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Abstract

Thinning algorithms are an important sub-
component in the construction of computer vision
(especially for Optical Character Recogniton (OCR))
systems. Important criteria for the choice of a thin-
ning algorithm include the sensitivity of the algo-
rithms to input shape complexity and to the amount
of noise. In previous work, we introduced a methodol-
ogy to quantitatively analyze the performance of thin-
ning algorithms. The methodology uses an ideal world
model for thinning based on the concept of Blum rib-
bons. In this paper we extend upon this methodology
to answer these and other experimental questions of
interest. We contaminate the noise -free images us-
ing a noise model that simulates the degradation in-
troduced by the process of Xerographic copying and
laser printing. We then design experiments that study
how each of 16 popular thinning algorithms performs
relative to the Blum ribbon gold standard and rela-
tive to itself as the amount of noise varies. We design
statistical data analysis procedures for various perfor-
mance comparisons. We present the results obtained
from these comparisons and a discussion of their im-
plications in this paper.

Keywords: Performance Evaluation, Thinning
Algorithms.

1 Introduction

This paper presents a quantitative methodology for
characterizing the performance of thinning algorithms.
A large number of papers proposing thinning algo-
rithms have been published in the literature. A com-
Prehensive survey is given in {5] A key issue in the
performance evaluation of thinning algorithms is the
choice of the "gold standard” or reference with respect
to which the output of the algorithm is compared,
Previous efforts to provide a quantitative performance
measure have used a subjective “gold standard” pro-
vided by a “panel of experts.” [61,[8]. One obvious
limitation of this approach is the infeasibilty of con-
ducting an exhaustive study/analysis of the perfor-

1063-6919/94 $3.00 © 1994 IEEE

678

mance over a wide range of operating conditions since
the gold standard for each instance must be specified
interactively by the expert. This is too expensive to
do for large numbers of input images, leading to small
sample sizes, which, in turn prevent us from being
able to draw statistically significant conclusions from
the data.

In this investigation we Propose to overcome the
limitations of the expert approach in two ways. We
first define an objective gold standard based on Blum
ribbons, where the expected output of the ideal thin-
ning algorithm is the spine of the ribbon. We present
results that indicate that our experimental conclusions
are the same whether we use the Blum ribbon or the
output of the thinning algorithm under noise-free con-
ditions as a gold standard.

Since thinning forms an important component in
many OCR systems, it is important to accurately es-
timate the performance of thinning algorithms. Also,
all real-world document imagery is contaminated to a
greater or lesser extent by random perturbations or
noise. It is important to choose a thinning algorithm
that is relatively insensitive to noise or whose perfor-
mance degrades relatively gracefully as the amount of
noise in the input image increases and as the geom-
etry of the input shapes change. This investigation
will enable us to make these choices in a precise and
quantitative manner.

We discuss briefly issues pertinent to the perfor-
mance characterization of thinning algorithms in Sec-
tion 2. We present the ideal world model for thin-
ning based on Blum ribbons in Section 2.1. Once an
ideal world model for thinning has been introduced,
the next task is to choose a perturbation mode] that
adequately models the degradations found in docu-
ment images. We use the degradation model proposed
by Kanungo et. al. [4] that models the degradation of
documents due to photocopying and printing. Since,
printed/photocopied document images form a large
fraction of the images input to a typical OCR system,
we use this perturbation model in our investigation
to introduce controlled perturbations in our input im-
ages and then study the performance of the thinning



algorithms under noisy conditions., We briefly review
the degradation model in Section 4. For the error cri-
terion function that measures the deviation between
the output of the thinning algorithm and the ideal ex-
pected results, we use an error criterion function based
on the Hausdorf distance Section 3. The performance
characterization experiments and the results obtained
are described in Section 6. We present our conclusions
in Section 7.

2 Performance Characterization

Thinning

The most popular application for thinning algo-
rithms is in the field of Optical Character Recognition
(OCR). Thus, it is important that the shapes under
consideration should model the shapes that OCR al-
gorithms operate on - namely characters (printed or
handwritten). It should be possible to analytically
compute the skeleton of the input shape under noise-
free conditions and the “skeleton” of the shape should
fit commonly held notions of what a skeleton of a
shape should be. Given all these criteria we choose
ribbons (specifically Blum Ribbons) as our ideal world
model for the world of thinning algorithms.

