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ABSTRACT

In non-parametric pattern recognition, the probability density function is approximated by means of many parameters,
each one for a density value in a small hyper-rectangular volume of the space. The hyper-rectangles are determined by
appropriately quantizing the range of each variable. Optimal quantization determines a compact and efficient represen-
tation of the probability density of data by optimizing a global quantizer performance measure. The measure used here
is a weighted combination of average log likelihood, entropy and correct classification probability. In multi-dimensions,
we study a grid based quantization technique. Smoothing is an important aspect of optimal quantization because it affects
the generalization ability of the quantized density estimates. We use a fast generalized k nearest neighbor smoothing
algorithm. We illustrate the effectiveness of optimal quantization on a set of not very well separated Gaussian mixture
models, as compared to the expectation maximization (EM) algorithm. Optimal quantization produces better results than
the EM algorithm. The reason is that the convergence of the EM algorithm to the true parameters for not well separated
mixture models can be extremely slow.

Keywords: density estimation, grid quantization, smoothing

1. INTRODUCTION

We discuss optimal quantization, a non-parametric technique, for pattern recognition. Non-parametric methods do not
have the large modeling biases inherent in parametric models. Optimal quantization tends to alleviate the on-line compu-
tation and storage burden as presented in standard non-parametric techniques, by finding the most effective non-parametric
representation of the data, for given computation resources, in terms of both CPU cycles, memory requirement and the
targeted performance. It requires intensive off-line training. Ideally, the representation should be compact. Some choices
of representation yield very fast on-line algorithms whose time and space complexities are not directly related to the
sample size. Optimal quantization possesses the scalability to trade more resources for performance. Most standard
non-parametric models do not scale up or down and in many situations become prohibitive to apply.

A better approach to discretization of the space is to find a partition scheme to optimize a quantizer performance
measure. We define such a measure that considers average log likelihood, correct classification probability and entropy.
We study a genetic algorithm to find a grid globally and then refine the grid using a fast local algorithm. The grid is further
used to obtain density estimates using a fast smoothing algorithm, as compared to the k nearest neighbor algorithm.

We review some related work in Section 2. In Section 3, we give the definition of the quantizer performance measure.
In Section 4, we present global and local algorithms to find an optimal quantizer when the quantization pattern is a
multidimensional grid. In Section 5, we extend the kernel smoothing idea and introduce a fast method to smooth the
quantized density function. We compare the performance of the optimal quantization and the expectation maximization
(EM) algorithm for multi-class Gaussian mixture data in Section 6 and finally we conclude our study in Section 7.
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2. RELATED WORK

Vector quantization, perhaps the most widely used quantization technique, assigns a vector to each cell. The goal of vector
quantization is often to approximate data accurately in the squared error sense.1' 2

Multivariate histogram is an example of quantization for density estimation. Lugosi and Nobel3' have established
the consistency results of multivariate histogram density estimate and proposed general partition schemes based on their
results. Entropy and likelihood5 6, 7 have been proposed as quantizer measures. Splines or local polynomials can be used
as representation of the density of a cell, but their computational efficiency is a problem in a multidimensional space.

For discretization, Simonoff8 describes a way of finding a variable width bin histogram by inversely transforming an
equal width bin histogram obtained from the transformed data. However, it is not clear how the transform function should
be chosen in general.

Quite many activities9' 10, 1 1, 12, 13 concentrate on discretization ofmulti-class 1-D data, in part because 1-D discretiza-
tion algorithms serve as the building blocks for decision tree construction. Only the type of algorithms originally given
by Fulton et al.10 is optimal with respect to additive quantizer measures, where dynamic programming is used. Elomaa
and Rousu14 improve the practical efficiency of the algorithm on well-behaved additive quantizer measures. They show
that many frequently used quantizer measures for classification purpose are well-behaved.

For multidimensional discretization, the concept of statistically equivalent blocks15 is an early tree structured parti-
tioning scheme. The CART16 algorithm also uses the tree-structured classifier. In a multidimensional space, grid based
partition schemes are studied, e.g., multivariate ASH,17 STING18 algorithm, OptiGrid19 algorithm, STUCCO2° algo-
rithm, adaptive grids21 and maximum marginal entropy quantization.22 In Hearne and Wegman,6' ' the grid is acquired
randomly. In Scott,17 the grid lines are equally spaced. In Bay,20 the grid is adjusted by merging adjacent intervals by
hypothesis testing. The adaptive grid21 uses a strategy to merge dense cells.

