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- ON SOME QUICIxLY COMPUTABLE FEATURES FOR TEXTURE

By R. M. Harahch K Shanmucram, L Dinstein -

Abstract. - A set of features for the extré.ction of image te'd:ure is defined. The number
of operations required to compute these features is proportional to the number of resolution
cells on the image. Preliminary work has indicated that these features are helpful in the -
automatic identification of land use categories’ from aerial photography and photomicro-
graphs of reservoir sandstones. In some cases identification accuracy near 90% has been-
obtained. However, because of small sample size hrnltatlons, further work must be done
to verify mese results, :

~ The paper is divided.into three parts. In the first part we discuss image normalization
(a preprocessing function). In the second part we define the textural features a.nd in the
third part we illustrate the apphcatlon of these features on Imatre data :

I. Image Normahzanon. - The data which the sensors or mstruments produce are not
always in the kind of normalized form with which it makes sense to work. For example,
many sensors or measuring instruments produce relative measurements, i.e. the measure- |
ments are correct up to an additive or multiplicative constant. Despite calibration efforts,
this is particularly true for the camera-film-digitizer system which produce the digital

" magnetic tape containing the digitized image. Variations in lighting, lens, film, developer, .
and digitizer all combine to produce a grey tone value which is an unknown but usually .
monotonic transformation of the "true' grey tone value. Under these conditions we would
certainly want two images of the same scene, one image being a grey tone monotonic trans-
formation of the other, to produce the same results from the pattern recognition process.
It is easy to show that normalization by equal probability quantizing guarantees that images
which are monotonic transformations of one another produce the same results. It should be
realized that something is not gained for nothing. The normalization is achieved by sacri-
ficing the detailed grey information. After probability quantizing to 16 levels for example,
an image which originally had 128 grey tones would only have 16 quantized grey tones and if
equal probability quantizing were used, then the histogram of the quantized image would be.
uniform.

A precise statement of the effect of equal probablhty quantlzmg is as follows:

Let X be a random variable with continuous cumulative probability function F Let Q,, the
K level equal probability quantizing function for X be defired by Ql(x) =k if and only if

lub{w | Fx(w) = Kl }<x<1ub{w | Fx(w) = = } .

For any strictly monotonic function g, define the random variable Y by Y = g(X). Let. |
Qq, the K level equal probability quantizing function for Y, be defined by
Q,(y) = k if and only if
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Iub fw| Fy(w) }<y<1ub {wl I‘Y(w) = } .
 The following lemma states.that the equal probability quantization of X proauces a random
variable which is 1dentlcal to the equal probabiliity quantization of Y.

' Lemmas: Q_(Y). ' |

Although the pI‘O%'lblll"V guantizing concept is simple, the application of it to dlgltal »
image can easily give rise to problems since the cumulative probability functior for a digi- .
tized image is not continuous, This implies that it is not usually possible to define a quan~ -
tizing function which will make the grey tone histogram of the quantized image uniform, .
The problem is how to obtain a quantizing function which makes the grey tone histogram of -
the guantized image apprommately umform We have-had reasonable success with the
following algorithm. : -

‘Let X be a non-negative random wvariable with cumulatwe probab111ty function Fy. Let
Q, the K level equal probability quantizing function for X, be defined by Q(x) = k if and only
if Qg S X<, We defineq ,q.,q yee. ,q in an iterative manner. Letq_ = 0. Sunpose :
.1 has been defined. Then et qi be the® smallest number such that ' _

K-k+1 K-k+1
Figure 1 illustrates the equal probability quantizing algorithm.

1-F (q ) A-F_{q -
- : X k- .
"""*‘E]}'““l— Pl ) - Fx(qk)léi—ﬁ% + Fylg ;) 4 F(q) for all real q.

H. Definition of Textural Features. - Other than some work with the Fourier,
Hadamard transforms and the autocorrelation function, there exists little or no theory to
aid in establishing what textural features should consist of. Rather the feature extraction
operation is determined intuitively, rationalized heuristi'cally and justified later pragma-
tically and empirically. _ : :

Let L, ={1,2,... ,N.}and L {1 2,...,N_} be t.he x and y spatial domains and _

X L be the set.of resolution cells. Let G = 1.’l, .++ 3 N_} be the set of possible grey tones..
ggen a digital image I is a function which assigns some grey tone- to e&eh and every resolu—
tion cell; L:L xL+G* _

An essen%lal component -of our conceptual framework of texture are four closely related
matrices from which all of our texture-context features are derived. These matnces are
termed angular nearest neighbor grey tone spatial dependence matrices.