Blum ribbons are generated by sweeping a generat-
ing disk (whose radius might vary) along a two dimen-
sional curve. The gold standard for our performance
evaluation is given by the spine by of the Blum ribbon.
The error criterion function is based on the Hausdorf
error metric. We expect to find differences in perfor-
mance to show up even when the ribbon images are
noise-free. In addition when noise is added to the in-
put images, we expect different thinning algorithms to
respond differently as the amount of noise varies.

2.1 Blum Ribbons as an Ideal World
Model

A ribbon is defined as the shape obtained when a
shape referred to as the “generator” is swept along a
curve. The ideal world of shapes to be thinned is the
world of Blum ribbons. Blum ribbons are constructed
when the generator is a disk.

At any point of the the arc, the width of the ribbon
is the length of the line segment defined by the inter-
section of the ribbon with a line perpendicular to the
arc at the given arc point. The cross-section function
has bounded first derivatives to keep the width from
changing too fast. The width itself is also bounded
from both sides, to prevent too narrow or too wide
ribbons. Additionally, there is a relation between the
maximum allowed curvature (minimum local radius)
of the arc and the maximum allowed width of the rib-
bon, in order to prevent a case in which the combina-
tion of sharp curvature and large width at that point
cause the ribbon to overlap itself. An ideal digital
image is constructed from a scene of ribbons by tes-
gellating the scene of ribbons into pixels.

The Blum ribbon is illustrated in Figure 1.

To avoid problems of instability when the slope of
the spine approaches 90°, and to enable self intersec-
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tion of the spine, we adopt the following parametric
description for the spine S.

s = (543

The scalar function that describes the radius of the
generating disc sweeping along S is called the contour
function and denoted by

C(s).

In order for the ribbon to be useful in characterizing
the performance of a thinning algorithm, the radius of
the generator has to be small relative to the radius of
curvature of the spine in order to prevent the ribbon

‘from intersecting itself in order for the ribbon to be

useful in the performance evaluation of thinning algo-
rithms. If the maximum value of the radius function
is less than the minimum value of the radius of curva-
ture of the spine, this sort of situation can be avoided.
Specifically, if

+2 4 =312/3

pmae < Gt

where pmaez i8 the maximum value of the radius
function and the terms 2, ¥, and £, § are the first and
second order derivatives of the 2 and y components of
the spine. These components are expressed in para-
metric form parameterized by the arc length s. Then,
Pmag i8 the minimum value of the radius of curvature
of the spine. Once we assume a form for the functions
z(s), y&) and C(s) (the contour function, which, in
our case, is the radius function), the problem of gener-
ating a ribbon becomes one of choosing the parameters
of the form such that the constraints mentioned above
are satisfied. For the purposes of this study we assume
that the spine polynomial components are of the form
z(s) = Yi=oais’ and y(s) = ;::3 bis*

Thus, the highest power of s in either the z or y
component is 3. Further, we assume that the radius
function takes the form

C(s) = Zz;o cis' ‘

Generating a ribbon thus reduces to the problem
of choosing the coefficients as, b; and ¢; to satisfy the
constraints on the curvature of the spine relative to
the value of the radius function. Two images are gen-
erated. One contains the discretized version of the
spine and the other contains a discretized version of
the ribbon.

3 Error Criterion Function

Thinning can have a variety of purposes such as the
estimation of the analytic expression for the spine of
the ribbon or the identification of the pixels through
which the spine passes. In this discussion we take the
purpose of thinning to be the identification of the pix-
els through which the spine passes. We use as the error
criterion, a metric based on the Hausdorf distance [1].
We measure the Hausdorf distance between the gold
standard and the output of the thinning algorithm.
Given two sets A and B and a distance metric p, the
Hausdorf distance is given by

max(p( 4, B), (B, 4)) =




max{inf{r|A C B disk(r)},inf {r|B C 4@ disk(r)}}

The Hausdorf distance provides a measure of the
farthest distance between two sets. The Hausdorf dis-
tance can also be alternately interpreted as the max-
imum of the shortest distances between every point
on one curve and the second curve. We use & method
based on the Euclidean distance transform of the two
images - the Blum spine and the output of the thin.
ning algorithm to compute the Hausdorf distance.