WARPing23 and averaging shifted histograms (ASH)24 are techniques that smooth density estimates of the cells.
Otherwise there are relatively few histogram smoothing methods. Ideally, we would like to have all cells with a non-zero
density estimate, but there is no available method for such including ASH. Besides the non-zero requirement, smoothing
is important in maintaining consistency of density estimates and deserves further study.

3. QUANTIZER PERFORMANCE MEASURE

Let the random vector X R' represent an individual data or pattern. X (d) is the d-th dimension random variable of X.
We call the sequence XN {xi ,X2 , • • XN } a data set or a sample of size N. This set contains i.i.d. data vectors from xi to
XN. Let K be the total number of classes and {1 ,2, . . . , K} be the class label set. Let random variable Y E {1 ,2, . . . , K} be
the class assignment of X . We call the sequence N = {yl , Y2 , , YN} the class assignment set of XN , where x1 has class
label Yl 'X2 has class label Y2 and so on. We also consider a more general case where the class assignment is not exclusive,
but instead weighted. Let random vector W e [0, 11K be the weighted class assignment vector. W(y) is the weight for class
y. We also require W(y) = 1. We call the sequence WN = {wl , w2, . . , wN} the weighted class assignments of the
data set XN,

DEFINITION 3 . 1 (QUANTIZER). A quantizer Q is a function that maps R' to J. 1, called quantization index set, is a
fi nite set ofintegers or integer vectors.

DEFINITION 3.2 (QUANTIZATION CELL). A quantization cell ofQ is a set C C R' such thatfor any XI,X2E C,
Q(xi) = Q(x2).

For each cell, we assign an index q 3 to it. We use the function notation q = Q(x) to denote that x is quantized to q
or x belongs to cell q. We use N(y) to denote the total number of class y data in the XN, that is

N(y) wn(y)

Let V(q) be the volume of cell q. Let Nq be the total number of data in cell q. Let Nq(y) be the total number ofdata of
class y in cell q, that is

Nq(y) Wn(y)
nc{nq=Q(x)}
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We assume there are L cells. The index to the first cell is q = 1, and q = L for the last cell.

Average log likelihood. Kullback-Leibler divergence from j3(x) to p(x) is

D(pj3) =fp(x)1og!dx=E{logp(X)}_E[logp(X)]

which, being non-negative (zero only when j3(x) =p(x)), should be minimized. As p(x) is fixed, maximizing E[logj3(X)
is equivalent to minimizing DKL(PJ3). Let p(qy) be the density of cell q. Then E{logj3(XY)] can be estimated by

log fl (p(qy))Nq(Y) The overall average log likelihood of a quantizer Q is

J(Q) = N(y)E[log(Xy)] = log fl (p(qy))Nq(Y)
y=1 y=1 q=1

When there is reason to believe that the class number ratio N(1) : N(2) : . . • : N(K) is representative for the true data, the
overall average log likelihood is preferred, with the log likelihood of popular classes being emphasized.

The mean class average log likelihood is

J(Q) = E{log(Xy)] =
MY)

logfl (p(qy))N

When the class number count N(y) is randomly decided or every class is considered to have equal importance, the mean
class average log likelihood is preferred, with every class contributing equally to the log likelihood of the quantizer.

Correct classification probability. Let P(y) be the prior probability of class Y. Within cell q, the Bayes' rule
is equivalent to y = argmax P(y)Nq(y)/N(y). Let N(q) be the number of correct decisions in cell q, i.e.,N(q) =

y
Nq(y). We give the definition of the correct classification probability in two situations. The overall correct classijication
probability is

P(Q) = iNc(q)
(1)

The mean class correct classification probability is

P(Q)=11l(y=Y;)))
(2)

In the above two equations, I is indicator function. The choice of either should follow the considerations explained for
the choice of average log likelihood.

