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ABSTRACT

_ Given a gray tone image of a three-dimensional
‘object, a topographic labeling of the image
indicates the peaks and pits, ridges and valleys,
and flats and hillsides of the underlying,
continuous, gray tone surface. The patterns of
these topographic labels capture information about
the original three-dimensional object in the scene
and about the illumination. In order to determine
if estimation of three-dimensional shape from a
topographic labeling is feasible, we have both
analytically and experimentally determined the
topographic labelings for images of a cylinder and
a sphere with varied directions of illumination.
Qur results indicate that such patterns do exist
and will be useful in determining three-dimensional
shape from two-dimensional images.
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';I._ Introduction

" Consider an image of a three-dimensional object
illuninated by an arbitrary light source and viewed
fram an arbitrary position. Although ambiquities
are possible, frequently the human viewer can
gestimate a) the three-dimensional shape of the
‘object, b) -the camera position, and c) the location
of the light source. The so-called "shape-from-
shading” techniques [Ho75] solve systems of
differential equations to derive three-dimensional
shape from gray-tone images and operate under a
limiting set of restrictions. We believe that the
human viewer, instead, recognizes patterns in the
image that give cues leading tc estimation of the
shape of the object.

Extracting patterns from the original gray tone
image is, in most nontrivial cases, an impossible
task. In fact, it is for this reason that
syntactic pattern recognition systems have had to
first extract descriptions consisting of
primitives, their properties, and their
interrelationships from the image and then to parse
these descriptions according to the rules of a
grammar, Instead of trying to recognize patterns
at the gray-tone intensity level, we propose to
work at the topographic labeling level.

To obtain a topographic labeling, a gray tone
image may be viewed as a three-dimensional
continuous surface. Each point of the surface may
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be labeled as part of a peak, pit, ridge, valley,
saddle, hillside, or flat area. In [Ha83], these
categories are defined mathematically and the
topographic classification of image pixels is
described. The mathematical properties of the

topographic structures defined in [HaB3] are
summarized in Table 1.
Table 1: Topographic Classification
| |%£] | Xy X, wfwy  wftw, Label
) -/+ =/+ g g Peak/Pit
a -/+ @ %} ) Ridge/Ravine
a -+ 4= a ] Saddle
g "] @ [} @ Flat
+ -/+ * g * Ridge/Ravine
+ * ~/+ * a Ridge/Ravine
+ -+ g -t * Hillside
+ -t =+ -+ -t Hillside
+ a g * * Hillside
+ * * ) a Impossible
where
»f = gradient vector, | Iv-th = gradient magnitude,
H = Hessian matrix, W, = i~ eigenvector of H,
xi = value of the secorﬂtgirectional derivative in
the direction w, (i“" eigenvalue of H), and
vf.wi = value of the first directional derivative
in the direction of LI
Our goal is to use patterns expressed in terms
of ridges and valleys, peaks and pits, flats and

hillsides to estimate three-dimensional shape. In
this paper, preliminary experiments employing two
methods for determining such topographic patterns
fram gray tone intensity images of simple surfaces
are described.

2. Shape from topographic patterns

There are two possible methods for determining
the pattern of topographic labels that will appear,

given a particular three-dimensional shape
category, a particular reflectance model, a
particular light source, and a particular
viewpoint. The first method is to work the problem
analytically, obtaining exact equations for the
illuminated surface. At each point the gradient,
eigenvectors, and eigenvalues can be camputed in

order to determine precisely which sets of points
have the various topographic labels. The second
method is to work the problem experimentally, using
software to generate digital images of illuminated
three-dimensional surfaces, to fit these image with



simple functions, and to assign topographic labels
to each pixel. The first method has the advantage
of exactness and the disadvantage of becoming
extremely difficult for all Dbut the simplest
surfaces. The second method has the advantage of
being applicable to a wide variety of surfaces and
ijlluminating conditions and the disadvantage of
yielding some inaccurate results due to possible
errors in fitting the gray tone image. We have
begun to experiment with both methods, starting
with very simple surfaces, the Lambertian
reflectance model, and point light sources. We
have worked with two simple surfaces: (1) the top
half of a cylinder, and (2) the upper hemisphere of
a  sphere. Figure 1 illustrates the two
3-dimensional surfaces.

2.1 Method 1: The Experimental Approach

The process for topographic classification can
be done in one pass through the image. At each
pixel of the image, the following four steps, which
are discussed in more detail in [HaB83], need to be
performed.

(1) Estimate the coefficients of a cubic polynomial
in a neighborheod around the pixel.

Use the estimated coefficients to find the
gradient, the gradient magnitude, and the
eigenvalues and eigenvectors of the Hessian at
the center of the pixel's neighborhood.

(2)

(3) Search in the direction of the eigenvectors for
a =zero-crossing of the first directional
derivative within the pixel's area.

(4) Recampute the gradient, gradient magnitude, and

values of second directional derivative extrema
at each zero crossing. Then classify the pixel
based on Table 1.

