be constructed by combining the 
sij and Tij sets. Define Qij(x1 ,x2) by: 
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Qi
1 

(x1 ,x2) • {cecj (x1,x2)eTij (c)} us
11 

(x1 ,x2) 

The set Qij(x1,x2) contains all the categories whose 

respective conditional probabilities given measurement 
values ex,. x2) of components i and 1 are sufficiently 

high (a Bayes rule criteria) as well as all those 
categories whose more probable measurement values for 
components I and j respectively are (x1, x2) (a maximum 

likelihood criteria). A decision. region R(c) containing 
all the (quantized) measurement patterns can then be 
defined as before using the·Q •• ··sets:' 

lj 



R(c) ·{< (dl' d2, ••. , ctN)E'D 1 x D2 ••. x DNI 

{c} • n Q • • (d.,d.)}} 
(i ,j) j IJ I J 

A majority vote version of this kind of table 
look-up rule can be defined by assigning a measurement 
to the category most frequently selected in the lower 
dimensional spaces. 

R(c) • {{d
1

, d2, •• ,, dN)E'Dl x D2x •.• x D~l 
# { (i ,j)E'Jic£Qij (d 1 ,dj)~;;.# {(i ,j)£JI 

c'£Qij (d 1 ,dj) for every c'E'C - {ell} 
The table look-up rule, as other kinds .of rules, 

can also be used in a sequential decision tree proce­
dure in the following way. Each level of the sequen­
tial procedure produces a tentative category assign­
ment andthe tentative category assignments of level n 
become an additional dimension of measurement space 
for layer n+l. Hence measurement space grows by an 
added dimension each successive level. For all 
possible distinctions at each level, the sequential 
procedure is constrained to use the same feature· set. 
Feature sets of different levels, however, can be 
different. 

For each level a feature selection is performed 
on the measurement space defined for the level in 
order to determine the optimum measurement space 
dimensions. The selected measurement space dimen­
sions are then used In a table look-up rule whose 
category assignments become an added dimension In 
measurement space for the next level. 

Mathematically wttat happens is this. Let the 
level I decision rule f 1 be an ordi·nary table look-up 

rule. Suppose level l, ..• level t-1 decision rules 
f

1
, ••• ,ft-l have already been defined. Define the 

level 1 decision rule in an iterative way. 

Let Nt-l be the dimension .of measurement space 

Dt-l for the (t-l)th level. Define Nt, the dimen­

sion of measurement space D
1 

for the tth level by 
N
1 

• N
1

_1 + I and measurement space D
1 

by 

D1 •{(d1, ... dN ,dN)I(d 1, ... ,dN )£Dand 
R.-1 1 R.-1 

dN • fi-l(dl, ... ,dN )}, 
t R.-1 

The feature selection procedure then uses the measure­
ment space D1 to produce the feature index set J!; 

{J, ••• ,N} x {J, ••• ,N} as the Index set which selects 
the features. Using a table look-up rule with J as 
described earlier, the decision rule f

1 
Is the 

determined. 

4. Hlsidentlficatlon Error Bounds 

Because the table look-rule based on tables In a 
smaller dimensional space than measurement space must 
necessarily give results which are less optimum than 
a Bayes rule, It Is desirable to determine bounds on 
the misidentification error. To do this easily we 
will change our perspective slightly and think of the 
decision rule in the smaller dimensional space as its 
Induced decision rule In the full measurement space. 
Ignoring for the moment the relationship between 
conditional probabilities and the decision rule 
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definition, we will think of a decision rule as a 
partition in measurement space. 

Suppose N different decision rules with no re­
served decision regions are determined for measurement 
space D. Each decision rule can be characterized by 
the partition generated by its decision regions. let 
{nnl ,nn2 , ... ,nnk} be the partition associated with the 

nth decision rule. The cell nnk of the nth partition 

is the region of all those measurements assigned by the 
th • th n dec1slon rule to the k category. 

A composite decision rule (of the table look-up 
form) can be constructed from the N given decision 
rules in the following way: a measurement is assigned 

to the kth category if each and every of the decision 

rules assigns It to the kth category; if for any 
measurement a unanimous decision is not possible, then 
assignment for the measurement is reserved. 

let decision region nk of the composite decision 

rule be the set of all measurements assigned to the kth 
category and decision region n

0 
be the set of all 

reserved decisions. Then, by definition, 

N 
nk • n nnk' k,• 1, 2, ••. , K 

n•l 

K 
n • D - u n 

0 k•l k 

lemma I establishes.: (I) upper bounds by cate­
gory, for the probability of correct identification 
and the probability of misidentification; (2) lower 
bounds, by category, for the probability of reserving 
judgment and for the sum of misidentification proba­
bility and reserved judgment probability. The bounds 
are in terms of the correct Identification and error 
rates In the confusion matrix for each of the N given 
decision rules. 

let C ~ {c 1, c2 , ••• ,cK} be the set of categories. 

