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Abstract
This paper discusses (1) the method by which we have robustified the exterior
orientation algorithm to eliminate outliers and (2) our method for analyzing the per-
formance of the algorithm. Several experimental results are presented to illustrate
the efficacy of the proposed techniques.

1 Introduction

In the problem of exterior orientation, we seek to recover the position and orientation of
the camera, given a set of corresponding fixed 3D model points and noisy observed 2D
perspective projection image points. Algorithms for solving this problem differ in their
parameterization of the rotation matrix. Older algorithms used Euler angles, while more
recent algorithms use quaternions. We use an algorithm based on the quaternion repre-
sentation. It has been fully described elsewhere (Hinsken, 1988; Haralick and Shapiro,
1991).

If some of the corresponding model and image point pairs are not correct, the standard
least-squares exterior orientation algorithm will fail. In the next section, we describe the
method by which we make the standard least-squares algorithm robust. In section 3, we
show the results of some experiments that verify the efficacy of the proposed technique.

We then consider the following scenario. We are given a number of corresponding
sets of model and image points. For each set of points, the measurement noise on the
image points is considered to be i.i.d. from a N(0,0?) distribution. However, o7 is not
guaranteed to be the same for each set. Under these conditions, and given a limit on
the allowable rotation error, we show how the false alarm and misdetection rate of a
classification task associated with this performance requirement varies as a function of
the setting of a threshold on a particular test statistic. Section 4 sets up this problem
and Section 5 shows the results of our experiments. Finally, in Section 6 we give a few
concluding comments.

2 Robustifying Exterior Orientation
First, let us establish some notation. On the variables which follow, we use no superscript

to denote known or fixed quantities, the tilde superscript to denote observed quantities,
and the hat superscript to denote estimated or fitted quantities.
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So, let (2, Yny Zn); (Pny Gny 9n), 20d (Un, vs) be the true coordinates of the n™ point in
model, camera, and perspective projection image coordinates, respectively. The relation-
ship between (Zn,Yn, 2n) and (un,v,) is given in two parts. The first part consists of a
transformation to camera coordinates

Pn Tn — To
gn | = R(ﬂ., b,C, d) Yn— Yo |, (I)
35 Zn — 2p

where R(a, b, ¢, d) is a rotation matrix parameterized by a quaternion with components
(a,b,¢,d) and (zo, yo, 20) is the camera position in model coordinates. The second part
consists of a perspective projection onto the image

() =L(%). ®

where f is the focal length. The observed image position is related to the ideal image

position by
lin _ [ Un AT
(&)= (o) + (o) (3)

where Au,, and Awv, are considered to be independent zero-mean Gaussian random vari-
ables with variance o2 if the n'* point is not an outlier.
The exterior orientation problem may be stated as follows. Given

Tn

& B
(ﬁ“), ¥Yn | n=1,...,N (4)

T

determine the vector ®' = (&, 9o, %0, &, b, &, d) which minimizes
N
€2 — an((ﬂ'n = ﬂn]z + (ﬁn T ﬁn)z) (5)
n=1

where w, are weights such that w, > 0 and Y%, w,, = N, and (i, 9,) are the projections
of the model points.

Usually, all the weights are taken as unity and the nonlinear regression problem is
solved by iteratively linearizing the model about the current estimated vector of pa-
rameters, solving for corrections to the parameters, forming the new parameter vector,
relinearizing, etc.. In the exterior orientation problem, an initial guess for the vector
of parameters can be obtained from 3 matching point pairs using a 3-point perspective
projection algorithm (Haralick et. al., 1991). Estimation of the corrections and determi-
nation of the final covariance matrix of the parameters follows the standard Gauss-Markov
model (see, for example, Koch, 1988).

If some of the corresponding point pairs are incorrect, the standard equally weighted
least squares (EWLS) technique is known to produce poor results (Haralick et. al., 1989).
In our robust technique, we reweight each point after each iteration of the procedure.
After iteration k, we have the fitted values (%, 9%) and the residual

n''n
Lk o ik
el =l g2t -
By, vy
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In order to determine the new weight for point n, we first determine its robust Ma-
halanobis distance. Given a set {z,,...,zx} of points with sample average Z and sample
covariance S (assumed to be positive-definite), the Mahalanobis distance of any point n
from the average Z is defined as (Seber, 1984)

M = (T — £)'S~ Yz, — )3,

We have used the projection algorithm described in Rousseeuw and van Zomeren (1990)
to obtain approximate robust distances. It is also possible, of course, to estimate these
distances directly if robust estimates of multivariate mean and covariance are available.

Let M = (mi,...,m}) be the set of all univariate distances, This set should be
distributed as x3. If a random variable [ is distributed as X3, then we know (Abramowitz
and Stegun, 1972) that

Pr{l <9.21} = 0.99,

From each m}, we calculate the new weight as follows
my 2 ;
iy sl P (——2'1) , ifm?2 S 9.21;
0, otherwise,

This reweighting function was proposed by Krarup (see Férstner, 1989).

