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Abstract

The paper presents a highly robust estimator called an MF-
estimator for general regression.

In the paper, we argued that the kind of estimators needed by
computer vision must be highly robust, and that the classical robust
estimators do not render a high robustness. We also explain that the
high robustness becomes possible only through partially but completely
modeling the unknown log likelihood function.

Partial modeling explores a number of important heuristics
implicit in the regression problem and takes place by taking them into
consideration with the Bayes statistical decision rule, while maximizing
the log likelihood function.

Experiments with the simplest location estimation show the
superior performance of the MF-estimator over the classical M-
estimator, as was expected,

The authors believe that the proposed MF-estimator will pave
a solid road towards solving a lot of robust estimation problems which
have arised in low level computer vision and many other scientific and
engineering fields.

1. Introduction

4 ‘According to Huber (1981), the technical term “robust” was
etm_cdll.n 1953 (by G.E.P. Box), and the subject matter acquired
reoogn{tlon as a legitimate topic only in the mid-sixties. For a long time,
Ehf.orencal statisticians tended to shun the subject as being inexact and
dirty". Lately, it seems that the pendulum has swung to the other

extreme, and that "robust” has now become a magic word which is
evoked to add respectability,

-3 A few years ago, Fischler and Bolles (1981) and Haralick (1986)
ng]y' and convmcmgl-y argued that computer vision, one of the most

- d;sot:;nﬁg;m anctl cEallengmg areas in artificial intelligence, requires all of
i § to be robust. Their arguments explained what the realistic
ption about errors caused by low level image processing should be

Wclgl most of the existing algorithms in computer vision cannot be
mc:omy :;qul.' As well re.cogm'zed,‘ all machine vision feature
Yo I .com E:n:’zf:rs, and matc!'u:rs explicitly or implicitly needed for
o cngr a 1‘1);1 ;r-e unavoidably error prone and seem to make
lﬂ‘merrors slmu]fj, :)v c| mde.cd are blundclrs. The realistic assumption
e € cqntamlnathl_ Gaussian noise, which is a regular
iy 1se with probability 1 - ¢ plus an outlier process with
: ______(__lﬂa_eii&l. The least-squares estimator is very sensitive
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to minor deviations from the Gaussian noise model assumption. As a
matter of fact, the occurrence of outliers definitely makes typical
estimators such as ordinary least-squares estimators, the estimators of
least virtue. Similar conclusions are also experimentally observed by
(Roach and Aggarwal 1980; Fang and Huang 1982, 1984; Jerian and I_ain
1983, 1984), to name a few. In Haralick et. al. (1989), the classical
robust M-estimator is successfully applied to solve a single pose or a
single rigid motion estimation from corresponding point data. However,
lots of experiments conducted in Haralick et. al. (1989) conclusively show
that the M-estimator only allows a low proportion of outliers. In order
to solve the multiple pose or multiple rigid motion estimation problem,
the M-estimator with a low robustness is of no help. From our point of
view, the kind of estimators for motion analysis and perhaps many other
computer vision problems must be highly robust. That's because it is
usually hard to control the proportion of outliers in contaminated data
and because, for a multiple rigid motion case relative to ome rigid
motion, other rigid motions and outliers all should be taken as outliers.

The paper presents a highly robust estimator called an MF-
estimator for general regression. In Section 2, we explain why the
classical M-estimator can't render a high robustness, and why the high
robustness becomes possible only through partially but completely
modeling the unknown log likelihood function. Partial modeling takes
place by taking a number of heuristics implicit in the regression problem
and the Bayes decision rule into consideration, while maximizing the log
likelihood function. The MF-estimator is also presented in the section.
In Section 3, we show the experimental results of applying both the
proposed MF-estimator and the classical M-estimator to the typical
location estimation problem. The MF-estimator exhibits a much higher
robustness than the M-estimator does. The final section is the
conclusion.

