A RECONFIGURABLE SYSTOLIC NETWORK FOR COMPUTER VISION

Robert M. Haralick

Machine Vision International
325 E. Eisenhower Parkway
Ann Arbor, Michigan, 48104

L Introduction

There are a variety of parallel architectures which
can be used for image processing applications. Among
them are processor arrays such as Iliac I, CLIP4, CLIP7,
DAP, MPP, and GAPP, pipelines such as Cytocomputer,
Genesis, and VAP, multiprocessor systems such as PASM,
POLYP, ZMOB, GOP, PICAP, TOSPICS, DIP, FLIP,
PM4, and pyramid systems. Reviews of these architec-
tures can be found in the papers listed in the reference
section,

There appears to be no use of networks or reconfig-
urable networks for image processing and little discussion
of architectures which are simultaneously suitable for im-
age processing and the rest of computer vision. To cut
short the review of these architecture types we make some
political parallels which have been informally made by
some noted researchers. The array can be likened to a
Fascist dictator leading a march. The pipeline can be
likened to a capitalist assembly line. The pyramid can
be likened to the cell block hierarchy of Communist dic-
tatorships. The multiprocessor systems can be likened to
parliamentary commitees at work. The network can be
likened to political anarchy. And the reconfigurable net-
work just cannot get its act together.

The purpose of this paper is to provide a perspec-
tive by which the act of the reconfigurable network can
be put together. Our viewpoint will be different from the
usual discussions of computer architecture which tend to
concentrate around hardware design issues in a hardware
language, We believe that all viewpoints which map im-
age data onto processors like the arrays and pyramids or
viewpoints which map the specialized tasks onto the dif-
ferent processors like the multiprocessor systems, must of
necessity create specialized and inflexible systems. We be-
lieve that the watchword of computer vision is flexibility.

CH2229-3/85/0000/0507$01.00 © 1985 |EEE

507

There must be the low level vision image in and image
out operations. There must be the mid level vision im-
age in and data structure out operations. There must
be the high level vision data structure in and data struc-
ture out operations. And in any computer vision system
whose purpose is to be economically useful in the facto-
ries of the society in which it functions, there must be
the capability for doing numerical calculations, data for-
matting operations, communication reporting operations,
and communication operations of real time control of ex-
ternal devices such as material handlers and robots. This
suggests that the approach needs to be an integrated one.
To do the design we must step back and understand that
the low level neighborhood operators discussed in today’s
archival literature can be much more complex than the
Roberts and Sobel variety. We must understand that the
manipulation and processing of the high level vision data
structures may be as complex as the symbolic processing
required by artificial intelligence computers.

Within our universe, where can we take a stand so
that our viewpoint can unravel the inherent complexity
of this computer vision question? The required flexibility
suggests that the architecture should be able to naturally
execute algorithms of a general nature. The quantity of
data processed in a computer vision system suggests that
the architecture must be in some sense optimized to spend
a substantial amount of its processing time doing uniform
pixel pushing operations. If it can have high efficiency in
performing a regular pattern of operations on a large data
set, it can afford to have a lower efficiency in performing
less regular operations on small data sets, Or said in an-
other way, the architecture must spend its time performing
a variety of activities. If it can configure itself so that it
has high efficiency for the most computationally intensive
activities, it can afford the overhead required to recon-

figure itself to perform the less computationally intensive

activities. High efficiency for computationally intensive
activities suggests a systolic network. Flexibility suggests
reconfigurability. The combination of the two suggests a
data flow architecture, a reconfigurable systolic network.