After determining the weights, they are normalized to sum to N. Notice that this
procedure rejects some residuals as outliers. After the optimization procedure converges,
all points having zero-weight are assume to be outliers and the least-squares analysis
described above is performed by subtracting from N the appropriate number of outlier
points.

In summary, the complete iteratively-rewcighted least-squares procedure is as follows

(1) Get initial guess ©*. For all n, set w, 1.

(2) Form residuals r,, and determine the squared error 2,

(3) Determine univariate squared Mahalanobis distances mZ.

(4) Determine weights w,.

(5) Using weights, determine A®, the correction to the current parameter vector.
(6) Determine new residuals r,, and new €.

(7) If a fixed number of iterations is reached or if the new €? is greater than the old €2,
stop. Otherwise, go to (3).

3 Experimental Protocol and Results

In our experiments, we were concerned with the accuracy of the rotation estimate, The

true quaternion @ = (a,b,¢,d) and estimated quaternion Q = (a,b,¢, d) are both unit
vectors. The rotation error measure we used to describe their difference was e — log(1 —
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Average Log Rotation Error vs. SNR
SNR Non-Robust Without Outliers Robust With Outliers
NG=25 [ NG=22 | NG=18 [ NG=14 | NG=25 | NG=22 | NG=18 | NG=14
80 -9.15 -9.05 -8.91 -8.70 -9.06 -8.99 -8.87 -8.68
70 -8.15 -8.05 -7.91 -7.70 -8.06 -7.98 -7.87 -7.68
60 -7.15 -7.05 -6.91 -6.70 -7.06 -6.98 -6.87 -6.68
50 -6.15 -6.05 -5.91 -5.70 -6.06 -5.98 -5.87 -5.68

Table 1: The average log-rotation error vs. SNR for various amounts of outliers using the
equally-weighted least-squares (EWLS) technique with outliers removed and the robust
least-squares (RLS) technique with outliers included. NG is the number of good data
points. For the robust technique, the total number of data points was 25.

Q- Q). Since a rotation may be represented as a point on the unit sphere $3 in 4D space,
we could have used arc distance on the spherc as the error criterion. The distance we
chose is easier to compute.

In our experiments, the number of image points was fixed at 25 and spread evenly
over & 5 X 5 grid covering the unit square [—1,1] x [—1,1]. The configuration was fixed
throughout the experiments. The focal length was set to give a field of view of 72
radians. The signal-to-noise ratio (SNR) was defined as —20log;,( "3), where § = 2 is
the image sidelength. Thus, the SNR determines the noise variance o?. OQutliers were
generated by replacing an image point chosen at random by another point sampled from
a uniform [~1,1] x [-1,1] distribution. For each trial, we determine the corresponding
set of points in camera coordinates by backprojecting each image point by an amount
uniformly distributed over the range [10, 30]. The location of each coordinate of the origin
of the world coordinate system given in camera coordinates is also generated uniformly
in the range [10,30]. A random rotation is generated by rotating each axis by a random
amount generated uniformly over the range [0,7]. Given the rotation matrix, it is then
possible to determine the location of the camera in the coordinates of the object system.
The quaternion representing the rotation was obtained from the rotation matrix.

To test the ability of the algorithm to reject outliers, we tested the performance of the
equally-weighted least-squares algorithm with outliers removed against the performance of
the robust algorithm without the outliers removed, We set the percentage of outliers (PO)
to be one of {0,15,30,45} and the signal-to-noise ratio SNR to be one of {50, 60, 70, 80}.
For each setting of PO and SNR, we ran 1000 trials. We then compared the average
rotation error e obtained using both the equally-weighted least-squares algorithm (with
outliers removed) and the robust least-squares algorithm with outliers. We also compared
the average estimated SNR to the true SNR using both algorithms. Tables 1 and 2 show
these results, respectively. The similarity of performance of the 2 algorithms confirms
that we were able to reject the outliers using the proposed technique.
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Average Estimated SNR in dB vs. Number of Good Points
NG | Non-Robust Without Qutliers Robust With Outliers
80dB | 70dB |60dB |[50dB |[80dB [70dB | 60dB | 50dB
25 | 80.099 | 70.099 | 60.099 | 50.099 | 79.906 | 69.900 | 59.886 | 49.899
22 | 80.099 | 70.099 | 60.099 | 50.099 | 79.909 | 69.915 | 59.915 | 49.909
18 | 80.128 | 70.128 | 60.128 | 50.128 | 80.044 | 70.000 | 59.995 | 49.041
14 | 80.174 | 70.174 | 60.174 | 50.174 | 80.137 | 70.135 | 60.143 | 50.154

Table 2: The average estimated SNR in dB vs. the number of good data points using
both the equally-weighted least-squares (EWLS) technique with outliers removed and the
robust least-squares (RLS) technique with outliers included. NG is the number of good
data points. For the robust technique, the total number of data points was 25.

4 Performance Criterion

We envision a scenario where there is a performance criterion on the estimated quaternion
Q= (&, b, é,dj. For example, a manufacturer may desire that the error between the
true quaternion and the estimated quaternion not exceed some threshold value. In this
environment, we assume that the noise which perturbs the measured image point positions
is i.i.d. within each image, but may vary between images.