2. How to Develop a Highly Robust Estimator for
General Regression,

2.2 Classical Robust Estimators Can't Render a High Robustness.

As well known, the classical robust estimator such as the M-
estimator, L-estimator, and R-estimator (Huber 1981) possesses the
following properties:

Al They have a reasonably good (optimal or nearly
optimal) efficiency at the assumed noise distribution.

B. They are robust in the sense that the degradation in
performance caused by a small number of outliers is
relatively small.

C. Somewhat larger deviations from the assumed
distribution does not cause a catastrophe.

The MF-estimator to be presented in the paper will represent
a new brand of robust estimators that possess the above properties A
and B as well as the following property C ', which is much stronger than
the above property C:



CL The degradation in performance caused by somewhat
larger deviations from the assumed distribution is still
relatively small,

To construct a highly robust estimator we first need to say a few
words about the minimax approach, which was widely used in developing
the classical robust estimators such as the M-estimator, L-estimator, and
R-estimator.

Assume that the true underlying shape F lies in some
neighborhood P, of the assumed standard normal distribution @, where
P(®) = {FIF=(1-)® + eHE e $} with $ representing the sct of
unknown foreign distributions, that the observations are independent with
common distribution F(x - 4), and that the location parameter 6 is to be
estimated,

The minimax approach to robustly estimating the location
parameter is based on minimizing its maximum asymptotic variance for
all possible distributions F P, Suppose that Fy attains maximum
asymptotic variance for location in the set P, then the corresponding
probability density function fo has the form as follows (Huber 1981),

e exp{—_éfJ , ford<a

® -
Sl o

l-¢ a’ ] .
- exp|—-a |, for W' > a.
V2n (2

with the robust control parameter a and the outlier proportion parameter
€ connected through

1-e

M_gq;(_a) =
a

where ¢ = @ is the standard normal density. Moreover, the
asymptotically efficient maximum likelihood estimate of location for Fy
(called by the M-estimator) in fact has been proven Lo possess certain
minimax properties in P, (Huber 1981),

The reason why the function fo (or Fp) is robust when there are
only a small number of outliers is that, with a probability about or less
than 1 - ¢, the residual lx - 8] will be less than or equal to a, for this
major part of residuals the M-estimator behaves much like the least-
Squares estimator as demanded, and with a probability about or perhaps
less than ¢, the residual lx - 8] will be larger than 4. To gain
robustness, this minor part of residuals are also taken care of by the M-
estimator. To see it clearly, we should point out that the unknown
outlier process is modeled as the standard normal process by the least-
squares estimator, i.e., hix) = ¢(x), or as the process whose probability

density A(x) equals zero as |x] <aor
= 2 2
L E[exp(f——aiﬁ)—exp(—f—ﬂ asld > q
e/2n 2 2
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by the M-estimator. Ag seen, the important fact that the magnitude of
an outlier residual is more likely larger than the magnitude of a
nonoutlier residual is fully neglected by the least squares estimator,
which produces a nonrobust estimate. The same fact is more or less
reflected in the construction of the M-estimator. In fact, the possibility
of an outlier having a residual magnitude being less than or equal to g
is completely excluded by the M-estimator, From the previous
expression, for A(x), it is easy to verify that the probability density
function of outliers has only two modes, approximately peaking around

+ fi'z_ﬂ_ﬁ and flattens as residual magnitudes go beyond

a+ 52,3
8

The reason why the function Jfo cannot render high robustness
is that the robust control parameter g is tied to the outlier proportion

parameter € and approaches zero as ¢ tends to 1. That means when the
outlier proportion € becomes larger, all nonoutlier residuals ought to be
smaller to comply with the M-estimator, If the nonoutlier residuals do

not become smaller correspondingly, some or even all of them will be
treated as outliers by the M-estimator and the contained information
which is useful for location estimation thus lost as a result, This often
leading to bad estimates. Things become even worse when a limited
sample size is used in the estimation process since the M-estimator
cannot recognize e¢nough nonoutliers necessary for a reasonably good
estimate.

