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Abstract

We propose an approach using optimal quantiza-
tion and smoothing to generate adaptive histograms for
multi-class one dimensional data. The discretization of
data is optimal in maximizing a quantizer performance
measure, defined by a combination of average log likeli-
hood, entropy and correct classification probability. The
optimal partition is found by dynamic programming. The
density of each bin is obtained by a smoothing technique
that can be considered a generalized k nearest neighbor
density estimation algorithm. However, our smoothing
approach is much more efficient. Experimental results
demonstrated the effectiveness of the optimally quantized
and smoothed histograms. Even though obtaining one
takes about quadratic time in sample size, an optimal his-
togram is much more efficient to use than typical kernel
methods. Therefore, optimal histograms are more suit-
able in applications with massive data set.

1. Introduction

Equal bin width histograms are widely used because
they are relatively efficient to obtain and apply. However,
they are not statistically efficient for two reasons. First,
the bins are blindly allocated, not adapting to the data.
Second, the normalized frequency may be zero for many
bins and there is no guarantee for the consistency of the
density estimates.

We advocate data based variable bin width histograms
and all bins should contain non-zero density estimates.
[8, 9] have proven the consistency of data driven his-
togram density estimates and proposed general partition
schemes. [11] suggests a variable bin width histogram
by inversely transforming an equal bin width histogram
obtained on the transformed data. However, it is not clear
how the transform function should be chosen in general.

A better approach is to find a partition scheme by op-
timizing a quantizer measure. Entropy and likelihood
[4, 6] have been proposed as quantizer measures. Dis-
cretization of multi-class 1-D data is studied extensively

in [2, 3, 7]. They use measures quantifying the discrim-
ination power of quantizers. In [3], dynamic program-
ming is used to find the optimal partition based on ad-
ditive measures. [1] improves the practical efficiency of
the algorithm on well-behaved additive measures, assert-
ing that many widely used classification measures are
well-behaved. Smoothing makes histograms visually ap-
pealing and suitable for application. WARPing [5] and
averaging shifted histograms [10] methods smooth his-
tograms. Otherwise there are relatively few histogram
smoothing methods. Smoothing is important in main-
taining consistency of histogram density estimates and
deserves further study.

In Section 2, we define the quantizer performance
measure. In Section 3, we introduce a dynamic program-
ming algorithm to find an optimal partition. In Section 4,
we propose an algorithm to obtain smooth histogram
density estimates. In Section 5, we show some experi-
ment results to demonstrate the effectiveness of optimal
histograms.

2. Quantizer performance measure

Let XN be a sample of sizeN and YN be the cor-
responding class labels. LetK be the total number of
classes andN(y) be the total number of classy data. Let
Q be a quantizer withL bins. Let∆(q) be the width of
bin q. Let Nq be the total number of data in binq. Let
Nq(y) be the total number of classy data in binq.

Average log likelihood.Kullback-Leibler divergence
from p̂(x) to p(x) is

D(p||p̂)=
∫

p(x) log
p(x)
p̂(x)

dx= E[logp(X)]−E[log p̂(X)]

which, being non-negative (zero only when ˆp(x) = p(x)),
should be minimized. Asp(x) is fixed, maximizing
E[log p̂(X)] is equivalent to minimizingDKL(p||p̂). Let
p(q|y) be the density of binq. ThenE[log p̂(X|Y)] can
be estimated by 1

N(y) log∏L
q=1 (p(q|y))Nq(y). Theoverall



average log likelihoodof a quantizerQ is

J(Q)=
1
N

K

∑
y=1

N(y)E[log p̂(X|y)]= 1
N

K

∑
y=1

log
L

∏
q=1

(p(q|y))Nq(y)

When the class number ratioN(1) : N(2) : · · · : N(K) is
representative for the true data, the overall average log
likelihood is preferred, with the log likelihood of popular
classes being emphasized.

Themean class average log likelihoodis

J(Q)=
1
K

K

∑
y=1

E[log p̂(X|y)]= 1
K

K

∑
y=1

log∏L
q=1 (p(q|y))Nq(y)

N(y)

When the class numberN(y) is randomly decided or ev-
ery class has equal importance, the mean class average
log likelihood is preferred, with every class contributing
equally to the log likelihood of the quantizer.

Correct classification probability. Let P(y) be the
prior probability of classY. Within binq, the Bayes’ rule
is equivalent toy∗q = argmax

y
P(y)Nq(y)/N(y). LetNc(q)

be the number of correct decisions in binq, i.e.,Nc(q) =
Nq(y∗q). We give the definition of the correct classifica-
tion probability in two situations. Theoverall correct
classification probabilityis

Pc(Q) =
∑L

q=1Nc(q)
N

(1)

Themean class correct classification probabilityis

Pc(Q) =
1
K

K

∑
y=1

L

∑
q=1

I(y = y∗q)
Nc(q)
N(y)

(2)

In the above two equations,I is indicator function. The
choice of either should follow the considerations ex-
plained for the choice of average log likelihood.