Entropy. Similar to the case of average log likelihood, we give two options: overall entropy and mean class entropy.
Again, the choice of either should follow the considerations explained for the choice of average log likelihood and correct
classification probability. We define the overall entropy by

H(Q)=log- (3)

We define mean class entropy by

H(Q) = (4)

Entropy has been used as a class impurity measure. But we use entropy as a measure of the consistence or generalization
ability of the training results.

The performance measure function. We define the quantizer performance measure function, by linearly combining
average log likelihood, entropy and the log of correct classification probability, as follows

T(Q) = WjJ(Q) + WjjH(Q) + Wc logP(Q) (5)

where Wj, WH and W are given weights for average log likelihood J(Q), entropy H(Q) and log of correct classification
probability log P(Q), respectively.
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4. OPTIMAL GRID QUANTIZATION

An equal spacing grid is not efficient statistically. Variable spacing grid lines can dramatically improve the statistical
efficiency while having low computational complexity. We consider the grid pattern quantizers with hyper-rectangular
cells, shown in Fig. 1.

DEFINITION 4. 1 (GRID). Let G represent a grid in R'. There are L1 ,L2, • . . ,

quantization levels, respectively, for dimension from 1 to D. Let Ld be the quanti-
zation levels in the d-th dimension. The decision boundaries ofthe d-th dimension
are G[d, 0] ,G[d, 1J ,

. . . , G{d, Ld}. The values of the decision boundaries increase
strictly monotonically, i.e., G{d, 0] < G[d, 1] < . . . < G[d, LdJ.

Issues involved in designing these quantizers include the orientation of the grid,
relative quantization levels in each dimension and how to find an optimal grid for
the given data. We introduce a global grid optimization algorithm using genetic Figure 1. A grid pattern.

algorithms and a fast local grid refinement algorithm.

4.1. Orientation
It has long been known that the performance of classifiers does not increase with dimensions monotonically, because the
required sample size will grow exponentially with the increase in dimension. Dimension reduction may be necessary.
Popular techniques including principle component analysis, projection pursuit and independent component analysis. In
addition to dimension reduction, for data in a high dimension, we may also want to view the data in a new coordinate
system such that the most interesting dimensions come first, where we would like to use more quantization levels.

4.2. Relative Quantization Levels in Each Dimension

For a given number L of quantization cells, the quantization levels L1 ,. . . , LD for each dimension are to be assigned. We
use marginal entropy as a guide to allocate resources, with the bit-allocation rule

H1(X) H2(X) HD(X)
(6)

log2 L1 log2 L2 log2 LD

log2 L1 + log2 L2 + . . . + log2 LD log2 L (7)

where Hd(X) is the marginal histogram entropy for the d-th dimension of X. Solving above equations for Ld (d =
1,2,••• ,D),weget

Hd(X)

Ld L=i (d = 1,2, . . . ,D) (8)

4.3. Global Optimization of a Grid
We cast the grid optimization problem into the genetic algorithm model in the following way. An individual is a grid.
An individual is assumed to have only one chromosome. Therefore a chromosome also represents a grid. A gene is the
sequence of the decision boundaries in a particular dimension of the grid. A nucleotide is a single decision boundary in
the grid. For a complete and general description of genetic algorithms, refer to.25

How well an individual adapts to the environment is measured by the fitness function. The choice of a fitness function
depends on how selection is carried out. When we use fitness proportionate selection, the chance of an individual being
selected is in proportion to its fitness. Therefore, we would normally require the fitness function be non-negative in order
to directly relate it with probabilities.

DEFINITION 4.2 (FITNEss FUNCTION). Thefitnessfunction ofa grid is

p(G) = exp(T(G)) = {exp(J(G))]' [exp(H(G))1n {P(G)]Wc (9)