It seems, if we model each possible distribution function F in the
neighborhood P,(®) by using a single fixed robust distribution function,
a high robustness will never be possible. In the paper, we attempt to fit
the most likely values to each unknown foreign probability density
function at the observed data individually instead of completely modeling
each unknown foreign probability density function. Specifically, we will
use more heuristic reasoning rather than purely mathematical reasoning.
In fact, we will combine the Bayes statistical decision rule with a number
of deeply explored heuristic considerations and turn the general robust
regression problem into a mode| fitting problem, which is not only more
flexible but also more tractable,

2.2 Partially Modeling 1og Likelihood Function Using Heuristics

Assume that p unknown parameters 6, .. Ep, shortened as the
vector 4, are to be estimated from N observations y;, ... Y cach of
which is a m-dimensional vector. Assumefy 1R, —> Rk =1, ., N,
Let r, be the residual between Y and fi(8), ie, r, = Yo = [ (0).
Furthermore, assume each single observation Y with probability 1 - € is
a "good" one, i.e., not an outlier, and with probability ¢, is a "bad" one,
ie., an outlier, where < € < L. In the former case, the residual r is
Gaussian distributed with zero mean and an unknown covariance matrix

11, in the latter obeys an unknown foreign distribution, All r's are
independent, identically distributed with the common probability density
function f, namely

Sy =

18 i +eh(ry) (1)

Ir
exp | -——
(/Zro) 20?
where # is unknown, Thus, the log likelihood function of observing Yo

- YN conditioned op Bg; by 0, € h(r), .., h(ry) are expressed by O
as follows,

Q - IOg P(}’p " Yy I 8;: "y Bp,o,e,h(rl), "y h(ry))
- log JT Py, | 0,5 0, 0,,0,e,h(r,)
k

(2)

;log P(yi' | 613 y epxosezh(rk))

- Xk: log Arp



which, when combined with (1), comprises the first model assumption.
To be successful in gaining high robustness, we need to further explore
possible Heuristics implicit in the regression problem instead of hurrying
in maximizing the log likelihood function Q.

According to (1), the probability of the observation y, being a
nonoutlier conditioned on 6, o, €, A(r,) is given by A

Ir P

20?2

1-e

S . 3)
f2xo)”

A ex|

[ frp

Using the Bayes Statistical decision rule, we can classify the observation
i as a nonoutlier if A, > 0.5 or an outlier otherwise. Let G denote the
indices of "good" observations and B the indices of "bad" observations,
where

G- fk: A, > 05

(4)
B-{k:Ai, <05
The second model assumption consists of the following heuristic
condition:

)

where # represents "the number of",

To obtain a reliable estimation, a minimum of "good"
observations are demanded. The minimum number, denoted as L, is
very problem-dependent and can be experimentally or theoretically
determined. The results will no longer be reliable when #G drops below
L. Thus, for the third model assumption we use the following heuristic
condition

#G> L (6)

The fourth model assumption states that all (r) could be taken

as equal, namely

h(rt) = 6: k b 17 “ N (7)

It comes from the heuristic consideration that for two different
tfbservations the one with a smaller residual magnitude should be more
likely a nonoutlier than the other one. It means the partition {G,B}
ought to have the following property:

-max {0 : k€G } < min {IrJ : keB}  (8)
‘Let
] 1-e I
& = min exXpl-——— | k€ G
W2r o)™ 202 ¢

; €)

 — l-e o !|r,cﬂ1
Xp |—|:k€R
(2mo)m 202
Then, it holds that

g>b (10)
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which indicates that the partition {G, B} can be equally well defined by

_ Ir P
G=-\k: 1-¢ ex: klz > e
(V2rao)™ 20 (11)
- Ir P
B =1k 1-¢ S < eb

} ———— exp
(‘/2_1:0)"‘ 202

where § can be an arbitrary number in the interval %[b,g]. This means
that the choice of § can be quite broad. This observation will play an
important role in our algorithmic development.