- We assume that the texture-context information in an image I is contained in the
over-all or "average" spatial relationship which the grey tones in image I have to one
another. DMore specifically, we shall assume that this texture-context information is ade-
quately specified by the matrix of relative frequencies Py, with which two neighboring
resolution cells separated by distance d occur on the image, one with grey tone i and the
other with grey tone j {(sce Figure 2). Such matrices of spatial grey tone dependence
frequencies are a function of the angular relatienship between the neighboring resolution
cells as well as a function of the distance between them. TFor angles quantized to 45°
intervals the unnormalized frequencies. are defined by: '

*The spatial domauin Ly x Ly consists of ordercd pairs whose components are row and

column respectively, ‘This convention conforms with the usual two subscript row-column
designation uscd in FORTRAN, :



P(,j, d,0% = #:(o\ 1), {(m,n))e(L_xL_ )J\(L xL Ik-m-o [1-n|=d, (,1)=i, Km,n)=j} . -
P, 5, 4, 45%= #0000, () )E(L \L \(I_}‘-.L Y(k-m=d, 1-n=-d) or (k-m=-d, l-n—d),. -
I(kil) =i, I(m nj)= ]} ' '

P(l, i, d, 90°;~ #{(, 1), (m, n)) € (L XL x(LyXLy )| k-m =d, 1-n=0, Ik, 1)=i, I(m, n)—]]

P(l,],d 135%= £{((k, 1), (m, n)) G(L” xT..x):\(Ly‘cL )l k-in=d, I-n=d) or (k-m=-d, l-n—-—d),

S ST kD=1, Xm,m)=j}
A : '

Note that these matrices are symmetnc-'P(i,j. d, a) = P{j,i; d, a). The distance

metric plmphclt in the above equations can be explicitly defined by ' ’ -
p{(k, 1), (m,n)) = max{|k-m], |I-n{}. %. -

Consider Figure 3-a, which represents a 4 X 4 1marfe 'wlth four grey tones, ranging
from 0 to 3. TFigure 3-b shows the general form of any grey tone spatial dependence
matrix. For example, the element in the (2,1)-st position of the distance 1 horizontal P
matrix is the total number of times two grey tones of value 2 and 1 occurred ho_rizontally'

adjacent to each other. To determine this number, we count the number of pairs of resolu- -

" tion cells in R,, such that the first resolution cell of the pair has grey tone 2 and the second -
resolution cellHox the pair has grey tone 1. .In figures 3-c¢ through 3-f we calculate all four
distance 1 grey tone spatial dependence matrices. The appropnate frequency to proba— '
bility normalization for these matrices can be easily computed. -

 From each of these four ncrmalized angular nearest neighbor grey tone spatlal depen-
dence matrices at each distance we define the following te*{tural features:
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Features 1:1 and to essentially measures homogeneity. The more homoreneous the
character of the grey ‘tone transition cn the image, the larger t; will be and the smaller t
will be. The greater the heterogencity, the smallerty will be and the larger t, will be.
Feature tq can be casily recognized as the correlation and it measures the hnear depen=
dence of the neighboring grey tones. Feature t, measures the extent to which the same or
similar grey tones tend to be neighbors. I‘eatulc t- measures homogeneity of contrast, the
extent to which grey tones of the same contrast tcn(]) to be neighhors.



Fezturcs of tho =ame kind and of 1 fforont ancles can be used together by obtaining-
theix average, range, or standard deviation. Information in the range or standard dcvmhcm o
tells about patterns having angular oriertation preferences in the image. Small ranges or =~ |
deviations indicate no angular preference, high ranges or deviations indicate strong anﬂular
preference, | B o o

118 Apphcahon of Te!d:ural Features. - The first application we illustrate is the use

of textural featurcs to neI}, distinguish between photomicrographs of different kinds of
reservoir rocks., The analysis of reservoir rock pore structure is important to geologists -
and petroleum engineers who are interested in obtaining a series of numerical descriptors
of features which statistically describe porous media, These features are useful for the
correlation and prediction of the physical properties of porous media including porosity,
specific permeability and formation factor. - -

To explain the interpretation of some of the suggested textural features, let us consider
the kinds of values they take on different kinds of porous rocks., Figure 4 shows two types
of images and the values of textural features t; and t3. The Dexter sandstone image has -

a smaller number of distinct grey tone transitions compared to the Upper Muddy sandstone
image. In this respect, Dexter sandstone is more homogeneous than Upper Muddy sand-
stone. Hence the nearest neighbor grey tone spatial dependence matrix for the Dexter
sandstone will have fewer entries of large magnitude and the nearest neighbor grey tone
spatial dependence matrix for the Upper Muddy sandstone will have a large number of small -
entries. Feature t has a .smaller value for the Upper Muddy sandstone than for the Dexter
sandstone. -