p(G) is non-negative since it is an exponential function of T(G). exp(J(G)) corresponds to the geometric average of
likelihood which is a probability. exp(H(G)) is the information content of the grid expressed in terms of the range of
information coding. P(G) is exactly the correct classification probability. T(G) is a weighted geometric combination of
the above components.
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Aig. 1 Optimize-Grid-Genetic outlines the main steps of the grid optimization genetic algorithm. It starts with an
initial population of N random grids. The population evolves itself by going through the selection-reproduction-selection
cycle as described in the for loop from line 2 to 16. In every cycle, or generation, N children are reproduced in the for
loop from line 7 to 15. Every execution of the loop produces two children C1and C2 by parents G1 and G2. G1 and G2 are
randomly selected (line 8 and 9) from the population and the chance of their being selected is in proportion to their fitness
function values. A cross-over site dr is randomly decided for the parent chromosomes or grids G1 and G2. The cross-over
happens with a probability of Pr. Once the cross-over is finished, two children C1 and C2 are produced (line 1 1). For each
of the two children grids, some of their decision boundaries are randomly changed by Mutate (line 12 to 13). Then these
two children are added to next generation of population (line 14). The best ever grid is being kept as G* . G* is returned
after a certain number of generations have been evolved.

Algorithm 1 Optimize-Grid-Genetic(XN, N, Ng, Pr, P)
1: P < a population of Np random grids;
2: forj—OtoNg---1do
3: ifp(G*) < max p(G) then

GcPJ
4: G*argmaxç(G);

GcPJ
5: end if
6: PJ1 —
7: for i — 0 to N — 1 with increment of 2 do
8: Randomly select a grid G1 from with a probability proportion to fitness value;
9: Randomly select a grid G2 from P' with a probability proportion to fitness value;

10: Randomly decide a dimension d,. as the cross-over site;
1 1: Exchange the decision boundaries of dimensions 1 to d,. between C1 and C2with probability Pr or do not ex-

change;
12: Mutation: randomly adjust each decision boundary of Ci with probability P;
13: Mutation: randomly adjust each decision boundary of C2 with probability P;
14: pj+1 pj+1 {Ci,C2};
15: end for
16: end for
17: ifç(G*) < max p(G) then

GEP
18: G* < argmax p(G);

19: end if
20: returnG*;

4.4. A Fast Grid Refinement Algorithm

When the current best solution is close to the global optimal, genetic algorithm will be less efficient. Here we propose
a more efficient grid refinement algorithm by adjusting the decision boundaries one by one. An adjusted boundary is
accepted only when the performance measure increases.

By definitions of J(G),H(G) and P(G), they are additive, i.e.,

L L L

J(G)= 1J(q), H(G)= H(q), P(G)= P(q)
q=1 q=1 q=1

Therefore, when one decision boundary of a grid is moved, we need only recalculate the change of the additive measures
on those affected cells and data.

Aig. 2 describes the Refine-Grid algorithm. The input includes a grid G, data sets XN and number of refinements
NR and the convergence parameter S. J,H, P( and T record the performance measures of current grid. The refinement is

Proc. SPIE Vol. 4875 19



done dimension by dimension as shown by the for ioop of line 6. For each dimension, the boundaries of that dimension
are refined one by one in the for ioop starting from line 7.

A sub-grid G is formed by all the cells that is affected by each current decision boundary. The data that fall in the sub-
grid are kept in sets 1N' and N' . Other data will not affect the refinement of the current boundary. The additive measures
JS,HS and P are calculated for the sub-grid G. Line 12 actually finds the optimal decision boundary that maximizes the
overall measure T(G) and assigns the optimal boundary to the optimal sub-grid G. The changes in the additive measures
of the sub-grid are calculated and the additive measures of the grid G are updated by the changes (line 13 to 16). The
optimal decision boundary replaces the original one in G (line 17). The overall measure T is also updated. The refinement
repeats until convergence is achieved as measured by AT/T.

Algorithm 2 Refine-Grid(G, XN, NR, 6)

1: J—J(G),H<----H(G),P —P(G);
2: T—WJJ+WHH+WlogP;
3: j — 0;
4: repeat
5: T—T;
6: ford—1toDdo
7: for q — 1 to Ld 1 do
8: Form a sub-grid G5 by the cells sharing the decision boundaries G[d, q];
9: G—G5;

10: XNI N' {(x ,y,) Ixn(d) E (G [d, 0] ,G [d, 2]] };
11: J — J(G) H5 f— H(G), P — P(G), all on
12: G [d, 1] — argmax T(G5) on XN' ,AN';

G5[d,1}
13: AJ — J(Gfl —J5, tsR — H(Gfl —H5, iXP — P(Gfl —Ps, all on XNF,N/;
14: J—J+iXJ;
15: H<—H+AH;
16:

17: G[d,q] —G[d,1J;
18: T—WJJ+WH+WlogP;
19: end for
20: end for
21: j—j+1;
22: AT—T—T;
23: untilj=NR0rIL\T/TI<6;

Now we can analyze the running time of the Refine-Grid algorithm. We assume a constant time is spent for Aig. 2
line 12. Since the sub-grid G has 2L/Ld cells, calculating the measure on the sub-grid takes about N' log2(L/Ld)
Nlog2(L/Ld) time. Therefore the worst case running time is

/ D \ I D
0 ( NR LdNlog2(2L/Ld) ) = o ( NRNlog2L : Ld

\ d=1 I \ d=1

When the data points are distributed pretty evenly in each cell, we can expect N' to be about 2N/Ld. Then the expected
running time is:

(NR
Ld(2N/Ld) lo2(2L/Ld)) = O(NRN log2L)

The expected running time is linear in N and logarithm in L. In the time equivalent to the evaluation of the grid over the
entire data set NR times, all the decision boundaries will have been adjusted NR times, modulo the constant time used in
stepping for the best decision boundary.
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4.5. The Refine-Genetic-Grid Algorithm

Aig. 3 Refine-Genetic-Grid combines the global Optimize-Grid-Genetic algorithm and the local algorithm Refine-Grid.
The algorithm first calls the global algorithm and then refines the grid by the local algorithm.

Algorithm 3 Refine-Genetic-Grid(N, Ng, Pr, Pu, NR, ö)
1: G +— Optimize-Grid-Genetic(XN, N, Ng, Pr, P11);
2: Refine-Grid(G, XN, NR, ö);
3: returnG;

5. DENSITY IN A CELL AND SMOOTHING

The consistency of a quantizer is determined by the bias and variance of the density estimates. To reduce the bias, the
sample size N must be large, and Nq/N must be small. To diminish the variance, the sample size Nq within a cell must be
large.

Over-memorization is a serious potential problem when the emptiness issue is not properly handled. The symptom
of over-memorization is that the quantizer works extraordinarily well on the training sample, but fails miserably on any
unseen samples. Over-memorization manifests the large variance in cell density estimates, as a result of cell emptiness.
Smoothing is an effort to reduce the variance of the density estimates. Over-smoothing is the other end of the spectrum.
The symptom is that the quantizer gives very consistent result on both the training sample or an unseen sample, but carries
unfortunately large biases.

We offer an algorithm to assign a density estimate to a quantization cell, with smoothing integrated. The algorithm is
related to the k nearest neighbor density estimation method.

Let Vk(q) be the volume of a minimum neighborhood that contains at least k points. The definition of the minimum
neighborhood depends on the distance metric used and also the shape of the neighborhood. We do not require the shape
of a neighborhood be a ball in the metric space chosen. Let kq be the actual number of points in the neighborhood. Then
a smoothed probability density estimate of cell q is

p(q) qp(q)= =
>.rPfr)'(') Vk(q) L

How to construct the k nearest neighborhood is an issue. Searching for the exact k-th nearest neighbor by going through
the data is not very pleasing because of the computation involved. Here we first lay the foundation of an approximate, but
no less than k, nearest neighbor smoothing algorithm by some basic definitions.

DEFINITION 5 . 1 (NEIGHBOR CELLS). We call cell a and b neighbor cells if they share at least a partial decision
boundary.

DEFINITION 5 .2 (RADIus 0 NEIGHBORHOOD OF A CELL). The radius 0 neighborhood ofcell q is a set that contains
exactly the cell itself We use the notation N(q, 0) to denote the radius 0 neighborhood ofcell q.

DEFINITION 5.3 (RADIUS R NEIGHBORHOOD OF A CELL). The radius R (R Z) neighborhood ofcell q, 'f(q,R),
is the union ofthe radius R —1 neighborhood N(q, R —1), and the set ofall the neighbor cells ofthe cells in J\f(q, R — 1).

Fig. 2 shows the radius neighborhood of a cell with different radii. In Fig. 2(a), the cell of interest is the cell in gray.
The cell itself is also its radius 0 neighborhood. Fig 2(b) and (c) draw its radius 1 and 2 neighborhoods.