To understand what must go into a data flow archi-
tecture we must have a language in which to discuss its
configuration possibilities. Hardware programming lan-
guages and graph description languages are at a too low
level. The interesting thing about the data flow in a sys-
tolic network is that a high level specification of the config-
uration of the network is a specification of the program the
network is executing. This is different from Von Neumann
architectures in which a specification of the architecture
tells nothing about what program is executing. Now low
level specification of a network, or more formally, a graph
having labeled arcs and nodes, has nothing about it which
is sequential or procedural. Likewise, a high level specifi-
cation need not be sequential or procedural. A high level
specification of a network is just a specification of the re-
lations which hold in the network. So specification of the
configuration of a systolic network amounts to specifying
relations and since the specification is the program which
the network executes, the language used to program a sys-
tolic network is a language of relations. The language must
be naturally non-procedural. From a high level perspec-
tive, the semantics of the language essentially describe the
essence of the architecture. Therefore, in the remainder of
the paper we describe the language INSIGHT, a language
in the LUCID family of data flow language (Wadge and
Ashcroft, 1985) which we have developed for the purpose
of data flow architecture specification, and for a language
in which our computer vision algorithms can be written to
execute on such a data flow architecture, an architecture
like a reconfigurable systolic network.

II. INSIGHT Language Specification

II.1 Motivation

All computation can be thought of in terms of gen-
erating simple sequences and transforming and/or com-
bining them. Thus the sequence is the dominant data
object of INSIGHT, the language which defines the config-
uration of the reconfigurable systolic network of the MVI
integrated technology machine and the language whose ex-
pressions are evaluated by the systolic network. INSIGHT
is in the family of LUCID languages.

Mathematically, a sequence is & mapping which asso-
ciates to each natural integer a value. If we let

508

S =< 80,81, 00y 8y 0y >

denote a sequence, then the value of the sequence asso-
ciated with the natural integer O is s, the value of the
sequence associated with the natural integer 1 is s,, and
the value of the sequence associated with the natural in-
teger n is s,. In the systolic network, a sequence is the
discretized time history of any signal line where signal line
can mean an associated group of 8, 16, or 32 wires. The
continuous time history of a signal line is discretized by
the clock ticks. A successive value is generated for the se-
quence at each clock tick. This value may be the previous
value if the computation for the next term has not com-
pleted. Also associated with each signal line is its state
indicating whether the sequence is in active generation
or has terminated. Active sequences are those in which
the concatenation process which constructs the sequence
is still going on. A sequence is inactive after it terminates.
In effect, the continuous time history of a signal line is in-
finite. The sequence’s state, active or terminated, enables
a finite sequence to be extracted from the potentially in-
finite time history or sequence.

The sequence construct of INSIGHT is a precise sym-
bolic representation of any discretized time function ma-
nipulated by the systolic network. An INSIGHT identifier
denoting a sequence is not like a variable in a common
imperative or procedural programming language such as
FORTRAN or C. In the procedural languages the value
of a variable can be thought of as the contents of a par-
ticular memory location. The same variable appearing
in defferent places in the same program may have differ-
ent values. This is undoubtedly the case if it appears on
the left side of an assignment statement more than one
time. In INSIGHT, all occurrences of the same sequence
name designate the same sequence. Or said another way,
the value of each occurrence of the same sequence is the
same, term for term. In INSIGHT, there is no assignment
statement. There is an equals statement which is used to

define a sequence. In INSIGHT, the same sequence name
can only be defined once, that is, it can appear to the left

side of an equal sign only once. The sequence of INSIGHT
can be likened to a variable in motion. The sequence is
the variable’s motion history and not a snapshot of the
variable at any particular moment.

I1.2 Succession

Since all computation can be thought of in terms
of generating simple sequences and transforming and/or
combining them and since the sequence is the basic entity

of INSIGHT, it should come as no surprise that the first
definitions we give of INSIGHT syntax is that for generat-
ing a sequence. To guarantee that our definitions are clear
we will work up to them from a mathematical example and
associated hardware implementation.