Entropy. Similar to the case of average log likeli-
hood, we give two options: overall entropy and mean
class entropy. Again, the choice of either should follow
the considerations explained for the choice of average log
likelihood and correct classification probability. We de-
fine theoverall entropyby

H(Q) =
Nq

N
log

N
Nq

(3)

We definemean class entropyby

H(Q) =
1
K

K

∑
y=1

L

∑
q=1

Nq(y)
N(y)

log
N(y)
Nq(y)

(4)

Entropy has been used as a class impurity measure. But
we use entropy as a measure of the consistence or gener-
alization ability of the training results.

The performance measure functionis defined by
linearly combiningJ(Q),H(Q) andPc(Q), as follows

T(Q) = WJJ(Q)+WHH(Q)+WcPc(Q) (5)

whereWJ,WH andWc are weights. The choice of the
weights depends on the pattern recognition task, nor-
mally being all non-negative.T(Q) can always be writ-
ten in an additive formT(Q) = ∑L

q=1T(q), whereT(q)
is the contribution by an individual binq. We define the
performance measure of a sub-quantizerQu

r by T(Qu
r ) =

∑u
q=r T(q).

3. Quantization by dynamic programming

We are to find anL level quantizerQoptimizingT(Q),
also guaranteeing that the minimum number of data in
each bin isk ∈ N and that identical data are put into the
same bin regardless of their classes. We only put the de-
cision boundaries in the middle of two neighboring input
data. This affects the calculation ofJ(Q), but it is trivial
when sample size is not too small. This restriction pre-
ventsJ(Q) from overflow. WhenWJ is 0, the solution is
indeed optimal since the exact placement of the decision
boundaries are not important for the calculation ofH(Q)
andPc(Q). A related problem is solved by dynamic pro-
gramming, originally proposed in [3]. Their algorithm
does not handle the minimum number points constraint
and the identical data requirement. We also use a differ-
ent quantizer performance measure with theirs.

We define the bin class density byp(q|y) = Nq(y)/N(y)
∆(q) .

By definition of sub-quantizer measure, the additivity
T(Qq

1) = T(Qq−1
1 ) + T(q) gives rise to a dynamic pro-

gramming algorithm. AssumeXN and YN are already
sorted in non-decreasing order byx. Let T[n,q] be the
maximum performance measure from bin 1 toq when
xn is the largest data in binq. Let I [n,q] be the index
to the smallest element in theq-th bin such thatT[n,q]
is achieved. LetT1[i,n] be the quantizer measure con-
tributed by a bin containing exactlyxi to xn. The dynamic
programming is described below.

Initialization. T[0,0] = I [0,0] = 0, I [0,q] = −1
for q ∈ {1, · · · ,L}, I [n,0] = −1 for n ∈ {1, · · · ,N},
I [n,q] =−1 for (n,q) ∈ {(n,q)|0≤ q < max(1,n− (N−
L)) or min(n,L) < q≤ L,1≤ n≤ N,1≤ q≤ L}.

Feasible decision boundary index set.The indices of
the feasible data for being the smallest element in binq
form the setAq = {i|, i ≤ n−k+1, I [i−1,q−1] 6= −1,
xi−1 6= xn, I [n,q] 6= −1, xn 6= xn+1}. i ≤ n− k+ 1 guar-
antees binq contains at leastk data. k plays a smooth-
ing role, like the one in the nearest neighbor smoothing
method.I [i−1,q−1] 6= −1 states thatxi−1 must be fea-
sible for the largest element in the previous binq− 1.
xi−1 6= xn enforces that the feasible largest element in the
previous binq−1 must not be the same asxn, to avoid



splitting equal valued data into different bins.xn 6= xn+1

is not to split equal valued data.I [n,q] 6= −1 asserts that
xn must be feasible for the largest element of binq.

Recurrence.If Aq is empty, thenI [n,q] , −1, mean-
ing xn does not qualify for the largest element in binq.
Otherwise,

T[n,q] ,max
i∈Aq

T[i−1,q−1]+T1[i,n] (6)

I [n,q] ,argmax
i∈Aq

T[i−1,q−1]+T1[i,n] (7)

We assert thatT[N,L] indeed achieves the maximum
measure, the corresponding partition is an optimal so-
lution, and the algorithm has time complexityO(LN2).

4. Density of a bin and smoothing

Weighted Averaging of Rounded Points (WARPing)
is introduced in [5]. The data in each bin are rounded
towards the center of the bin. Then the rounded data, in-
stead of the original data set, are smoothed by a Parzen
window method. For the density estimate of a sin-
gle point, the time complexity is reduced fromO(N)
to O(L). We give a method that extends the notion of
WARPing, which smoothes the quantized density using
a generalizedk nearest neighbor approach.

How to construct thek nearest neighborhood is an
issue. Searching for the exactk-th nearest neighbor is
not very pleasing because of the computation involved.
We consider only neighboring bins instead of neighbor-
ing items of data, resulting a very fast algorithm for an
approximatek nearest neighborhood.