DEFINITION 5.4 (k NEIGHBORHOOD OF A CELL). k neighborhood ofa cell is the smallest radius R neighborhood of
the cell that contains at least k points.

Alg. 4 Radius-Smoothing is based on the k neighborhood concept. The algorithm searches for a minimum radius
R neighborhood of current cell with at least k data points. Then the density of the k neighborhood is assigned to the
cell as its density estimate. M is the total mass on the density support. M can be considered an adjusted data count by
smoothing and is related to N. For the cells containing less than k data points, the initial guess of R is the radius of thek
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Figure 2. Radius R neighborhood of a cell.

neighborhood of the previous cell. To make this initial guess more realistic, we shall go through the cells in an order that
every pair of adjacent cells are neighbor cells. kq 5 the actual total number of data points in current radius R neighborhood.
Based on the data count in current radius R neighborhood, we either increase R until there are at least k data points in the
neighborhood, or decrease R until the R — 1 neighborhood contains less than k data points.

Algorithm 4 Radius-Smoothing(Q, k)
1: M*—O,R—---1;
2: for each cell q do
3: ifN(q)=kthen
4: RO,kq<N(q);
5: else
6: ifR<Othen
7: RO,kq+N(q);
8: else
9: 4 f— 1(q,R) flNI(q,R);

10: kq +_ kq N(q,R) —Af + ((q,R) —Jt;
11: endif
12: while kq > k and R > 0 do
13: kq+kqIN(q,R)N(q,R_1),RR1;
14: end while
15: while kq < k and R < Rmax do
16: kqkq+IN(q,R+1)[(q,R),RR+1;
17: end while
18: end if

k —
19: p(q) — V((q,R)) ' M — M+ p(q)V(q), q — q
20: end for
21: for each cell q do
22: p(q)f_P.;
23: end for

The k neighborhood search of one cell goes through at most all L cells. Thus the total running time of the Radius-
Smoothing has an upper bound of 0(L2). However, because we (1) use the radius of the previous k neighborhood as an
initial guess instead of starting from R =0 and (2) find the data count in the current neighborhood by adjusting data count
in the previous neighborhood, we can expect a constant time in finding out the k neighborhood of current cell. Hence, we
would have total expected running time of L for doing all the cells.

The extent of smoothing is usually controlled by a parameter on the size of the local neighborhood. This naturally
brings up the question of how to measure the quantizer consistency as a function of the control parameter. For the non-
parametric approach, the only information available is the training sample, on which we will base any decision. We use
cross-validation to determine an optimal control parameter k* for smoothing, such that it maximizes the average quantizer
performance.

(a)R=O (b)R=1 (c)R=2
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6. EXAMPLE 2-D THREE CLASS GAUSSIAN MIXTURES

We compare the performance of optimal quantization and EM algorithm for multi-class multivariate Gaussian mixtures.
We compare the performance by the average log likelihood and the correct classification probability on test data. We use
both exclusive class assignment and using weighted class assignment. The performance of the optimal quantization is
also studied as a function of the sample size N and quantization level L.

6.1. Data

There are three classes of data, each with a different Gaussian mixtures distribution. Let fN(xf/i, )be the probability
density function of the Gaussian distribution with mean vector jz and covariance matrix .The distributions for the three
classes are

. Class 1 is a Gaussian mixture with two components.

P(XIY1)O.5fN(X[ ],[ ])+O.5fN(x[ ],[ ])
. Class 2 is also a Gaussian mixture with two components.

P(XY2)O.6fN(X[ ],[ ])+O.4fN(x[ ],[ ])
. Class 3 is Gaussian.

I 8 50
p(xIY=3)=fNx 5 , 0 5

Fig 3(a) shows the contour plots of the true class densities. There are five training sets. The sample sizes are, respectively,:

0., 0. 0 •

..
S .

- 0DrL11 ..
D_ 0L;4 tJ

*
0

S S

(a) Contour plots of the true class (b) Scatter plot of a sample of size
probability density functions. N = 300, with stars, squares and

dots representing class I , 2 and 3,
respectively.

Figure 3. True class densities and simulated data.