Let I =< 1,...48n,... > represent an input sequence
and S =< 8g,..y Ny e > represent an output sequence,
The term &, of the output sequence for our example is
defined as the sum of all the terms of I up to and including
the term 1,,. That is,

n
8y = E e
k=0

=8n—1 + in

In hardware, all sequences are generated by a sequen-
tial machine. The output of a sequential machine is a
function of its current state and current input. The next
state of a sequential machine is a function of its current
state and current input.

The sequential machine hardware which accomplishes
the transformation required in our example consists of two
basic elements: a combinational logic adder, and a sequen-
tial logic delay element whose output is the input delayed
by one time unit. The delay one element is perhaps the
simplest of all sequential machines. Its output is always
its current state. Its next state is always the current in-
put. The two elements are connected as shown in Figure
1 to compute 8&,.

tn 8n

~

Delay

1
fﬂ—J

Figure 1 illustrates a single circuit to compute the running

sum of the input.

The convention used in Figure 1 is that we have
snapped a picture of the state of affairs at time n. Hence
every line has an associated variable name with a subscript
n. Now by the computational meaning of the elements we
can write the following equations:

309

n = 8n—1

8p =l +1p
Upon eliminating the value ¢,, we obtain
8p = 8p_1 + ‘.ﬂ

The required relationship defining the nth term of the se-
quence S. The diagram of Figure 1 can be illustrated
directly using the above equation as shown in Figure 2.
The snapshot of Figure 2 is also taken at time n.

8n—1 8n
ADD -

Delay

1 | _,—’

tn

Figure 2 illustrates a simple circuit computing the running
sum of the input.

Any line having an associated symbol whose subscript is
not n, such as the one labeled s,_;, does not mean that
the time associated with the line is not n. It means that
at time n the value of the line is the value that the line
designed s,, had at time n — 1.

Now the recursive equation
8n = 8p-1 + tn

is equivalent to the equation

only when the initial condition for 8 is specified as
8g = l.o

The hardware correspondence to this fact is clear upon
examining the delay element if Figure 1. To make &g be
equal to 1o through the adder, the output ¢y of the delay
memory at time 0 must have the value 0. Delay memories
have initial values that must be set. A memory with delay
1 has one value to be set. In this case, the initial value of
the delay memory must be set to be 0.

The INSIGHT statement which accomplishes the se-
quence generation of S =< so,..., 8n,..., > needs to con-

tain the initial information that sy = 1y and that the se-
quential generation equation is 8, = s,_; +{,. Because
the sequence is the basic entity of INSIGHT, it would be
more appropriate to define the sequence generation using a
syntax which deals directly with the entity sequence and
not with the nth term of the sequence. INSIGHT does
precisly this.

We begin the INSIGHT expression defining the se-
quence S from the sequence I by first describing the re-
lationship between the sequence T =< toy .e-tny ..y > and
S =< 80y.1.y 8y .oy > of Figure 1. The mathematical rela-
tionship the syntax has to capture is ¢, = 8n—1, to = 0.
The INSIGHT statement which does this is

T=0FOLLOWED BY §

Here T' designates the sequence < tq, ..., fn, ..., >, S desig-
nates the sequence < sq, ..., 8n, ..., >, and 0 designates the
sequence < 0,...,0,...,>. The meaning of the statement is
that T is a sequence whose first term ¢, is the first term of
the sequence 0 and whose remainder terms are the terms
of the sequence S. In other words, insert a 0 in front of the
first term of the S sequence. The result is the T sequence.

The adder of Figure 1 adds the sequences T and I,
term by term to produce the sequence S. INSIGHT ex-
presses this by

S=T+1

Thus the function of the circuit of Figure 1 is completely
described by

T=0FBY S
S=T+1

where we use FBY as an abbrevation for FOLLOWED
BY. The function of the circuit of Figure 1 is also com-
pletely described by

S=T+1

T=0FBY §

The order of the statements appearing in an INSIGHT
clause is not material. INSIGHT is a non-procedural lan-
guage. Its equal sign is the equal sign of algebra. The
semantics of an equals statement is the semantics of the
algebraic relationship of equality.