Let the fitting error of detected nonoutliers be defined by
max{ || 7, || : ¥ € G} and the distance of detected outliers from detected
nonoutliers can be defined by min{ ||, | : k¥ € B} - max{ ||, || : k€ G}.
For each set of parameters {f, .... 6,, 7, €, §}, a partition {G,B} of {1,
.., N} can be generated by (4). "It is reasonable to scarch for a
parameter set having the least possible fitting error and the largest
possible distance. This requirement will amount to minimizing the
following cost function:

#B 1

?minr - max ||r
in 7] - max 7]

#G
C(G,B) = T max | rf + (12)

The minimal cost requirement comprises the last heuristic condition,
namely,

(13)

Now the general robust regression problem can be stated as
finding the parameter set {f, ... 85 0, €, §} through maximizing the log
likelihood function of the model which is partially modeled by basic
assumptions consisting of (1)-(2), (4)-(5), (6), (7), and (13). That is,

C(G,B) - min

max Q(ep"':eps 01625)

1-¢
= ) logl—— exp
E (Y2ra)™

subject to

#G > L

#G = (LN (14)

C(G,B) = min

where conditions (1)-(2) and (7) have been included in the model log
likelihood function Q, and L is a problem dependent number to be
experimentally or theoretically determined.

As clearly seen, combining the Bayes statistical decision rule
with a number of heuristic considerations has turned the general robust
regression problem into a more appropriate model fitting problem. The
algorithm developed thereof is called by the name MF-estimator.

23 Discussion

The M-estimator, the L-estimator and R-estimator are all
residual based, the MF-estimator is no exception. Assume m = 1 (i.e.,
1-dimensional case) and that the true parameters are 6, .... 6 forming
N true residuals, r, = y, - fi(6;, s GP), k =1, .., N. Suppose those N
residuals can be distinctively divided into two groups, the nonoutlier set
G and the outlier set B, so that each residual in G is small in magnitude
and much smaller than each residual in magnitude in B. To use the M-
estimator effectively, the following three conditions must be satisfied:



#G < (1- €)N or #B < eN

{n | < a, r, distributed around zero if k € G

a

v a? :
[rel > a, r, distributed around + +80r beyond if k € B

Suppose we add more outliers into B but leave G alone so that the two
sets, G and newly formed B, can still be distinctively divided as before.
Then the second condition will not hold any more since the number of
outliers becoming larger leads to a —> 0. Comparatively, adding more
qualified outliers will not influence the effective use of the MF-estimator.
The following two conditions are necessary for a good use of the M-
estimator, the L-estimator, the R-estimator and are sufficient for good
use of the MF-estimator:

L A large number of qualified nonoutliers permitting a
satisfactory nonlinear least-squares fitting;

2. Qualified outliers are far from nonoutliers based on the
residual consideration.

Unlike the M-estimator, which uses single probability density
function to model all possible unknown outlier probability densities, the
MF-estimator only assumes that /(r,) are equally valued. It does not
assume which value they should take, nor about the whole shape of h(.).
From residual based consideration, the assumption of all h(r,) being
equally valued is reasonable, especially when only a limited sample size
is allowable as is the case in many computer vision problems.

From a practical point of view, however, it is hard to guarantee
that observed or processed data have a large enough distance between
outliers and nonoutlicrs. Therefore, in order for the proposed MF-
estimator to be useful, this problem must be solved. In other words, the
second condition stated as above must be removed from a proposed MF-
estimator. This and other issues will be talked over in Section 4.

24 MF-Estimator

In this subsection we will show how to solve the model fitting
problem, ie. (14). As a matter of fact, what we really need is to
maximize Q w.rt. 0, o, €, § subject to #G = (1-€)N. As will be seen,
it's quite simple to include condition (6), ie. #G > L, in the MF-
estimator. As for condition (13), i.e., C(G,B) = min, it will be reached
through only a few trials for the initial value of §. That is because there
exists a whole interval instead of a-single value for a good workable
choice of §, as stated before.