Computationally, the maximum value of the error
criterion function is half the larger of the row or col-
umn size of the image. In order to make the error
criterion invariant with the size of the image, we use
a normalized error criterion given by

&1 = o(S, T)/(Nrows /2)

where €; is the normalized error criterion function, §
is the spine of the Blum ribbon, T is the output of the
thinning algorithm and as before o(5,T) denotes the

Hausdorf distance between the two.

4 Noise Model

In this section we briefly review the noise mode]
proposed in [4] that we use as a degradation model
in our study. Degradations in bi-level document im-
ages consist of foreground pixels becoming background
pixels and vice-versa. Briefly, the degradation model
operates as follows:

® The probability of a pixel in the foreground Ir of
the image at (r, c) (denoted by Ir(r, c)) becoming
a background pixel is given by co + age—=dr(ric)
where dp(r,c) is the Euclidean distance to the
nearest background pixel.

® The probability of a pixel in the background I at
(r,¢) (denoted by I B(r, c)) becoming a foreground

pixel is given by co + Gpe—Adb(re)

o Correlation is then introduced in the degraded
image by performing a binary morphological clos-
ing with a digital disk of diameter K.

The model is parameterized by a, ag, 8, Bo and c.
For the purposes of the experiment we hold the fol-
lowing values fixed ico =0, and ap and f, take values
from the set {0, 1}. The parameter o influence the
amount of “thinning” of the foreground in the image
that takes place while B influences the “thickening” of
the foreground.,

5 Computational Procedure for Gen-
erating Ribbon Images

Ounce we assume a form for the functions z(s), y(s)
and C(s) (the radius function) the problem of gener-
ating a ribbon becomes one of choosing the the coeffi-
cients a;, b; and

(Section 2.1) are satisfied.

C; 80 constraints mentioned previously |

680

The user supplies as input to the procedure the fol-
lowing inputs: Maximum degree of the spine polyno-
mials for the z and y components, Maximum degree of
the radius polynomial, Number of rows and columns
in the image and the aspect value (this is the ratio of
the length of the spine to the maximum value that the
radius function can take).

The procedure for picking coefficients is as follows

1. Generate coefficients between -1.0 and +1.0 for
each of the polynomial components of the spine.
For the coefficient a; of the z component we have
a; ~U(-1,1) where U(-1,1)is a uniformly dis-
tributed random variable on the interval [-1,1].
The coefficients b; for the Y component are also
given by b; ~ U(~1,1)

2. Compute the minimum radius of curvature for the
spine polynomial specified by the coefficients a;
and b;.

¢; for the radius function us-

“ing co ~ U(0.1,1) and ¢; ~ U(0.0,1.0) for i > 0
where U(0, 1) is a uniformly distributed random
variable in the interval (0, 1), The coefficients are
then scaled to satisfy the Blum ribbon generation
condition given by |C’(s)| < 1 and so that the
maximum value of the radius function does not
exceed the minimum radius of curvature,

3. Generate coefficients

Experiments for Performance Char-
acterization

6.1 Population of Input Images

We define various populations of images based on
the parameters used as input to the image generation
process. We vary only the degree of z and y compo-
nents of the spine polynomial and the degree of the
radius function polynomial. We hold the image size
fixed at 128 x 128 and the aspect value fixed at 5.0.
Letting d. be the degree of the z component of the
spine polynomial, be the degree of the ¥ compo-
nent of the spine polynomial and d, be the degree of
the radius function we define six image populations by
taking d, = 1, dy= 10,1 or 2 and d=10,10r2. In
Figure 2 we show an example Blum ribbon image with
the spine overlaid on the ribbon.