Now in algebra, any expression equal to a quantity
may be substituted for that quantity in all places where
the quantity appears and there will be no resulting change
in the meaning of the algebraic system. Since the equals of

INSIGHT is the equals of algebra the same substitutability
holds. The sequence T appears in the statement

S=T+7I
The sequence T is defined by the statement
T=0FBY S

Substituting the defining expression the T into the first
statement we obtain the valid INSIGHT statement defin-
ing the sequence S

S=(0FBY S)+1

The definition now appears recursive. It corresponds to

the circuit diagram of Figure 2. We can rewrite the
above statement. The first term of 0 FBY & is 0.

The first term of I we denote by FIRST(I). Hence,
S = FIRST(I) FBY (5 +1).

For our second example, we consider the generation
of the sequence of natural integers I =< 0,1,...,n,..., >.
The recursive equation is #(n) = i(n — 1) + 1 with initial
condition #(0) = 0. The corresponding INSIGHT state-
ment is

I=0FBY I+1

which meang that I is the sequence whose first term can
be obtained as the first term of the sequence 0. The re-
maining terms of the sequence I are obtained by adding
the sequence I to the sequence 1, a sequence all of whose
terms are ones.

For our third example, we consider the generation of
the sequence S defined by the recursive equation

8n =8n_1 +i, * 8n—2, 80 =81 =0

To see how to do this, we first rewrite the recursive equa-
tion as

th = 8n_2

The paralle] INSIGHT statements to this mathematical
expression are

510

S=Q+R
WHERE
Q=0FBY S
R=Is+T
WHERE
T=0FBY S DBY 2

The statement

T=0FBY SDBY 2

means that T is the sequence whose first two terms are
the first two terms of the sequence and whose remaining
terms are those of the sequence S. The statement

Q=0FBY S
is really a short form for the statement
Q=0FBY SDBY 1

Any followed by phrase (FBY) not including a delayed by
(DBY) defaults to a delayed by 1.

The WHERE clauses permit nested definitions. In
the statement
S=@Q+R

both @ and R have not already been defined. The first
W HERE clause defines Q and R. However, R is defined
in terms of T. So the second WHERE clause gives the
required definition for R.

If A and B are sequences, INSIGHT permits the con-
catenation of A with B, A first and B second, by the
statement

S5 =ACONCATENATED WITH B

I1.3 Finite Sequences

In actual practice, the sequences required in compu-
tation are not infinite. They have a definite starting time
and a definite ending time. The sequences are finite. Also,
the generation of any term of a sequence may depend on
terms previous to the current term. To do this, the syntax
of INSIGHT has to be able to express two new concepts.
The first one is a way of specifying how a sequence can
terminate and the second one is a way of coordinating or
time shifting the values of one sequence with respect to
another. To generate only the positive integers up to and

51t

including N in INSIGHT we use the UNTIL condition
phrase in the FBY statements.

I=1FBY I + 1UNTILI=N

To generate the factorial sequence F =< fy, f1,..., fn >
from the integer sequence

Il =<4, in>=<1, 2,.., N>,

we want to express the recursive equation f, = tnfa-1,
initial condition fg = 1.

more naturally written f, = nf,_1 as the recursive equa-

Since t, = n, we could have

tion, but doing so would confuse the distinction between
n which designates which time moment we fix upon and
i, which is the value of the sequence I at time moment n.
The expression i, fn—1 involves the coordination of two se-
quences time shifted with respect to one another. At any
time moment n, the term we want from the sequence F is
the term previous to the current term f,.. The natural IN-
SIGHT syntax expressing fn = infn—1, initial condition
fo=1,is
F=1FBY F + NEXT I

The NEXT I phrase indicates that the term of the I
sequence which mulitplies the terms of the F' sequence is
that term which is one ahead.