102 x 3, iO x 3, i04 x 3, i05 x 3, 106 x 3. N x K means there are N items of data for eachof the K classes. Fig 3(b)
shows the scatter plot of the 102 x 3 training set. We have two types of class assignment for training data:

1. Exclusive class assignment. In a training set, if a data vector x, is simulated from the distribution of class y, then
the class assignment of x is y =y.

—I;

012

10

8

6

4

2

0

—2

0 5 10
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2. Weighted class assignment. In a training set, the weighted class assignment vector w, of a data vector x, is deter-
mined by

p(x,2y)
Wn(y) K ' y=1•K

k=1 p(xIk)

The test data has a sample size of (2 x 106) x 3, i.e. there are 2 x 106 data in each of the three classes. The overall
average log likelihood is of the test data using the true class densities is Jo =—4.79889. The overall correct classification
probability using the true densities is Po = 74.4407%.

6.2. Results of the EM Algorithm

We use EM algorithm to estimate the Gaussian mixtures of each class. We set the maximum number of mixture compo-
nents for each class to 2. The actual number of mixture components of each class is cross-validated. Fig. 4 presents the
contour plots of the estimated densities using 300 and 3000000 sample sizes. Both the results of using exclusive class
assignment and weighted class assignment are shown in each figure.

:: 1 ::

_5 _____

(a) N = 100 x 3, training data have (b) N = 300, training data have
exclusive class assignment. weighted class assignment.

ak) _____

:___
(c) N = 1 ,000,000 x 3, training (d) N = 3,000, 000, training data
data have exclusive class assign- have weighted class assignment.
ment.

Figure 4. Contour plots of the density estimates using EM algorithm.

We can see that for class 3, its single Gaussian component can always be correctly estimated. For class 1 and 2, who
both have two mixture components, the results vary. Only for the 300 data set with weighted class assignment, the EM
algorithm is able to accurately capture the two mixture components for class 1. The same EM algorithm fails on all the
other data sets in either correctly detecting the number of mixtures or correctly estimating the parameters. For class 2, EM
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Figure 5. Performance of the EM algorithm on 6,000,000 test data. The top two plots were obtained from training data with exclusive
class assignments. The bottom two plots were obtained from training data with weighted class assignment. The dash-dotted lines are
the performance on the test data using the true class densities, for which the average log likelihood is Jo = —4.79889, shown in the left
two plots, and the correct classification probability is Po = 74.4407%, shown in the right two plots.

algorithm is able to detect the correct number of mixture components and the parameters only on data sets N = 100 x 3.
For N = 100 x 3 data set with exclusive class assignment, the estimated parameters are not very accurate. In some of the
results, the number of components is estimated conectly, but still the component parameter estimates collapse to the same
single Gaussian component. Only on the data set N = 100 x 3 with weighted class assignment, EM algorithm is able to
give very accurate density estimates of all the classes. As noted by Xu and Jordan,26 the convergence is much faster when
the components are well separated than when they are too close to each other. Our example is indeed a hard example for
the EM algorithm. However, the makeup of the data is not totally artificial. It is based on some real-world data sets in
which the classes are quite mixed together.

Fig. 5 shows the overall performance. It is expected that the overall performance does not increase with sample size
for parametric models, as long as the sample size is sufficiently larger than the number of parameters. In the figure, the
performance as a function of N indeed confirms this independence of sample size. As we have analyzed the individual
density estimate results, it is not surprising that N = 300 with weighted class assignment gives the best performance on
the test data, which is very close to the gold standards of both the average log likelihood and the correct classification
probability.

6.3. Results of Optimal Quantization

The data are rotated by their principle component vectors without scaling. No scaling makes the average log likelihood
comparable with other density estimates or the true density. We try an increasing number of quantization cells L: 16, 256,
4096, 65536, and 1048576. The quantization levels of each dimension is assigned by the marginal entropy ratio and the
given total quantization level L. The parameters used for the genetic algorithm are: size of population N = 20, number of
generations Ng = 20, crossover probability Pr = 0.8, mutation probability P = 0.5. We use a 5-fold cross-validation for
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Figure 6. The grid of quantization levels L 256 and its density estimates, calculated from 3,000,000 training data with weighted class

assignment.

k of each class. k are selected for each class individually. When the data have weighted assignment, we threshold the data
into different classes to get a cross-validated k. The quantizer performance measure is T(G) =J(G) + H(G) + logP(G).