6.2 Thinning Algorithms under Investi-
gation

We evaluate sixteen thinning algorithms in this
study. They are based on distance transform methods
(Algorithm 1) (Arcelli), binary picture thinning by an
iterative parallel two-subcycle operation (Algorithm
2), (Susuki and Abe, Pattern Recognition 1987) two
different distance transform based algorithms (Algo-
rithm 3 and 4) (Suzuki and Abe ICPR 1986), morpho-
logical thinning algorithm (does not give connected
skeletons) (Algorithm 5), Arcelli’s Parallel Thinning
algorithm (Algorithm 6), Parallel thinning (Algorithm



Table 1: P values for 1-way ANOVA with d, as a

factor
P P
Alg. 1 1.261040-10 Alg. 9 8.17T89780-08
A.l‘. a 0.2431301 Alg. 10 T.370414-08
A.l‘. 3 0.0B138508 Alg. 11 0.0447TE334
Al.‘ 4 B.58983e-14 Alg. 12 0.002871899
Alg. B 8.EBPB3e-14 Alg. 13 0.026098328
Al'. [ ] 9.1438120-07 Alg. 14 4.218080e-12
Alg. T 9.3882320-00 Alg. 18 2.99432080-07
Alg. 8 1.0732480-00 Alg. 18 0.005EB83068

7), Rutovitz Algorithm (Algorithm 8), E.S. Deutsch’s
Algorithm (Algorithm 9), Tamura’s Algorithm (Algo-
rithm 10), Ma and Yudin Algorithm (Algorithm 11),
SPTA thinning (Algorithms 12 and 14) , Stefanelli and
Rosenfeld (Algorithm 13), Hilditch's algorithm ( Algo-
rithm 152 and Zhang’s algorithm. (Further references
for the algorithms can be found in [3].)

6.3 Performance Characterization under
Noise-Free conditions

As we had mentioned in the Introduction, we ex-
pected differences in algorithm performance to show
up even under noise-free conditions. In this experi-
ment we generate 250 images of each of the six combi-
nations of the values of d;, (the degree of the ¥ compo-
nent of the spine polynomial) and d, (the degree of the
radius function). Each of these images is then input
to the sixteen thinning algorithms under investigation.
‘We compute the error criterion function relative to the
Blum ribbon gold standard for each of the algorithm
outputs.

6.3.1 Data Analysis and Results

We use a One-way Fixed effects ANOVA model ([7]3
to analyze the effect the various factors (da, dy an
d.) have on the performance of the various thinning
algorithms as quantified by the normalized Hausdorf
distance. The null hypothesis for the first test is that
the mean of the error criterion function is invariant
with respect to the degree of the radius function d.
when all other parameters are held fixed for each of
the thinning algorithms.

The following table (Table 1) lists the P values ob-
tained for each the 16 algorithms for dy = 2 and d,
takes values from the set {0,1,2}, The P value is
the probability of the null hypothesis being true given
the data. If the probability P is greater than a pre-
specified significance level, we accept the null hypoth-
esis.

We can see that the null hypothesis (that the algo-
rithms perform equally well at all three levels of d.)
can be rejected at a significance level of 0.05 for all but
Algorithms 2 and 3. At a significance level of 0.005
we can accept the null hypothesis for Algorithms 11,
13 and 16 too.
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Table 2: P values for two way ANOVA with d, and
d. as factors

Fy

0.000000

7;

0.000000

Py

0.000118

Alg.
Alg.
Alg.
Alg.
Alg.
Alg.
Alg.
Alg.
Alg.

Alg.

Alg.

Alg.

Alg.

Alg.

Alg.

Alg.

0.000000 0.203913 0.307T11

0.002184 o.coo0003 0.08393T

0.1321933 0.0000088 0.3334617

0.0001TE62 0.000000 0.02939863

0.0125988 0.00000 0.2783139

0.0310419 0.0000001 D.ISI;I?I.