The algorithm does not know @, the true quaternion, but must decide whether the er-
ror e = log(1-Q- Q) between the true and estimated quaternions exceeds some threshold.
We use the statistic ¢ = log(Var(a) + Var(b) + Var()) to make this determination. (Since
the quaternion has only 3 degrees of freedom, we only estimate corrections to &*, b* &
during each iteration k and thus only use the estimated variance of these components.)

5 Experimental Protocol and Results

In this set of experiments, the corresponding model and image points were generated as
before. In this case, no outliers were added to the data and the signal-to-noise ratio SNR
was generated uniformly over the range [50,90]. Over 1000 trials, we tabulated t vs. e,
where t and e are the test statistic and error measure described above, respectively. We
then formed the joint cumulative distribution of e and ¢ by first constructing a table with
grid points {eo,...,e4}, and {to,...,t5},s0that ep < ey < - <eqandtg <ty < --- <
tp, where €g = €min, €4 = €max, t0 = tmin, and t5 = tmax. Bach bin (es,t;) in the table
contained the count {#(e,t)|e < e;,t < 1;}.

As mentioned above, we assume that the user desires that e is below some threshold
€. If the true e is above this threshold, the performance criterion is not met. If it is
below this threshold, the performance criterion is met. In practice, the program does not
know e. It only knows t. Thus, the program decides whether the performance criterion
is met by setting a threshold ¢, on t. Thus, for any combination of thresholds ey, and
i We can estimate the false alarm and misdetection rates of the algorithm. The false
alarm (FA) rate is the probability that when the performance is met, the program says it
is not. The misdetection (MD) rate is the probability that when the performance is not
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met, the program says it is. Letting, N; = {#(e,t)|e < e, t < tinr}, Nz = {#(e,t)le <
Ethrs b > tgh,}, N; = {#(e,t)|e > eyt < tthr}, and Ny = {#(e,t)le > €thr, L > tthr}- we
defined FA by g3y~ and MD by 533, In addition, the error rate is given by 22l

In this set of experiments, we placed a prior on the Gaussian noise that was uniform
on a log scale. This reflects the assumption that although the noise standard deviation
is not known, higher noise standard deviations are less likely than low noise standard
deviations.

Figure 1 illustrates the FA rate versus the MD rate as the performance criterion ey,
is varied from 0.30 to 0.80 of its maximum value obtained over the 1000 trials. When the
SNR is 50 dB, this corresponds to a noise standard deviation of 3¢ & S/100, where S is
the image sidelength. For a 500 x 500 pixel image, this corresponds essentially to bounding
the noise perturbation to plus or minus 5 pixels. If the quaternion were decomposed into
the axis and angle representation of a rotation, and we assumed that the rotation axis
was estimated perfectly, the error criterion we used is related to the error in estimating
the angle of rotation about this axis. Then, assuming the rotation axis to be known,
as the error in degrees between the estimated angle of rotation about the rotation axis
and the true angle of rotation about the rotation axis goes down by a factor of 2, the
log rotation error goes down by approximately 0.6. Figure 1 shows that as long as the
performance requirement is 40% or greater than the maximum obtained over 1000 trials,
the misdetection and false alarm rates can both be kept below 10%.

Each setting of the threshold 2., gives a point on the graph. Figure 2 illustrates the
arror rate versus fy,,. On this graph it is quite clear that by choosing the threshold #y,,
properly, the error rate of the algorithm can be minirnized.

6 Conclusion

in this paper we have shown how the rotation error of the exterior orientation problem
varies as a function of the signal-to-noise ratio. By robustifying the standard equally-
weighted least-squares algorithm, we were able to achieve nearly the same results using
he robust least-squares algorithm with outliers as with the equally-weighted least-squares
ilgorithm with outliers removed. We also saw that if there is a uniform prior placed on
the SNR, it is possible to judiciously choose a criterion threshold for minimizing the error
‘ate of the algorithm for any performance criterion that a user might set.

References

[1] Abramowitz, M. and Stegun, I.A. (1972), “Handbook of Mathematical Functions,”
National Bureau of Standards Applied Mathematics Series 55, Tenth Printing.

[2] Forstner, W. (1989), “Robust Statistical Methods for Computer Vision,” Tutorial
notes.

[3] Haralick, R.M., Joo, H., Lee, C.N., Zhuang, X., Vaidya, V., Kim, M.B. (1989), “Pose
Estimation from Corresponding Point Data,” IEEE Transactions on Systems, Man,
and Cybernetics, Vol. 19, No. 6, pp. 1426-1446.



Misdetection (MD) rate vs. False Alarm (FA) rate

SNR is generated uniformly over [50,90] dB
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Figure 1: The misdetection (MD) rate versus the falsc alarm (FA) rate for different Ethr.
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Error Rate vs. Variance Threshold t_thr
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Figure 2: The error rate versus the variance threshold iy, for different ey,.
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