The density estimate results obtained from the training set with N = 1,000,000 x 3 data are shown. Fig. 6 and Fig. 7
present the grids, density estimates and their marginal densities using L 256, and L 65536, respectively. These two
sets of optimal quantization density estimates clearly show dependency on the quantization level L. For quantization levels
L 256, we have already observed the trend towards the true underlying densities. As L increases, the density estimates
approach the true density visually in all three classes.

Fig. 9 shows the average log likelihood and the correct classification probability of the test data. The performance is
shown as functions of quantization level L and sample size N. The performance plots in Fig. 9 show that the performance
almost always improves with sample size N and quantization level L. Fig. 8 shows the optimal number of neighbors k for
smoothing as a function of the sample size N and quantization level L.

Fixing L, we inspect the relation between optimal k and N. When N is small, optimal k increases with N. optimal k
continues to increase as N becomes larger. However, optimal k stops increasing after N >N0(L) . The reason is that each
individual cell has enough data in it. The generalization reaches an appropriate level whose performance is acceptable
and no over-memorization occurs. Hence smoothing is not necessary any more as N is sufficiently large, as compared to

No(L).

Fixing N, we inspect the relation between optimal k and L. When L is relative small to the sample size N, quantiza-
tion effect is sever, resulting large error in density estimate. The performance is highly sensitive to where the decision
boundaries are. Very large k is needed to maintain acceptable consistency, by smoothing out quantization effect. When L
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Figure 7. The grid of quantization levels L 65536 and its density estimates, calculated from 3,000,000 training data with weighted
class assignment.

1

Figure 8. Optimal number of neighbors k, as a function of quantization level L (top plot of each sub-figure), arid as a function of sample
size N (bottom plot of each sub-figure).

is moderate large, optimal k is relative large but is smaller than the optimal k for the canonical k nearest neighbor method.
This is true because of the nature of the radius neighborhood smoothing algorithm. When L is very large, quantization
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Figure 9. J and P on 6,000,000 test data, as a function of quantization level L (top two plots), and as a function of samplesize N
(bottom two plots). The dash-dotted line in each plot is the performance on the test data using the true class densities, for which the
average log likelihood is Jo = —4.79889 and the correct classification probability is Po = 74.44079%.

effect is minor, optimal k does not change too much with L any more and approaches the optimal k for the canonical
nearest neighbor method.

Using weighted class training data outperforms using exclusive class training data. The advantage is clearly shown
when sample size is small. When sample size gets larger, the advantage dissolves. The phenomenon is true for both EM
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and optimal quantization.

6.4. Comparison between EM and Optimal Quantization
When N > 10000 x 3 and L > 4096, the performance ofoptimal quantization is no less than the best attainable performance
by the EM algorithm. Actually the performance of optimal quantization is very close to the gold standard. Even if all EM
estimates had converged to the correct parameters, optimal quantization will not be too much worse if not better. This
result is significant because EM has the correct model information, but optimal quantization does not assume anything
about the form of the model. When a parametric model is complex, it is of great value if the parameters can be estimated
correctly. However, if the parameters can not be found with good accuracy, a parametric model would not be as good as a
non parametric model, even if the model is correct. In more general situations, the form of the parametric model may not
be assumed and optimal quantization is apparently at advantage.

7. CONCLUSIONS

Optimal quantization substantially reduces the time and space demands as required by other non-parametric methods,
while maintaining the benefit of non-parametric methods. The improvement in efficiency is a result of the adaptive
behavior of optimal quantization. Resources are prioritized towards regions where it is necessary. In addition, better
results can always be achieved with more quantization levels, which provides a natural way of balancing resources and
performance. Even when compared to algorithms for known parametric model families, optimal quantization produces
comparable or better results. In our experiment, the EM algorithm may diverge from the true parameters for not very
well separated Gaussian mixture models, while optimal quantization can capture the underlying distributions very well
without assuming anything in advance. In real-world applications, when parametric models can not be assumed or the
convergence to the true model parameters is slow, optimal quantization is a definite solution to produce efficient and
consistent representation of the data for pattern recognition tasks.
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