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Abstrat:

One important class of interest points arises from location of sharp curvature in an
extracted boundary sequence of row column positions. This paper establishes an oplinal
procedure for the segmentation of a boundary sequence into pieces which fit well 16 4«1 raight
line segments. Corners are localized as the intersection points of two suceessive fitted lines
arising from the segmentation. The boundary sequence segmentation is optimal in the sense
of creating maximal pieces for which L sum of the variances of the direction of the [l
lines arising from the pieces is minimal, Over one hundred thousand experinients were run
to characterize the performance of the technique as a function of noise. nuniler of points i
a fitted line segment, and angle between successive line seginents.

The Model

consider a situation in which points (wigi), 7= 1...., f are assumed Lo lie un an unknown
straight line and the problem is to determine the parameters of the line. Then, we suppose
(2. 4:) satisfies the model

ari+3yi+y=0 i=1,. .. .]

where a? + 32 = 1. Now instead of assuniing thal the (2,.4;) are given. we assume thal 1l
noisy observations (Liy 1) of (&4, 4) are given, Our model for (&i,3:) is

EErt b =gy

where we assume that the random variables & and 1 are independent and identically
distributed having mean 0, variance ¢2. and come from a distribution whicl is an even

function. Hence,
CElG] = Efp) =0

Vi&] = V] =e*

Hleg) = {5 iz

otherwise
I ; = 0':' l:J .
(] {U otherwise

Emgl =0
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Now from the noisy observations (&.,#) we must estimate the paramerers 4.7 ol e
unknown line. To do this we employ the principle of minimizing the squarced resichals under

the constraint, &* + 4% = 1

Letting
1
He = 7 Z T
i=l
L
Hy = T Ui
i=1

=1

L~ ,
U':mg('a—“y)’

I ;
dru=T];(I_.u=)(yl_ﬂy)

The minimization results in

Y= -{aj. +34,)
Hence, the eigenvector (;) must. he correspond to that eigenvalue A of 1he sample
covariance matrix having smallest eigenvalue. Therefore,

( (o2t 2 /(02 + &) - 4(6365 - &3,)
o 2

{82+ a7)x /(62 - 63)* + 463,
o= )

The smaller eigenvalue corresponds to the minus sign. With A determine. he: corresponding
unit length eigenvector can be determined.

B
8 62, + (A= 52)2 \A- &2 B2, + (6 = A): \ —Gu,

Assumiing that the variance of & and 3 are simall. and when o « g2 4 77,

o

E](0 - 0)] < (ar + o)l - 1)
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Segmantation Technique:

Let 5= (&), 5an=1,... Ny bea sequence of noisy observations of succissive points on
an unknown arc presumed to consist of a chain of line segments, where at least Ay SUCCeRNi Ve
observations occur for each line segment. One comimon intermediate level vision problem ig
to segment the sequence & into near maximal subsequences. each of whicl, contain points
lying on the same line segment. lu the segmentation, the ending point of vie subscquence
can be the beginning point of the next subsequence. The common point is labeled a corne

pout. The variance bound for E[[-EJ - 8)7] suggests a way to create the segluentalion.

We associate with each point (&,,7,) of the sequence S a maximal sequence [, of points
prior to (&,,#,) and a maximal sequence 2, of points after (Za,8). The sequences L., and
R, are defined using the bound

a2

on the variance of the fitting angle. So long as successive points after (Eny i) are taken for
the fitted line and the underlying model is valid, on each successive point is added to the
fit the denominator must increase because (a2 + o}) increases and ([ — 1) inereases. Shonld
the bound increase instead of decrease, it must be due to the invalidity of the underlving
model and this invalidity could only be caused by taking a successive point which is 1ol
on the underlying line. This observation motivates Lhe following procedure 1or defining the
maximal sequences R, and L,.

Let /1) be the sequence of A points following (%,,4.) in the given sequence S, fid =
{(Zrt1s Puga)se v, (Fntms Jutm ))- Associated with the fit for the points of BY are the calealated
quantities 62,57, and A. We estimate the variance bound b for the angle of the fitred e
of M points by 6% where

i, = 3
" (a4 e ANM o)
We (lefine t.h_e sequence 2, by R, = RM" where M* is {he largest index wreater than A
for which b" < bY™+' The sequence L, is defined in an analogous way.
Associated with the fit of the points in L, and R, are the estimators (d,;"...i,,”) and

(&L_!ﬁ,u_") for the angle of the line. The change in angle at (s ) can be estimaned (PR
where

; Cos ¥, = Ga, Gy, + BR_‘;L_N )
A bound for the variance of %» is given by the sum of the variance bounds lur angle arising
from the left and right fits.
V] < b, + ba,
This suggests that a test statistic suitable for measuring the significance of the angle

change -, away from zeru is

i oo cosT'(Gp, by, + Br,Be.)
\/ﬁL + E’H~
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Values of i, which are large are suggestive that a corner exists at point (In. i) having angle
Hn-

The Algorithm:

The input to the corner detection algorithm is a sequence C of mn (r.y) pairs. (' =<
P1y P2, ... Pm >, Where each p; represents an (2,y) point. These pairs of (z.y)s represent pixel
positions obtained from a digital curve and the order of the points in the sequence is the
order in which they occur on the digital curve. The corner detectiou algorithin partitions
C into a set of “digital straight” line segments and computes the corner poiuts Lo subpixel
accuracy as the intersection points of adjacent fitted lines resulting from the segmentation

of C'.