To maximize Q subject to #G = (1 - €)N, we basically follow

the gradient-ascent rule. The partial derivatives of Qwrt. 8, .., ﬂp,
o, €, § are as follows,
aQ 1 o .
—= = = Y Arn—, i-l, .., 15
2. o2 ; ;J'kaer p (15)
82 . UL spp
ke A 74 I = A 16
oo 0{62 zk: i k mzt: k (16)
aQ N-A A 17
= - = - = where A - A (17)
de € l-e Zk: 5
Q _ N-2 (18)
ad &

We then define the location step, the scale step, and the distribution step
to determine 6, ..., ﬂp, 7, €, 6 respectively, from the n-th to the (n+1)-th
iterative step, as follows,

The Location Step. Because of (15), to assure

8Q, 0
2. 50862

i i

it is necessary to have

X b [E %Ae,] s 0,
i i

which is satisfied if there holds

Ag, - (ifi %JAB, k-1, .., N (19)
30, ,

% . A

ey

38,’ a0,
X=|+ ~ (20)
%, = a9,

If the singular value decomposition of X is
X - UWV 21)

where U = I, VV = VI = I_and W = diag [0, .., 02]), then the
P 1 p
least-squares soﬁnion to (19) is given by

Af= VW'le(/\]pr ) AN""N)‘ (22)

The Scale Step. Because of (16), we simply define the value of
o at the (n+1)-th iterative step as follows,

o? - -isz T (23)
my

The Distribution Step. First, we consider how to make a
meaningful change of the outlier proportion, i.e., e. This is quite simple.
The change of ¢ from the n-th step to the (n+1)-th step should be made

g
sothat — > 0 and0 < ¢ + Ae¢ < 1.

90

We need only to set

. 1(N-4 A
-0, i — —_— < - ;
: 7 ( € I—e) %2
Ae- . 1(N-A 2 (24)
e, (1-e), if — -2 | > ;
1(1-8) fN[ e le) 2
0, otherwise.

because of (17), where 0 < gy, 05 < L

To make a meaningful change of §, however, we need not only
to take care of

Hper 35 5 0
% a6



and
3+ A8 >0

but also to reinforce the heuristic condition #G = (1 - €)N, (see (14)).
As pointed out before, for each set of parameter trial values, a partition
{G.B} defined by (4) can be calculated. Suppose #G > (1 - €)N with
the current trial value of € and calculated G. That means the outliers
. are estimated to be lower than needed. To correct the unbalancing, we

need only to increase €§. If the change of ¢ has already been determined
as positive previously, we leave § alone. Otherwise, we need to increase
6. Similarly, when #G < (1 - €)N and Ae>0, we need to decrease §.
Combining these ideas with the requirements that

a—QAu@Aa >0
de 98
and

5 + A8 >0

together, we set

#G

5, if > 1+ oy and Ae < (0
(1-e)N

A = 25

G (25)

-6, if < I- @y and Ae > 0.
(1-e)N

with

i %s (N-L A
t = min {a,, —--——|Agy,
{‘N—A( c l—e) e}

0<apa, o, <L

All Ay, 2, 1, X, ete. in (20)-(25) are caleulated using the trial
values for 6, o, ¢, § at the n-th iterative step.

y Up to now, three of the five heuristic conditions have been taken
care of in the algorithmic development. These are (1)-(2), (4)-(5), and
(7). It is time to include condition (6) and condition (13) in our
algorithmic development. We can simply summarize the MF-estimator
as follows:

Step 1. Chose an initial approximation: §°, o, €°, §°,

Step 2. Tterate. Given the estimation: 67, o°, €" and §" at the
g;il; gst(cz%)f:(oz?)}?ute the change Af, Ao, A, and A§ by

Step 3. After convergence, compute the corresponding
partition and cost, i.e., C(G,B).

Stepd. If #G > L and C(G>B) < ¢, where ¢ is a

prespecified, small cost bound, then go to step 7.

