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Abstract

Optimal guantization, a non-parametric technigque for
pattern recognition, determines a compact and efficient
density representation of data by optimizing a global quan-
tizer performance measure, which is a weighted combina-
tion of average log likelihood, entropy and correct clas-
sification probability. In multi-dimensions, we obtain the
quantization grid using genetic algorithms. Smoothing is
an imporiant aspect as it affects the generalization ability
of the quantizer. We propose a fast k neighborheod smooth-
ing algorithm. Optimal quantization is much more efficient
than other non-parametric methods. For not very well sep-
arated Gaussian mixture models, it produces much better
results than the EM algorithm, which fails to converge to
the true parameters of the underlying density.

1. Introduction

Non-parametric methods do not have large modelling bi-
ases inherent in parametric models. Optimal guantization
is to alleviate the on-line computation and storage burden
of the standard non-parametric technigues, by finding the
most effective non-parametric representation of the data, for
given CPU cycles, memory and the targeted performance. It
requires intensive off-line training. Ideally, the representa-
tion should be compact. Some cheices of representation
yield very fast on-line algorithms whose time and space
complexities are not directly related to the sample size. Op-
timal quantization is scalable to trade between resources
and the performance. Other standard non-parametric mod-
¢ls do not scale up or down and in many situations become
prohtbitive to apply.

The multivariate histogram is an example of quantization
for density estimation. [14] has established the consistency
results of multivariate histogram density estimates and [16]
proposed general partition schemes based on their results.
Entropy and likelihood [8, 10, 11] have been used as quan-
tizer measures. Splines or local polynomials can be used as
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representation of the density of a cell, but they are compu-
tational inefficient in multi-dimensions.

Quite many activities [3, 6, 13, 4, 17] concentrate on dis-
cretization of multi-class 1-D data, partly because it serves
as the building blocks for tree classifier construction. In
multi-dimensicns, the statistically equivalent blocks of [7]
is an early tree structured partitioning scheme. The CART
[2] algorithm also uses the tree-structured classifier. Grid
based partition schemes are studied, e.g., multivariate ASH
[19], STING algorithm in {20], OptiGrid algorithm by [12],
STUCCO algorithm of 1], adaptive grids of [15] and maxi-
mum marginal entropy quantization by [3], Most multivari-
ate discretization approaches are greedy. In [10, 11], the
grid is acquired randomly. In [19], the grid lines are equally
spaced. In [1], the grid is improved by merging adjacent in-
tervals by a hypothesis test. The adaptive grid [15] merges
dense cells.

WARPing {9] and averaging shifted histograms [18] are
techniques that smooth density estimates of the cells. Other-
wise there are relatively few smoothing methods. We would
like to have all cells with a non-zero density estimate, but
there is no available methods for such including ASH. In
addition, smoothing is impertant in maintaining consistency
of density estimates and deserves further study.

We design a genetic algorithm to find a grid globally,
to be described in Section 2. Section 3 extends the kernel
smoothing idea and uses a fast smoothing method to obtain
final density estimates. Section 4 compares the performance
of the optimal grid quantization and the EM algorithm for
Gaussian mixture data. Finally, Section 5 concludes our
study.

2. Grid finding by genetic algorithms

Equal spacing grids are not efficient statistically. Vari-
able spacing grids can dramatically improve the statistical
efficiency while having low computational complexity. The
grid we consider is shown in Fig. 1.

In genetic algorithms, we use fitness proportionate selec-
tion: the chance of an individual being selected is in propor-



Figure 1. A grid pattern.

tion to its fitness. The fitness function of a grid G on given
data is '

0(G) = fexp(/(G)]™ [exp(H (G))]"# {Pe(G)]*

J(G) is the average data likelihood which is a probability.
H(G) is the entropy of the grid. P.(G) is the correct clas-
sification probability. ¢(G) is a weighted geometric combi-
nation of the abave components. It is non-negative as itis a
product of exponentials.

Alg. 1 Find-Grid-GA outlines the grid finding atgorithm.
Xn and Yy are a sequence of data and their classes, respec-
tively. It starts with an initial population of N, random
grids. The population evolves itself by going through the
selection-reproduction-selection cycle in the for loop from
line 2 to 16. In every cycle, or generation, N, children are
reproduced in the for loop from line 7 to 15. Every execu-
tion of the loop produces two children C) and C; by parents
G| and G. The parents are randomly selected (line 8 and 9)
from the population and the chance is in proportion to their
fitness values. A cross-over site d, is randomly decided for
the parent chromosomes or grids Gy and G, and it happens
with a probability of P.. Once the cross-over is finished,
two children €y and C, are produced (line 11). For each
of the two children grids, some of their decision boundaries
are randomly mutated (line 12 io 13). Then these two chil-
dren are inserted to the next generation (line 14). The fittest
grid is kept as G*. G* is returned after a certain number of
generations have been evolved.

3. k neighborhood cell smoothing

Over-memorization is a serious problem when the empti-
ness issue is not properly handled, where the quantizer
works extraordinarily well on the training sample, but fails
on any unseen samples. Smoothing is an effort to reduce
the variance of the density estimates.