The algorithm partitions C' in two steps as follows:

Step I (initial curve partition): For a given k, (k = 5), define the subsequence L(L, k) of
C, L(1,k) = < p1,pz2y - >, as the first k points from the sequence C. Using a total least
squares criterion, we fit a straight line, [ to the subsequence, L{1,k). Then we compute the
function EV(L(1,k)), the estimated variance of the direction of the line { (section 3). Weadd
the next point, pi41, to the sequence L(1.k) to form a new sequence, L(1, k4 1) and compnte
EV(L(1,k+1)). As we have shown in section 3. the expected value of EV(L{1.k+ 1)) is less
thau or equal to EV(L(1.k)), as long as the new point, pess. veally belongs 10 same fitted
line. ! as the points in the old sequence L(1.K).

The point adding process continues until at positien m,m > k, we find & j-long scquence.
j > J{m;&,p), of monotonically increasing yariance estimates EV(L(1,m)), EV(L(1.m +
1)), .., EV(L{1,m + j)). That is. the last j values of the EV sequence is mouotouically
increasing. Then we mark p,, as a potential break point on the curve C.

The initial curve partition algorithm continues by making the point p,, be the fivst point
in the next subsequence of ¢ and locates the next potential break point in a similar manner
to how the first break point was located. It continues in this manner until the end of (" is
reached. The number .J(n;&, 7} is determined from the experiments described i section
5.1.2 and satisfies the relation

Prob(j = J(m: &, 4)| noisy points arise from points on the same underlying line } < .7,

Step II (Iteration process): The purpose of this step is to recompute a new sequence
of break points using the entire subsequence of points between each pair of potential break
points from the previous iteration. The iteration process continues until the set of new brealk
points is identical with the set of old break points. The iteration process is related to an
iso-data like clustering with the spatial constraint of point order being given and with the
fitted line direction variances being the quantities are reduced at each iteration.

At the beginning of vach iteration, each of the potential break points is checked forits
statistical significance. A potential break point will be eliminated if the ditference hetween
line directions for two siccessive fitted lines it separates is NOT statistically siguificant.
Significance is determined with a -test for the equality o line directions. A ¢ value which
is too small would suggest that there is no statistical difference between the directions of
the two successive lines. Therelore, the Lreak point should be eliminated [rom Lhe curve ¢
(The details of the t-test will be discuss later.)

Let Qo =< pl,.p%, -1}, >. be the sequence of the potential break points on (7 that are
marked by Step I. Let Q, =< pi,. .. 1, =2 be the sequence of the statistically significant
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potential break points determined at Llie 34 iteration. Note that the pi. 5 partition the
input curve C' into n + 1 subsequences, Let < $1,8h, .., 84, > be these subsequences. We
taEe the first two subsequences. $1 =< plyeap), > and s, =< p}l,...,;f);7 2 and compute
the forward EV sequence starting from pi to pi, and the backward EV sequences starting
from pi._, to pi. To make our explanation simple, let « be the total length of the two
sequences sl and 52, and let < EV(L(1.4)),q = k,...,u >, be the forward f'\" sequence and
< EV(L(u,q)),g=u—-4k....,1 >. be the backward £V sequence. To find the new position
of the potential break point in < Phecoes oo i, >, the algorithm adds the corresponding
pairs of variance estimates from the forward and the backward sequences and compules al
each position r the sum EV(L(1.#)) + EV(L{u,u - r}). Let q be the position having the
minimuin summed variaice estimates. If P, is differ from p;,, then py becames 1he revised
first potential break point in Q.. The next break point is determined with the subsequences
83 and s3. And so on.

The iterations continue until there is no change. If a potential break point becomes an
actual break point, then since each iteration never increases the summed variances and sjee
the variances are non-negative, the iterations must converge. If some potential break poiut
does not become an actual break point because of merging. then the next iteration will have
fewer break points. Since the number of brealk point is bounded below hy zero. the iterations
again must converge.

Let < {, by, > be the least synare fitted lines (or each subsequence ol 1he Tinal
partitioned C. The intersection point of each pair of two successive lines &oand Ly are
the estimated corner point positions. They are estimated o subpixel precision since 1he
intersection point is not required to lie on a digital grid point.

The t-test

In the following, we will give the detail of how a potential break poinut is tested for its
statistical significance.

Let s; and s;,, be anv two successive point subsequences of €. Lel thoe nunber of points
in s be N, and the number of points in «,; be N,. Let 6, denote the direction of the fiited
line of s,and ¢, denote the direction of the fitted line of s,. Then the f-statistic having NV, +
Na - 2 degrees of freedon: is defined hy

i '01 = 82,
NitNy—2 = =
N eEV(L)+N3=EV(L,) N 4N
V M¥N-7 NN

Since the angle of the same line can be 0 + nr, for any integer n, for 0 < 4, <7 and

0<th<r, |6 - s is computed as min{|8, - 6sf, |8, - 6, - |, |0 -6, + |}
A value Ty, 1n,-2. can be determined which satisfies

Prob(iy, n, 2 > Thy4n.ona) = 0.

When ¢, 1n,_2 < Ty, +n,-ua. the hypothesis of the equality of line direction is accepter.
This situation casts doubt on the significance of the segmentation. Hener., the points of
the sequence that the potential break point separates would he merged. When fy v, 0 >
TNy #Na-2a the hypothesis of the equality of line direction is vejected. This situations provides
evidence for the statistical significance of the segmentation. In this case, the potential break
point becomes an actual hreak point.
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