In hardware, the active/terminated state for the se-
quence I of the factorial example remains logically true
until immediately after the clock tick associated with the
term i1 which is the last term of the sequence. At this
point it changes to logically false. Since the sequence F is
dominated by the active/terminated line for the sequence
I, the active/terminated line for F is dominated by the
active/terminated line for the sequence I. Hence the ter-
mination of the sequence I forces the termination of the
sequence F. The sequence F' changes to an inactive state

when the sequence I changes to an inactive state.

We have already seen that one way to terminate a
sequence is by the use of the UNTIL condition phrase
which is part of a sequence definition statement. An al-
ternative way to terminate a sequence is by the use of the
AS LONG AS condition phrase. Its key word abbrevia-
tion is ALA. The semantics of the AS LONG AS phrase
is dual to the semantics of the UNTIL phrase. For the
AS LONG AS phrase, a sequence generates (stays in the
active state) until the first clock tick during which the con-
dition of the AS LONG AS phrase becomes false. Then
the sequence terminates and its active state permanently

changes to terminated. In comparison, with the UNTIL
phrase, a sequence generates until the first clock tick dur-
ing which the condition of the until phrase becomes true.

I1.4 Sequence Generation Control

A sequence may be active (not terminated) but its
generation mechanism may not have the next value of the
sequence ready or available by clock tick time. Hence, if
the state of a sequence is active, there are two possibilities:
either the next term of the sequence will be generated by
the next clock tick or the next term of the sequence will
not be generated by the next clock tick. Thus, active
sequences can be in a state active and output ready or
active and output not ready. This can happen for a variety
of reasons. For example, the next term may not be ready
because new inputs to the generating mechanism have not
arrived. Or, the next term may not yet have been accepted
by all the places to which it goes. Finally, it may not be
ready because of INSIGHT conditional control.

I.5 Condition Control

There are three classes of INSIGHT conditional con-
trol. They are selection control, generation control, and
modification control. We begin by describing selection
control. There are two selection control statements:
WHENEV ER and AS SOON AS. The WHENEVER
statement can force the state of a sequence to be active
and output not ready on a user specified condition. For
example suppose B denotes a data sequence and C de-
notes a Boolean control sequence, and the sequence A is
defined by

A=BWHENEVERC

Then at each clock tick time, the term in A has the same
value as the term in B when the term in C is true. Under
these conditions, the state of A will be active and out-
put ready. But should the term in C be false, then the
sequence A will go into the state active and output not
ready. All generation mechanisms for which A is an input
will then not have any input to accept for at the clock
tick at which they would ordinarily have an output value
which would have been computed based on an input from
A, when A is in this state of active and output not ready,
their output sequences will be forced into the state ac-
tive and output not ready. From a computational point
of view, the WHENEV ER statement causes A to be a
subsequence of B selected by the sequence C.

The Boolean sequence C can also be expressed as a
condition. For example, if D and E are sequences, the
INSIGHT permits

512

A=BWHENEVER (D < E).

In this case, the condition sequence is true for all clock
ticks during which the term in D is less than or equal
to the term in E. Operators permitted in the condition
clause include =, #, <, >, <, 2.

The AS SOON AS selection control of INSIGHT is
also a subsequence detection mechanism. It has the form

A=B AS SOON AS C

With the AS SOON AS mechanism, the initial terms of
B are not selected. The first term to be selected from
B is the term for which the AS SOON AS condition
is true. Then it and all subsequent terms are selected.
Hence the sequence A remains in the active and output
not ready state up until the clock tick that the first term
of C becomes true. At that clock tick, the sequence A
changes to the active and output not ready, then even
though the condition C may be true, the sequence A will
go into an active and output not ready state too. If either
sequences B or C are terminated, then the sequence A

becomes terminated.