2.2 Method 2: The Analytical Approach
Topographic Labels on the Cylinder

Consider a cylindzz'icallﬂxface given by:

S(x,y) =d - (r"=y") for -r< yr
where d is the distance of the x-y plane fram the
camera down the z-axis and r is the radius of the
cylinder. This surface, in which the axis of the
cylinder lies along the x-axis, was chosen to
simplify calculations. By differentiating S with
respect to x and y, we obtai

s,=@and S, = y(rE‘—ilyt‘l)'l/2 :
The Intensity offthe cylinder
direction (a,b,c) is giyen. by:

I(X,y) = Ig(by~c(r§-y2)¥/2)/r
After some simplifications, the first and second
partials of I are found to be: 2 2,172

Ix=Ixx=Ixy=1yx=@ , Iy=I,(b+cy(r"-y®) Y/,

and Iyy=I cr(rz--yz)_?’/2 i
where the  subscripted I's denote partial
differentiation with respect to the subscript(s).
Since Ix is equal to2zeﬁo—'—1J/£¥f|| = ¢ when

Iy = I;(btcy(r™-y7) )AL= 0

illuninated from

or y2 = rzbz/(b2+c2)

To determine the second directional derivative
extrema values and the first directional
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derivatives taken in the directions which extremise

second directional derivatives, we fomm the
Hessian:
] @
e 22 .
a Lgor(r™-y )-3/2
The eigenvalues Qf he3 sSian are obtained as:
X = Igor(c™-y )T and X, = 0;
their assoclated eigenvectors are:
wy = (8,1) and wy = (1,0) .
Notlce that X, is always negative for -r<y<r ang

c<@. By taking the dot product of the gradient with
the eigenvectors, we obtain:

-uI.wl = fyi= Ig(b+cy(r2—Y2)_l/2)/r and -H-I.w2 = g,
To determine the topographic labels, we need to

consider two cases: (1) zero gradient magnitude
and (2) positive gradient magnitude.

Zero Gradient Magnitude

If we let y, = rb(b2+c?)™1/2,  then ||#I|| = @
when y=y; . The second directional derivative
extrema values at y‘iy%%e given by

X, = Iger(r™-y,") and X, = 4.

Since X, is always less than zero, it follows fram
Table 17that a ridge is located at Y=Yg-

CASE 1:

CASE 2: Positive Gradient Magnitude

If the gradient magnitude 1is taken to be
positive, then the value of the first directional
derivative in the direction of w, (#I.w,) is always
non-zero because %#I.w;=Iy and | ®f||=|1¥]. In this
case, since X, is alWays negative and X, is always
zZero, it follows from row 7 of Tablie 1 that
hillsides are located at those places where the
gradient magnitudes are positive.

Topographic Labels on the Sphere

In the case of the sphere,
spherical surface_ wi i r is given by:

S{x,y}) =d - (rz—x?-lyxj??}&s for -r < x,y<r
Its intensity illuminated from direction [a,b,c] is

given by:
I(x,y) = Ip*[axsby-c(r’-*=y) /21 /x
After some simplifications, the first and second

partials of I are found to be:
2 2 2=1/2) 0

the equation of a

Ix = I,[atcx(r—X.-Y
= 19 2 .2 121172
Iy = Iglbtgy (s =x-¥3) S 175 o
Ixx = Igc(r -v“) (x Ex Ey 23 ; '
Ixy = Iyx =_1I xy(--l r,
and Iyy = Igc(zz—?ﬁ) (rE-xﬁ-y ) 3/2/1: .
The gradient magnitude (| |%I is given by:
[|=L]] = {I:-:](3 + ny)U& ’
which is zero whe
Aty D 2 1 k= g
and b(rl-x2y2)1/2 4 oy = g

are satisfied simultaneougly By squaring and
invokin i Zipecel= it
g the constraint a“+b“+c“=0 on the uni
vector [a,b,c], the solution to the simultaneous
equations is found to be:
X=raamd y = rb .



The Hessian for the intensity surface of the
illuminated sphere is given }‘.:.'»y:2

Igc r-y Xy

S e e .
) £ (r2-x2—y?) 372 xy £y
Its eigenvalues are fQEnd:ZtEB%:
X = Igcr(E 5y 13/2

and X = Ige(r™-x“-y“) e .

Notice the%t both eigenvalues are always less than
zero since c¢ is always less than zero. The
eigenvector corresponding to Xl is given by:

i [x(x%4y?)"1/2, y (x2+y?) =172
and the &igenvector corresponding to XZ is given

iby: E _
_ [_y(x2+y2) 1/2’ x(x2+y2) 1/2}

W
The dot p%odtx:t of the gradient with Wy is
#Lw} =

cX
) [x(a+ )ty (bt
£ (x4+y2) 172 (rz_xz_yz) 1/2 (£2- xz_yz)

and the dot product of the gradient with Woy is

1/2)]

¥L.Wy = I, (-ay+bx) (x2+y2}“l/2/r 5
We determine the topographic labels by considering
two cases.