Denote by Pc(ck) the probability of the composite 

decision rule correctly Identifying a unit whose true 

category identification Is ck, by P (ck) the proba-
e 

bility of the composite decision rule misidentifying a 

unit whose true category Identification Is ck, and by 

Pr(ck) the probabll ity of the composite decision rule 

reserving judgment on a unit whose true category 

identification is ck. Denote by Pn(ck) the probability 
' h c 

of the nt decision rule correctly assigning a unit 

whose true category Identification is ck, and by 

Pn(ck,cj) the probability of the nth decision rule 
e 

incorrectly assigning a unit whose true category 

ident i flcat ion Is ck to category cj. The Jenma states: 

min 
n 

n•l, ••• ,N 

min 
n 

n•l, •.. ,N 



max 
n 

n•l, ..• ,N 

n•l, ... ,N 

It is also possible to use the error character­
istics of a Bayes rule in the smaller dimensional 
spaces to determine error bounds on the bayes rule 
In full measurement space. Lemma 2 gives the upper 
bound 

E min {P(d,c1), P(d,cj)} 
d€0 

for the probability P (ci:cj) of a Bayes rule con-
. e . 

fusing categories c 1 and cJ. Lemma 3 notes that when 
measurement space is transformed in any way by a 
mapping +• then the upper bound of lemma 2 for the 
confusion error of the Bayes rule in the transformed 
space must increase. Lemma 4 states that if+,, ... , 

+N are transformations of measurement space D to spaces 

01, ... , ON respectively, then the error bound of 

lemma 2 for the probability of a Bayes rule confusing 

category c1 and cj itself can be bounded by 

min 
I . 

min {P(d c), P(d ,cJ)} n n 
n 

n=l, .•. ,N 

so that the total probability of error or a Bayes rule 
in measurement space D can be bounded by 

K-1 
E 

K 

E 
i=l j=i+l 

min 
n 

n•l, .•. ,N 

E 
d ED 

n n 

The appendix gives statements of the lemmas without 
proof. 

Appendix 

The appendix gives precise statements of the 
lemmas. The proofs are omitted for brevity. 

Lemma 1: Let {nn1 , ••• ,nnk}, n=I, ..• ,N be given 

partitions of measurement space D. Define a new parti­
tion {n

0
,n 1, ••. ,nK} by 

N 

nk '" n nnk 
n=l 

K 
IT=D-Un 

0 k•l k 

Then, P (ck) < min 
c n 

n•l, ... ,N 
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max 
n 

n-1, ..• ,N 

min 
n 

n•l, •.• ,N 

Lemma 2: Let P (ci :cj) be the probability that 
• je 

categories c 1 and c are confused by a Bayes decision 
rule in measurement space D. Then, 

I Lemma 3: Let D be measurement space and C • {c , 
K . .. ,c} be the set of categories. Let a probability 

function P be given on DxC. Let a mapping +:D+D' be 
given which fnduces a probability function on D'. 
Then, 

l; min {P(d,ci), P(d,cj)}< I min {P(d',ci), 
d€0 d'£D' 

I Lemma 4: Let D be measurement space and C • { c , 
K ... ,c } be the set of categories. Let a probability 

function P be given on D x c." Let N mappings+ :D+D , n n 
n•l,2, .•. ,N be given. Then an upper bound on the 
probability of error, Pe, for a Bayes rule in D can be 

given by: 

K-1 K 
p e< I I min 

i•l J=i+l n 
n•l, ... ,N 
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DECISION RULE BOUNDARIES 
used by: Discrete Bayes Rule 

DATA: Raw, Equal Space Quantized 

1- Alfalfa 
2- Barley 
3- Saffl .... 
4 - Sugar Beet 
5- Lettuce 
6• Ontan 
7- Po$tu"' 
8- Bare Sail 

Figure.!. Viewed as an expanded cube, each dimension representing the 
speotral region of the three multiband images whose density 
va l·.ues have been quanti zed to ten equa II y spaced I eve Is, this 
sketch depicts the decision rule boundaries for each land-use 
category used by the discrete Bayes rule. 
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Category 1 Category 2 

Category 3 

.., .J 

.., 

Figure 2 illustrates how quantizing can be done differently for each category thereby 
enabling more accurate classification by the following table look-up rule: 
(1) quantize the measurement by the quantizing rule for category one (2) 
use the quantized measurement as an address in a table and test if the 
entry is a binary one or binary zero, (3) if it is a binary one assign the 
measurement to category one; if it is a binary zero, repeat the procedure 
for category two. 
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Example showing that convex sets are regular 

Example of a non-convex set which is regular 

Example of a non-convex set which is not regular 

Figure 3 illustrates the relationship between set convexity and regularity. 
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