There are three INSIGHT generation control state-
ments. They are: STALLED BY, SUSPENDED BY,
and CONTINUED BY. The generation control state-
ments work differently than the selection control state-
ments. The selection control accomplished what it had
to do by controlling the state of the sequence. It enables
user selection of one of the states active and output ready
or active and output not ready. This kind of control is
from the output side looking forward. In contrast, the
generation control is from the input side looking back.

Suppose that the sequence B is an input to the gen-
erating mechanism for the sequence A. When B is an
output ready state, the generating mechanism for A can
accept the term from B. It does so by communicating
to the generating mechanism of B “input accepted”. Be-
fore the generating mechanism for B can put B in a state
of active and output ready, it must make sure that its
current output has been accepted by all the generating
mechanisms to which it is connected. Until acceptance
has been received from all these places, B must maintain
an active and output not ready state. INSIGHT genera-
tion control permits a conditional control on the “input

accepted” communication.

Consider the statement

A= B STALLED BY C

If at a clock tick, C has the value false, then sequence
B is not stalled and everything happens normally. The
term in sequence A assumes the value that the term in
sequence B has if sequence B is in a state of active and
output ready. If at this clock tick, sequence B is in a
state of active and output not ready, then sequence A
takes the state active and output not ready. However,
if at a clock tick, C has the value true, then sequence
B is stalled. The generating mechanism for A does not
communicate the message “input accepted”to B so that
the generating mechanism for B stays in a state of waiting
until its current output is accepted in all the places to
which it goes. At this clock tick, sequence A takes the
state active and output not ready.

Just as an INSIGHT sequence has a state, so does
the generation mechanism of the sequence have a state.
The possible states of the generation mechanism are ac-
cepting data input and not accepting data inputs. The
STALLED BY statement is one which sets A’s genera-
tion mechanism to the not accepting data input state when
the condition C is true and sets A’s generation mechanism
state to the accepting input state then condition C is false.

The two other INSIGHT generation control state-
ments are SUSPENDED BY and CONTINUED BY.
The statement

A=B SUSPENDED BY C

puts A's generation mechanism in the state of not accpet-
ing data inputs from B upon the first clock tick that C
takes the value true. The sequence A then takes the state
active and output not ready and the sequence B is stalled
until it is continued. We call the condition of being con-
stantly stalled “suspended”.
mechanism to the state of accepting data inputs INSIGHT

To change A’s generation

uges the statement
A=B CONTINUED BY C

Typically SUSPENDED BY and CONTINUED BY
are used together as in

A= (B SUSPENDED BY C) CONTINUED BY D

Here the next clock tick during which C takes the value
true causes A’s generation mechanism to constantly take
the not accepting data input state. This continues until
the next clock tick during which D takes the value true
causing A’s generation mechanism to constantly take the

513

not accepting data input state. This continues until the
next clock tick during which D takes the value true. At
this clock tick, A’s generation mechanism takes the ac-
cepting data input state.

There are four modification control statements. They
are EXTENDED BY, SUSTAINED BY , PRO-
LONGED BY, and UPON. First we consider

A= B SUSTAINED BY C

This control statement does not control a sequence’s state
or the sequence’s generation mechanism’s state. If during
a clock tick C takes the value false, the term for A takes
the value of the term from B. If during a clock tick C
takes the value true, the term from A takes the value of
the previous term from A.

Next we consider

A=B EXTENDED BY C

This control statement has an action similar to SU/S—
TAINED BY. In SUSTAINED BY, for each clock
tick for which C takes the value true, A takes the previous
value of A. In EXTENDED BY, from the first clock tick
on that C takes the value true, A takes the previous value
of A. For all clock ticks before the first clock tick that C
takes the value true, the term in A takes its value from
the term in B.

Finally, we consider
A=B PROLONGED BY C

This control statement has an action which is a combi-
nation of the SUSTAINED BY and STALLED BY
statements. If during a clock tick C takes the value true,
then the term in A takes the value of the previous term
in A and the generation mechanism of A is put into the
not accepting input data state. If during a clock tick, C
takes the value false, then the generation mechanism of A
is put into the accepting input data state and A takes the
value of the term in B.