CASE 1: Zero Gradient Magnitude

The gradient magnitude is equal to zero when
- (x,¥)=(ra,rb). Since both eigenvalues are less
than zero on the illuminated sphere, it follows
directly from Table 1 that a peak is located at
x,¥)=(ra,rb).

-CASE 2: Positive Gradient Magnitude
= In the case when the gradient magnitude is given
i;ti:'be positive, since both eigenvalues are known to
be negative, it follows from Table 1 that there isg
;’a_‘?ridge at those locations where either ¥I.w.=@ or
*W,=@ is satisfied. We cbtain fram above that

*" ¥L.w,=0 when (axtby) (r?-xP-y?)1/24c (x24y2) =g
sand #I.w2=ﬁ when -ay+bx=0@,

‘Table 1 A1so says that hillsides appear at places
iwhere both #I.wl and -*«‘I.w2 are non-zero.

%, Results

3

.

‘In  this section, we show the analytical and
&xperimental results of the topographic patterns on

cylinder and sphere of Fig, 1. Two
Allunination conditions are considered for each
*Burface: (1) the light direction is (9,8,-1) which
«eans directly above the center of the f%face; (2)
ithe light direction is (1/2,1/2,-1/2%/4)  which
stranslates to azimuth 45° and elevation 45°. mhe
Alminated surfaces of the cylinder and the sphere

E%E shown in Figure 2 and Figure 3, respectively,
o

et ¥

=5
3. i the Cylind

S Analytical Results for the Cylinder

_I-When the light direction is from azimuth g¢°,
‘®levation 9¢°, analytical results in Section 2.2
idMdicate g ridge parallel to the axis of the
C¥linder ang running along the center of the top

Mlf as shown in Figure 4a. When the light

direction is from azimuth 45° and elevation 45°,
the ridge appears as in Figure 4b, In both cases,
the remaining points of the cylinder are hillsides.

3.2 Analytical Results for the Sphere

When the light source
center of the sphere,
zero at (9,0), therefore,
center of the sphere.
positive and the first

is directly above the
the gradient magnitude is

a peak is located at the
The gradient magnitude is
directional derivative in
the direction w. is zero at the remaining points of
the sphere. It“follows fram our analytical results
that ridges locate at these points.

When the light direction is (1,2,1/2,-1/21/2), &
peak is found at (x/2,r/2). Ridges can be located
at places where either

21/2(X2+Y2J = (x4y) (rz—xz—-yz)l/?‘
or X = y is satisfied.
At the remaining points, hillsides are the
correct categories. Figure 5 shows the topographic
labels for the illuminated spheres.

* 3.3 Experimental Results
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Figures 6 and 7 show experimental
the cylinder and sphere using cubic polynamial
surface fitting. Experimental results show very
good correspondence with the analytical results ;
except for the sphere when the light Qdirection is
(6,0,-1). In this case, ridge continuums are
reclassified as hillsides. A detailed discussion of
ridge and valley continua can be found in [Ha83],

results for

In additional to the images of the two simple
surfaces, a synthetic image of a more camplex
surface was also used in testing. The surface of
Figure 8 is camposed of cylindrical and spherical
surface patches. Figure 9 shows the image of the
surface when illuminated from azimuth 45° and

elevation 45°, Figure 10 illustrates the
topographic  labels that resulted from the
experimental method, Most of the resulting

topographic labels are located at places where they
are predicted by the analytical method.

OQur results show that the most informative
features found in the images of the cylinder and
sphere are ridges and peaks. While the ridges found
in the cylinder images are intuitive, the ellipse-
like ridges found in the sphere images are
unexpected. These ellipse-like ridges will be a
definite clue to 3-dimensional surface
identifications. Once the shape of the surface is
hypothesized as cylindrical or spherical ,
information such as the direction of the light
source and the cylinder/sphere radius may also be
estimated.

4. Conclusions

Both the analytical and experimental results so
far indicate that there are definite patterns
emerging that can help indicate the shape of the
original three-dimensional sur face and the
direction of the light source. For both methods,



we anticipate a great deal more work. We would
like to carry out the analytic approach for several
more simple surfaces. For the experimental
methods, we need to work on getting results as
close as possible to the analytic results, We will
then perform a large series of experiments with
various surfaces, cambinations of surfaces forming
objects, viewpoints, reflectance functions, amd
lighting conditions. Only then will we be able to
begin the work of analyzing the patterns of

topographic labels produced and predicting three-
these patterns.

dimensional shape from

Figure 1: (a) the top half of a cylinder and

(b) the upper hemisphere of a sphere.

Shaded images of
the cylinder.

Shaded images of
the sphere;

Analytical results
for the cylinder,

Analytical results
for the sphere.
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Figure 8: a synthetic 3-dimensional object.

_ ; Ridge
Figure 1@: Experimental result