The grain structure for the Dexture sandstone is more organized than the grain struc--
ture of the Upper Muddy sandstone. This ‘organization implies that given the grey tone in
any resolution cell, there is a higher probability of predicting (using a linear function) the
grey tone in a neighboring resolution cell. This leads to a higher value for feature t

In reference 1 an identification experiment was performed using 4 kinds of sandstone,
the average and range of features t; and t, at distance 1 and the average and range of
feature t; at distance 2, Linear discriminant functions were obtained using 84 training
samples. A different test set of 60 samples was then processed, Over 88% of the test
samples were correctly identified.

A second application we illustrate is the use of textural features to help distinguish
between terrain iand use categories on black and white aerial photography. This earth
resource application is important in automatically making land use maps. Figure 5a illus-
trates a typical example of each one of fourteen land use categories: still water, heavily
wooded, scrub, polluted water, marsh, turbulent water, single road, orchard, double road,

swamp, railroad yard, residential without trees, urban, residential with trees. The digi-
tized images are ordered according to their feature values t,. Notice that as the imagery
becomes more heterogeneous and complex, feature value t, gets larger. Figure 5b illus-
trates the ranges each of these categories takes for featurc t;. These ranges were obtained
from a small set consisting of six samples for each category “with the exception of still
water which had twelve samples and residential with trees which had eight samples, Some
of the categories look quite alike such as marsh and turbulent water or scrub znd heavily
wooded and other categories such as road or turbulent water had a wide range of appear-
ance. In fact photointerpreters working from the digitized images could not do better than
correctly identify 107 o[ the images. Working from the original aerial photographs they
correctly identified 75%; of the imnges. In refcrcnce 2 an automatic identifieation experi-
ment was performed using 9 of these terrain eategories and a decision rule which assumed
the features were independent and uniformly distributed, The machine eorr cctly identified




70% of the images using a procedure where the machine trained on 53 samples-and was
tested on the Sith sumple, . S - o ' -
Figure 6 illustrates the ranges for 2 other features. Notice that some categories which
are not separable on the basis of ty are separable using some of the other features, . Figures
5 and 6 clearly indicate the potential value which the textural features we defined can have
in helping to discriminate between land use categories. They also indicate their Limitations.
In part these limitations are due to imperfections in the way the terrain land use category
definiticns are operationalized. This is the usual "ground truth” problem. Inpartthe -
limitations are due to textural features which are not powerful enough. Hence, our future
research will be directed along lines of clearing up these limitations, '
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Nlustrates the quantizing algonthm At the kth 1terat10n Flaqy-1) probablhty o
has already been allocated to k-1 levels and 1- F(qk-l) probability remains to be
allocated to K levels. i1~ F(qk—l} probability is split up equally among the

- rerna.mmcr K-k+1 quantizing level to be allocated, each level would get .

F(qk 1). Since Fisa step function, there is no guarantee that a q can be -
- o Ve Fla <3+ 1 FO 1), Henc | o
found and that F(qk).— Flg 1) + _ f 1’. Hence we look for § % which is

closest to satisfying the equality.

: 90 degrees o }
135 degrees N1t 45 degrees
1S t* +1 T~  Odegrees

.‘L4 " ? 2\-

Resolution cells nos. 1 and 5 are the 0-degree thorizontal) nearest neighbors to
resolution cell * , resolution cells nos. 2 and 6 are the 135-degree nearest
neighbors, resolution cells 3 and 7 are the 90-degree nearest neighbors, and
resolution cells 4 and 8 are the 45-degree nearest neighbors to * . (Note that’
this information is purely spatial, and has nothing to do with grey tone values).
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Figure 3-a. . Fi'gure. 3-b. This shows the general form of
any grey tone spatial dependence
matrix for an image with integer

- . grey tone values 0 to 3. #(i,j)
stands for number of times grey
tones i and j have been neighbors.
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Figure 3. Illustrates simple example for the calculation of the nearest neighbor grey tone
spatial dependence matrices.



Digitized Photomicrograph of
a. Dexter Sandstone
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Digitized Photomicrograph of
b. Upper Muddy Sandstone
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Figure 4. Compares some typical feature values: for Dexter sandstone and- Upper Muddy

sandstone.
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Figure 5a. Hlustrates a typical exatnple of the digitized images of fourteen land use
categories, R . -
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Figure 5b. Ilustrates the ranges each of these categories takes for feature to.
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Figure 6. Dlustrates the ranges for the average oi feature t5 and the range of t 4 for each
of the fourteen land use categories,