The dual to PROLONGED BY is the UPON stat-
ment. The statement

A=B UPON C

is also a combination of the SUSTAINED BY and
STALLED BY statements. If during a clock tick C' takes
the value true, then the generation of mechanism of A is
put into the accepting input data state and the term in A

takes the value of the term in B. If during a clock tick, C
takes the value false, then the term in A takes the value
of the previous term in A and the generation mechanism
of A is put into the not accepting input data state. Thus

A=B UPON C

has exactly the same effect as

A=B PROLONGED BY NOT C

III. BNF INSIGHT Grammar

This is a modified BNF grammar where the symbol
| specifies an alternative and the expression {z} means
zero or more instances of z. Square brackets are really
characters in INSIGHT, not symbols of the grammar.

<program> ::= prog <identifier>(<formals list>) =
<where expression> endprog |
prog <identifier>(<formals list>) <where clause>
endprog |
prog <identifier>() = <expression> endprog |
prog <identifier>() <where clause> endprog
<expression> ::= <constant> |
<identifier> |
<memory expression>
<seqarray expression>
<prefix operator> <expression> |
<expreasion> <infix operator> <expression> |
<if expression> |
<cond expression> |
<function call> |
<where expression> |
<constant> = <numeric constant> |
<boolean constant> |
<binary constant> |
<character constant>
<numeric constant> ::= <integer constant> |
<real constant> |
<extended real constant> |
<pointer constant>
<integer constant> i:= <digit> { <digit> } |
<o-sign> <digit> { <digit> }
<real constant> ::= <integer constant>.{ <digit> } |
<integer constant>.{ <digit> } E <integer constant>
<extended real constant> ::= <integer constant>.{ <digit> } |
<integer constant>.{ <digit> } D <integer constant>
<pointer constant> = <digit> { <digit> }
<boolean constant> ::= true | false
<binary constant> := 0| 1
<character constant> ::= ' <ASCII character> ’
<n-sign> = -
<memory expression> ::= <memory identifier> [<subscript list>]
<memory identifier> ::= <identifier> |
<identifier> [<subscript list>]
<subseript list> <exprission> |
<subseript list>,<expression>
<seqarray expression> ::= <sequence identifier> [<subscript list>]
<sequence identifier> ::= <identifier>
<declaration list> == { <global declaration> ; }

<global declaration> = <scalar type> <scalar idlist> |
<composite type> <composite idlist>

<scalar type> := <constant type> l <sequence type>
<composite type> ::= <memory type> | <seqarray type>

514

<constant type> ::= integer constant | real constant |
boolean constant | pointer constant |
binary constant | extended real constant |
character constant

<sequence type> ::i= integer sequence | real sequence |
boolean sequence | pointer sequence |
binary sequence | extended real sequence |
character sequence

<memory type> ::i= integer memory | real memory |
boolean memory | pointer memory |
binary memory | extended real memory |
character memory

<seqarray type> ::= integer seqarray | real seqarray |

oolean seqarray | pointer seqarray |

binary seqarray | extended real seqarray |
character seqarray

<scalar idlist> ::= <identifier>
<scalar idlist> , <identifier>

<composite idlist> ::= <ident> |
<composite idlist> , <ident>

<ident> ::=<identifier> <dimension declaration>

<dimension declaration> = | <dimlist>]