Let ∆k(q) be the width of a minimum neighborhood
that contains at leastk points. Letkq be the actual number
of points in the neighborhood. Then a smoothed proba-
bility density estimate of binq is

p(q) =
kq

∆k(q)∑r
kr

∆k(r)
∆(r)

(8)

5. Three examples

Old Faithful geyser eruption duration data. The
data are a collection of durations, in minutes, of the Old
Faithful geyser eruption [10]. The sample size is 107.
The quantization level is 30. The optimally quantized
histogram is shown in Fig. 1(b), where the quantizer per-
formance measure isT(Q) = J(Q) and number of neigh-
borsk = 18. The equal bin width histogram, in Fig. 1(a),
does not adjust its bin width to the data. The optimally
quantized histogram allocates bin width by adapting to
the data. For the low density region from about 2.1 to
3.4, six bins are used by the optimal quantization, while
about fourteen bins are used by the equal bin width his-
togram. Around 2, 3.9, 4.3, 4.8, where the empirical
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(a) Equal bin width
histogram.
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(b) Optimally quan-
tized histogram.

Figure 1. Old Faithful geyser eruption du-
ration (minutes) density estimates. Below
each plot is the empirical density.

density changes rapidly, narrower bins are used by op-
timal quantization. This is mostly desirable because the
narrower bins may lead to more accurate density esti-
mates of the sharply changing density regions. The op-
timally quantized and smoothed density looks smoother,
where three modes approximately at 1.7, 4.1 and 4.5 are
identifiable, while the equal bin width histogram, not
smoothed, is overly bumpy. This example shows the bin
allocation efficiency of optimal histograms.

Chi-squared data. The data is simulated using Chi-
squared distribution with 4 degrees of freedom. The sam-
ple size is 1000. The quantization level is 8. The den-
sity estimates (not smoothed) are shown in Fig. 2. The
dashed line is the probability density function of the Chi-
squared distribution. In Fig. 2(a),T(Q) = J(Q). The
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(a) Maximum average
log likelihood quanti-
zation.
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(b) Maximum entropy
quantization.

Figure 2. Density estimates of Chi-squared
data using optimal quantization.

bins are narrower for the region from 0 to 2 than for
the region above 2. It is quite clear that the underly-
ing density changes much more rapidly in[0,2] than in
[2,∞), corroborating the consistency result in [10]. In
Fig. 2(b),T(Q) = H(Q). The bins for the region around
the mode at 2 are narrower than the region further away
from the mode. The density of the region around the
mode is larger than other regions. When entropy is max-



imized, each bin contains about the same number of data
points. This naturally leads to narrower bins for regions
of higher density and wider bins for regions of lower den-
sity. The rationale behind the entropy measure is that the
least commitment should be made to the sample. This
controls the generalization ability of the estimation re-
sult. On the other hand, the maximum likelihood his-
togram is always trying to find the best fit to the data and
sometimes it may be overdone.

Two class normal data. Class 1 and 2 have 0 mean
unit variance and 3 mean unit variance normal distri-
butions, respectively. The sample sizes of both classes
are 500. The quantization level is 100. The density es-
timates, using different performance measures and all
smoothed withk = 30, are shown in Fig. 5. Solid
and dashed lines represent the estimated and true den-
sities, respectively. The dash-dotted lines are the deci-
sion boundary obtained by Bayesian rule with equal class
prior and true densities. In Fig. 5(a),T(Q) = Pc(Q). The
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(a) T(Q) = Pc(Q).
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(b) T(Q) = J(Q)+Pc(Q).
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(c) T(Q) = J(Q)+0.5H(Q)+Pc(Q).

Figure 3. Optimal class histograms.

bins are consumed mostly around the boundary regions
between the two classes. The regions far away from the
class boundary have very wide bins and, therefore, inac-
curate density estimates. But it suffices when the goal is
classification. In Fig. 5(b) the performance measure is
T(Q) = J(Q)+Pc(Q). The class boundary region is still
emphasized with more narrower bins. However densi-
ties of the far away regions from the class boundary take
a much better shape, as compared to Fig. 5(a). We can
see the density estimation around the class boundary still
works well for classification. Fig. 5(c) shows the density

estimates withT(Q) = J(Q)+0.5H(Q)+Pc(Q). Adding
the entropy measure stabilizes the density estimates. It
gives an even better fit towards the true densities. Still,
the class boundary region is emphasized. Classification
would work as well and an extra gain is that the underly-
ing true densities are represented more accurately.

6. Conclusions

We described an approach to obtaining adaptive his-
tograms by quantization and smoothing, optimizing a
quantizer performance measure. The performance mea-
sure contains average log likelihood, entropy and cor-
rect classification probability measures. The optimal dis-
cretization is obtained with a dynamic programming al-
gorithm. The density of each bin is estimated by a gen-
eralizedk nearest neighbor algorithm. Experiments on
different types of data are reported. The results show
that optimal histograms are powerful in capturing the un-
derlying true densities of the data using given resources.
In addition, it is very efficient to use optimal histograms
than other methods, e.g., the kernel density estimators,
when dealing with massive amount of data.
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