0.9898493 0.0000000 0.1570388

CEE RERENEA B E LB b

0.000000 0.000000 0.1081061

0.1520183 0.00000 0.288T383

0.000000 0.0018802 0.4886045

0.000000 0.000000 0.13173484

0.000000 0.00013268 0.3613008

0.00146184 0.000000 0.083588T4

0.111847T 0.000000 0.14220685

0.00263203 0.0028303 0.24T827T6

Similarly we can now pose a null hypothesis relative
to the value of d;, when d, is held fixed. Alternatively,
we can use a two-way fixed effects ANOVA model and
explore interactions between the two factors d; and
d, which are a measure of the complexity of the input
shapes. We present the P values for each of the three
factors (dy and d, and interactions) for each of the
16 algorithms in Table 2. The column P, contains
the P values obtained for the factor dy, P, are the P
values obtained for factor d. and Py, are the P values
obtained for the interaction of the two factors.

At a significance level of 5% we can reject the null
hypothesis for the factor dy for all but Algorithms 4,
5 and 15. Algorithm 8 is clearly insensitive to the
factor dy but is highly sensitive to the factor d.. The
only algorithms to show any significant interactions
are Algorithms 1 and 5 (here the P value is lower than
the significance level causing the null hypothesis to
be rejected). An ideal algorithm Sin terms of being
invariant to the geometry or complexity of the input
shape) would have have high P values for both factors
and their interaction. Algorithm 1 is highly sensitive
to the geometry of the input shape since the P ‘value
is lower than the significance level for all three factors.

6.4 Performance Characterization under
Noisy Conditions

In this experiment, we study the effects of noise on
the performance of thinning algorithms. We conduct
two sub-experiments to study how each of these two
kinds of degradation influence the performance of the
thinning algorithms.

For each of these experiments we generate 250 rib-
bon and spine images for each of the six combinations
of the values of dy and d.. The noise-free images are
first input to the sixteen thinning algorithms to pro-
duce thinning algorithm outputs. Noise is then added
to the ribbon image and the noisy image is then in-
put to the thinning algorithms. We then measure the



Table 3: P values for one way ANOVA with g as a
factor and Error criterion computed relative to the
Blum spine

P P
Alg. 1 0.37p3548 Alg. ¢ T.BT8E82e-11
Alg. 2 0.003407873 Alg. 10 2.079902e-07
Alg. 3 0.04085983 Alg. 11 0.0008889728
Alg. 4 0.c00ses80T Alg. 12 0.0310388
Alg. & 0.1717833 Alg. 13 0.0007498882
Alg. o 1.9450090-08 Alg. 14 0.1761424
Alg. T E.1TT8330-08 Alg. 18 0.182176E
Alg. 8 0.0192007 Alg. 18 3,0087T3e-10

Hausdorf distance between the output of the thinning
algorithm under noisy conditions and the Blum spine
of the ribbon or the output of the thinning algorithm
under noise-free conditions. In Figure 3 we show the
ribbon of Figure 2 with noise added using the degrada-
tion model. Figure 4 shows the noise-free ribbon over-
laid with the output of Algorithm 1 when the noise-
free ribbon is used as input. Figure 5 shows the noisy
ribbon overlaid with the output of Algorithm 1 when
the noisy ribbon is used as input. The three Hausdorf
distances we can measure are between the noise-free
output and the Blum spine, the noisy output and the
Blum spine, and, the noisy output and the noise-free
output,

6.4.1 Data Analysis and Results

In the first illustration we wish to answer {wo ques-
tions: 1) How do each of the algorithms perform in
the presence of varying levels of “thickening” degra-
dation ? 2) How does the choice of reference skeleton
(Blum spine vs. noise-free algorithm output) influence
the conclusions on algorithm performance 7

We use the one-way ANOVA model to analyze the
results obtained. Table 3 shows the P values for each
of the 16 algorithms for dy = 2 and d, = 2 when
the null hypothesis is that the mean values of the er-
ror criterion (Hausdorf distance measured with respect
to the Blum spine) are equal for all four noige levels
P €{0.1,0.2,0.3,0.4}. We can see that at & 5% signif-
icance level, we can accept the 'null hypothesis (that
the algorithm performance does not greatly vary with

noise level) for Algorithms 1, 5, 14 and 15. These al- -

gorithms exhibit performance that is relatively insen-
sitive with respect to noise. The smaller the P value
for an algorithm, the more variable the quality of the
algorithm output is with respect to noise. Algorithm
9 and 16 are relatively sensitive with respect to the
noise level for this image population.