£ Step 5. If #G < I, then the appropriate initial value of §,

3 which leads to the most preferable partition {G,B}
}vith #G > L and C(G,B) = min cannot g0 beyond the
interval (0,6°) and thus will be found by using the
golden bisection technique to the interval (0,60) while
following steps 2-3. Go to step 7.

Step 6. 6" <250 and 20 to step 2.

Step 7. Reest:ima[c the parameters 6, ..., 8, by iteratively
applying the nonlinear least-squares method to the
good observation data, ie, G, to increase the
estimation precision, Stop.
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3. Simplest Location Estimation

To prove the MF-Estimator possesses a high robustness, we are
to conduct experiments with the simplest location estimation,

Suppose there are N one-dimensional observations, xy, ..., Xy, 0n
a location parameter #. The observations are independent with common
density function f(x --f) which is modeled by
l1-e
ﬁx) PO i

exp[—ﬁ] + eh(x)
V2 Z

where A(x} is unknown. To estimate the location 8, we use both the M-
estimator and the MF-estimator.

The location parameter f is randomly selected. The N - M
random numbers from N(0,1) are generated and added to § to form N -
M good observations about §. The remaining M observations are
supposed to form outliers. They are randomly generated, for instance,
from a uniform distribution, under the condition that each of them keeps
a certain distance from #. In our experiments, the outlier residual
magnitudes are managed as being larger than one. All nonoutlier
residual magnitudes do not go beyond 2 0.707 with the
probability 95%. Thus the outlier residuals and nonoutlier residuals are
"distinctively" divided.

The experimental results with hundreds of thousand trials,
convincingly show that the MF-estimator performs much better than the
M-estimator. For a sample size N = 10, 20, 30, the largest possible
outlier proportion which can be reached, is € = 0.5, 0.5, 0.5, respectively,
by the M-estimator, or € = 0.9, 0.9, 0.93, respectively, by the MF-
estimator. For the MF-estimator, only two good points or observations
are needed in order to get an accurate location estimate no matter how
many outliers occur.

4. Conclusion

A highly robust estimator called the MF-estimator has been
discussed. It's comparison with the classical M-estimator in the simplest
location estimation case seems to be promising. The superior
performance of the MF-estimator has also been proven in many other
application topics such as automatic selection of multiple thresholds,
multiple motions from a mixture point corresponding data, optic flow-
multiple motions, multiple views-multiple motions, and so forth. We will
present those results in separate papers in the near future. However,
more theoretical and experimental work remains to be done. There are
at least two major problems remaining to be solved. They are:

1. How to relieve the requirement for good initial
approximation in order for the MF-estimator to work?

2. How to remove the distance condition which guarantees that
outliers and nonoutliers can be distinctively divided in order
for the MF-estimator to be practically useful?

To relieve the requirement for good initial approximation, we
must realize that it is actually a problem related to global optimization.
It is common to be trapped in local maxima (or local minima), while
following the gradient-ascent (or gradient-descent) rule. To be initial-
value independent or avoid being trapped in local extrema, we must not
strictly observe the gradient-ascent (or gradient-descent) rule for
maximization (or minimization), very much like the stochastic search rule
used in Boltzmann machine to find the global minimum of an energy
function.  To directly satisfy the requirement for good initial
approximate, we must use knowledge about parameter space to be
scarched in order to have an efficient search.



To solve the distance problem, we should divide the whole set
of residuals into three sets: a good one, a bad one, and a fuzzy one.
The good one will contribute to least-squares parameter estimation, the
bad one will have a far enough distance from the good one (that is why
it is called bad) and thus not prevent the good one from least-squares
parameter estimation. The fuzzy one has neither a far enough distance
from the good one nor small enough residuals. Thus, this one will cause
the good one to do least-squares parameter estimation. This gives us a
hint to shut down the participation of the fuzzy one in robust estimation
process.

Those and others comprised are further researched,
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