<dimlist> = <dimspec>
<dimlist> , <dimspec>

<dimspec> ::= <numeric constant> : <numeric constant>

<alphanumeric> ::= <digit> |<letter>

<digit> == 01 |2(3 |4|5 6 (7|8 [0
113K |L)l
VIWIX|Y|Z|

<letter> =MA|L{B|'I§: |¥’J IQE|E|IgA‘H
afble|d]e /Uﬁ b lilj!L It

minfofplq|ris|t|u |v|wﬁx]y |
<identifier> = <letter> { <alphanumeric> }
<prefix operator> ::= <p-numeric operator> |
<p-insight operator> |
<p-logic operator> |
<p-sequence operator>
<p-numeric operator> ::= - |sin |cos |tan sqrt |
abs {log10 |log [isnumber
<p-insight operator> ::= first | previous
<p-logic operator> ::= not
<P-sequence operator> ::= isbegun | isfinished | isactive
<infix operator> = <i-numeric operator> |
<i-insight operator> |
<i-logic operator> |
<i-character operator>
<i-numeric operator> 1= + |- [** |* [div |meod |/ |
tan? [== A= |<=|< o= |>
<i-insight operator> ::= fby |whenever |upon |asa |
attime [ala |[dby |until Hrepea.t |eyele |tfby L
stalby [suspby |contby |extby [sustby |prolby
<i-logic operator> ::= and |or |exor
leq [Ige [lgt |lle {lit |Ine
<i-character operator> ::= lexeq lexge
lexlt |lexle [lexne
<if expression> = if <expression> then <expression> endif |
if g'ef.xpressiou:» then <expression> else <expression>
endi
<cond expression> ::= cond <cbody> endcond
<cbody> = { <expression> : <expression> i } <defaultcase>
<defaultcase> ::= else : <expression>;

<function call> = <identifier> (<actuals list>)

<actuals list> ;1= <expression> |
<expression> , <actuals list>
<where expression> <expression> <where clause>
<where clause> ::= where
arguments <declaration list> }
declare <declaration list> }
relations <wherebody> endwhere

[nand |nor |exnor |

[lexgt |

<wherebody> := <current list>
<function list>
<activity list>
<definitions list>
<current list> = { <current declaration> ; }
<current declaration> 1= <identifier> is current <expression>
<function list> ::= { <function definition> ; }
<activity list> = { activity <identifier>
<definitions list> endactivity ; }
<definitions list> ::= { <definition> ; }

<definition> ::= <identifier definition> |
<memory assignment> |
<iterated definition>

<identifier definition> ::= <identifier> = <expression>
<memory assignment> ;= <memory expression> = expression
<function definition> ::= <identifier>(<formals list>) =
<where expression>
<identifier> (<formals list>) <where clause>

<formals list>.::= <identifier> |
<identifier> , <formals list>

<iterated definition>> ::= foreach <identifier> := <expression> to
<expression> by <expression>
{(Carray definition> | <memory definition>) ; }
endfor

<array definition> ::= <seqarray expression> = <expression>
<memory definition>> ::= <memory identifier> = <expression>

IV. References

8. Yalamanchili, K.V. Palem, L.S. Davis, A.J. Welch, and
J.K. Aggarwal, “Image Processing Architectures: A Tax-
onomy and Survey”, Progress in Pattern Recognition 2,
L.N. Kanal and A. Rosenfeld (Eds.), Elsevier Science Pub-
lishers, B.V. (North Holland), Amsterdam, 1985, pp. 1-37.

B. Kruse, “State-of-the-Art Systems For Pictorial Infor-
mation Processing”, Fundamentals in Computer Vision,
0.D. Faugeras (Ed.), Cambridge University Press, Cam-
bridge, 1983, pp. 425-442.

S.R. Sternberg, “Parallel Architectures For Image Pro-

cessing”, Real-Time/Parallel Computing, M. Onoe, K.

Preston, and A. Rosenfeld (Eds.), Plenum Press, N.Y.,
1981, pp. 347-359.

T.A. Rice and L.H. Jamieson, “Parallel Processing For

Computer Vision”, Integrated Technology For Parallel Im-
age Processing, S. Levialdi (Ed.), Academic Press, Inc.,
London, 1985, pp. 57-78.

W.W. Wadge and E.A. Ashcroft, LUCID: The Dataflow
Programming Language, Academic Press, London, 1984,

515