Table 4 shows the P values for the same experiment
when the error criterion is the Hausdorf distance is
computed with reference to the noise-free output of
the thinning algorithm. Clearly, the P values com-
puted using this reference skeleton are different from
those of Table 4. However, we find that at a 5% sig-
nificance level we can accept the null hypothesis (of
equal performance) for Algorithms 1, 5, 14 and 15 Ea.s
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Table 4: P values for one way ANOVA with B asa
factor and Error criterion computed relative to the
noise-free thinning algorithm output

P P
Alg. 1 0.1891778 Alg. ® 1.046807e-11
Alg. 2 | 3.360093¢-09 Alg. 10 1.242838s-08
Alg. 3 3.4200880-08 | Alg. 11 B.417444e-11
Alg. 4 0.01328208 Alg. 12 2.9877380-07
Alg. B 0.1493699 Alg. 13 8.581784e-16
Alg. 1.7600640-00 | Alg. 14 0.09592209
Alg. T | s.889678e-08 | Alg. in 0.1007187
Alg. & 0.02841082 Alg. 18 6.470187e-11

Table 5: P values for 1 way ANOVA with both “thick-
ening” and “thinning” noise

P P
Alg. 1 0.8T20077 Alg. @ 0.00000
Alg. 2 3.7049430-08 Alg. 10 0.00000
Alg. 3 3.5T6584e-08 Alg. 11 T.7860930-09
Alg. 4 0.01325309 Alg. 12 D0.01451161
Alg. & 0.8422798 Alg. 13 3.208130-08
Alg. ¢ 0.000000 Alg. 14 0.8830453
Alg. T 1.171388e-13 Alg. 15 0.7802021
Alg. 8 0.03366714 Alg. 18 0.000000

in the previous case). Once again, Algorithms 9 and
16 are the most sensitive to noise. Thus the inferences
we can make from the data do not change based on
what we use as the gold standard ! We have strong
evidence to conclude that the Blum spine is a suitable
gold standard for performance evaluation of thinning
algorithms. Also, while the Blum spine may vary from
what many algorithm developers may refer to as the
ideal skeleton, the diagnostic efficiency (so to speak)
of the Blum spine is high.

In the second sub-experiment we study the perfor-
mance of the the thinning algorithms when both va-
rieties of degradation are present. The noise parame-
ters we use are ag = 1, betag = 1, ¢ = 0.0. The four
noise levels we study have the following parameters -
{a=10.1,8=01}, {«a =02, 8 =02 , {a = 0.3,
B = 0.3} and {a = 0.4, 8 = 0.4}. We use a one-
way ANOVA model to study the performance of the
thinning algorithms for a particular image population
dy = 2 and d. = 1. The null hypothesis under con-
sideration is that the mean value of the error criterion
function remains the same for different values of the
noise level. The P values measured relative to the
Blum ribbon are shown in Table 5. The null hypoth-
esis can be accepted at a significance level of 5% for
Algorithms 1, 5, 14 and 15. These results are identical
to the conclusions drawn from Tables 4 and 5.

7 Conclusions and Work in Progress

We have presented a methodology for the perfor-
mance evaluation of thinning algorithms., We describe



mechanisms to generate ideal world images based on
the Blum ribbon model. We then used a degrada-
tion model that simulates perturbations found in real-
life document images to introduce noise in the ideal
world images. We designed experiments to study the
performance of 16 thinning algorithms under different
perturbations and image populations. We then use
measurements of the Hausdorf error criterion function
in conjunction with powerful statistical ANOVA tests
to compare the performance of thinning algorithms.
We are able to identify candidate algorithms whose
performance is relatively insensitive to noise level and
complexity of the input shape. We also show that
the Blum ribbon permits us to make valid inferences
about algorithm performance.
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Blum Ribbons

Figure 1: Blum Ribbons

‘

Figure 2: Ribbon with dy =2, d, =2

‘

Figure 3: Ribbon with noise

=y

Figure 4: Output of Algorithm 1 for noise-free ribbon

D

Figure 5: Output of Algorithm 1 for noisy ribbon