Let Vi(g) be the volume of a minimum neighborhood
containing at least £ points. We do not require the shape of
a neighborhood be a ball in the metric space chosen. Let
k, be the actual number of points in the neighborhood. A
smocthed probability density estimate of cell g is

B plg) _ kq
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Searching for the exact k-th nearest neighbor is costly,. We
introduce the & neighborhood smoothing algorithm. We calt
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Algorithm 1, Find-Grid-GA(Xy, Y, £, P.)
I: N, «— population size, N, + number of generations
#° — a population of Np random grids;
2: for j—OtoN,— 1 do
3 if ¢(G*) < max ¢(G) then
GeP)
4 G* «— argmax ¢(G);

GePJ
end if

5

6 Pt —o;

7. for i« Oto N, —1 with increment of 2 do

8 Randomly select a grid G; from P/ with a proba-
bility proportion to fitness value;

9: Randomly select a grid G; from P/ with a proba-
bility proportion to fitness value;
10; Randomly decide a dimension d, as the cross-over
site;

11 Exchange the decision boundaries of dimensions
1 to dy between C; and C; with probabitity P;

12: Mutation of C): randomly adjust each decision
boundary with probability P,;

13: Mutation of C;: randomly adjust each decision
boundary with probability P,;

14; P+l — ity {C),G):

15:  end for

16: end for

17: if 9(G*) < max ¢(G) then
GePY

18 G* +— argmax 9(G);
GePe

19; end if

20: return G*;

cell & and b neighbor cells if they share at least a partial
boundary. The radius 0 neighborhood of cell g is the cell
itself, designated by A{g,0). The radius R (R € Z*) neigh-
borhood of cell g, N (g, R), is the union of the radius R — 1
neighborhood A (g, R — 1), and the set of all the neighbor
cells of A{q,R— 1). k neighborhood of a cell is its smallest
radius R neighborhood containing at least k points. Fig. 2
shows an example. In Fig, 2(a), the cell of interest is the
one in gray, which is also its own radius 0 neighborhood.
Fig 2(b) and (c) draw its radius | and 2 neighborhoods.
Alg. 2 Radius-Smoothing is based on the k neighborhood
concept. The algorithm searches for a minimum radius R
neighborhood of current cell with at least k data points.
Then the density of the & neighborhood is assigned to the
cell as its density estimate. M is the total mass on the den-
sity support. M can be considered an adjusted data count
by smoothing and is related to N. For the cells containing
less than & data points, the initial guess of R is the radius of
the k neighborhood of the previous cell. To make this initial
guess more realistic, we shall go through ‘the cells in an or-
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Figure 2. Radius R neighborhood of a cell.

der that every pair of adjacent cells are neighbor cells. &g is
the actual total number of data points in the current radius R
neighborhood. Based on the data count in the current radius
R neighborhood, we either increase K until there are at least
k data points in the neighborhood, or decrease R until the
R — 1 neighborhood contains less than & data points.

Algorithm 2. Radius-Smoothing(Q, &}
I M—0,R——1;
2: for each cell g do

3 ifN(g) =k then

4 R — 0, k; — N(q);

5 else

6 if R < 0 then

T R—0,ky — N(g);

8 else

9 2« N(g~,R)NN(q,R);

10: kg < kg— 1N (g™, R) — A| +N(q,R) — Al;
11: end if

12: while k; > kand R > 0 do

13; k,,«—kq—lﬂ\{:(q,R)—ﬂ\C(q,R—l)],R«—R—];
14; end while

1s: while £, < k and R < Rx do

16: kg — kg + N (g, R+ 1) - N(q.R)R—R+1;
17: end while

18 endif .

19 ple) — gy M — M+e(@V{g)h9” g
20: end for

21: for each cell ¢ do

2 pla) — B

23: end for

The k neighborhood search of a cell checks at most all
L cells. Thus the total time of smoothing is O(L?). How-
ever, because we (1) use the radius of the previous k neigh-
borhood as an initial guess instead of starting from R = 0
and (2) find the data count in the current neighborhood by
adjusting data count in previous neighborhood, we expect
a constant time in finding the & neighborhood of a cell.
Hence, we would have total expected running time of O{L)
for doing all the cells. The optimal control parameter & is
cross-validated, such that it maximizes the average fitness
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value.

4. Experimental comparison with EM algo-
rithm

In our experiment, we have three classes, each with a dif-
ferent Gaussian mixtures p.d.f., shown in Fig 3(a). Fig 3(b)
shows the scatter plot of a simulated data set. The data set
we will use is a sample of 3,000,000 with weighted class
assignment.

(a) Class p.d.f. contour plots. (b) Sample scatter plot.

Figure 3. True class p.d.f. and simulated data.

For the EM algorithm, we set the maximum number of
mixture components for each class to 2. The actual number
is cross-validated. Fig. 4 presents the contour plots of the
estimated class p.d.f.

Figure 4. EM algorithm: estimated p.d.f.

For the optimal grid quantization, Fig. 5 presents density
estimates and their marginal densities using approximately
63536 quantization cells. Data are pre-rotated for efficient
use of the given quantization levels. The relative quantiza-
tion levels in a dimension is in proportion to the marginal
histogram entropy in that dimension.

It is evident that EM did not converge to the right pa-
rameters of the densities. The grid has quantization effect
locally, but it captures the underlying true densities much
better than the EM algorithm.

5. Conclusions

Optimal grid quantization substantially avoids the time
and space inefficiency of standard non-parametric methods,
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Figure 5. Optimal grid quantization: estimated class p.d.f’s with 65536 quantization cells.

while maintaining their benefit. The improvement in effi-
ciency is a result of the adaptivity of optimal quantization.
Resources are only spent in important regions. In addition,
better results can always be achieved with more quantiza-
tion levels, which provides a very natural way of balanc-
ing resources and performance. For not very well separated
Gaussian mixture models, where the convergence of the EM
algorithm fails or is very slow, optimal grid quantization has
produced much better resulis.

While we have demonstrated the theoretical feasibility
of optimal quantization, we are in the process of evaluating
it on more real data sets. In real-world applications, when
parametric models can not be assumed or the convergence
fails, optimal quantization is a definite solution to produce
efficient and consistent density representations of data.
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