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Abstract

There has been incregsing interest in quanti-
tative performance evalualion of compuler vision
algorithms. The usual method i3 to vary parameters of
the input images or parameters of the algorithms and
then consiruct operating curves that relate the prob-
ability of mis-detection and false alarm for each pa-
rameter setting. Such an analysis does not integrale
the performance of the numerous operaling curves.
In this paper we outline a methodology for summa-
rizing many operating curves into a few performance
curves. This methodology is adapied from the human
psychophysics literature and 1s general to any detec-
tion algorithm. The central concept 15 to measure the
effect of variables in terms of the equivalent effect of a
critical signal varigble. We demonstirated the method-
ology by comparing the performance of two line detec-
tion algorithms.

1 Introduction

There has been increasing interest in quanti-
tative performance evaluation of computer vision
algorithms. This is especially important in order to
compare the performance of dissimilar algorithms on
a common quantitative basis. The usual method is to
vary parameters of the input images or parameters of
the algorithms and then construct operating curves
that relate the probability of mis-detection and false
alarm for each parameter setting. Such an analysis
does not iniegrate the performance of the numerous
operating curves. In this paper we outline a method-
ology for summarising many operating curves into a
few performance curves. This methodology is adapt-
ed from the human psychophysics literature and is
general to any detection algorithm.

Performance analysis is difficult. The question
that arises immediately is — How exactly does one de-
fine performance? Issues that need to be addressed
are: (i) What image population is relevant? (ii) Is the

performance evaluated independent of the algorithm?
(iii) How are differences in performance measured?
An area with previous work on quantitative perfor-
mance evaluation is in edge detection and threshold-
ing. {5, 1, 18, 16, 21, 14, 11, 20]. Most of the papers
present an analysis that is specific to edge detection.
Furthermore, the performance is finally a number,
e.g., percentage of edge points detected, etc. There
is little further analysis of the sensitivity of perfor-
rréa.ncc to relevant factors such as the context of the
edge.

In this paper, we present a methodology for design-
ing experiments to characterize detection algorithms.
We adopt an established methodology that has been
used and tested in psychophysics. The central con-
cept is to measure the effect of variables in terms of
the equivalent effect of a critical signal variable. For
example, psychophysicists study the performance of
humnans in the task of edge and grating detection by
measuring the contrast necessary for detection under
a variety of conditions [3, 8, 7]. The effect of the var-
ious conditions is measured by the equivalent effect
of contrast as quantified by the contrast threshold. A
more detailed report of the work presented here can
be found in {15].

Section 2 describes the general performance evalu-
ation methodology. The example experiment we per-
form to demonstrate the methodology is described in
section 3. Here we discuss the detection tasks, two
algorithms for detecting our targets, and describe the
population of images the algorithms and the experi-
mental protocol. Section 4 summarizes all the resuits.
The benefits of our methodology and its application
to other detection problems is discussed in section 5.

2 Data Analysis Methodology

In a typical detection task, the system is required
to report the presence or absence of a target in an
input image. In any detection task there are some



variables that affect the signai to noise ratio S/N, in
:he image. For example, edge contrast in edge detec-
zion. The effects of all other variables are measured
‘n terms of the §/N variable. The methoaoiogy 1s ap-
olied in four steps. The first two are standard decision
analysis (1], the last two are inspired by psychophys-
ical methods {7].
Step 1: A large number of input images, both with
and without target, are created under fixed con-
ditions. They differ only by the effects of noise.
Each image is then provided as input to the sys-
tem whose performance is to be evajuated. The
output of the system is a number which is a
measure of the evidence of the presence of a
target. This number is referred to as the evi-
dence strength. Each evidence strength has an
assoclated frequency (i.e. the numper of times
it appears at the output of the svstem in the
course of the experiment). The frequency coun-
t is plotted versus the evidence strength. Two
frequency distributions are obtainea, one for the
case of target present and one for the case of no
target present.

Step 2: In order to decide whether or not the sys-
tem has indicated the absence or presence of a
target, an evidence criterion C has to be applied
to the evidence strengths output by the system.
In order to study the performance of the system,
the evidence criterion is varied through a set of

values. For each value of the evidence criteri-
on there are corresponding values of probability

of misdetection given a a target, P(M|target),
and probability of false alarm given no target,
P(F|no—target). The plot of P(M |target) ver-
sus P(F|no— target) as the evidence criterion
is varied is called the operating characteristic.
For the equal bias case, choose the operating
criterion, Co as the evidence strength for which
P(M|target) = P(F|no — target). The equal
bias probability of error, P(E), is then defined
as P(E) = (P(M/|target)+ P(F|no—target))/2
for equal probability of target and no-target.

Step 3: For different values of the signal to noise
ratio, repeat steps 1 and 2. Each value of S/N
results in an operating characteristic from which
the equal cost probability of error, P(E), can be
determined. Plot P(E) versus S/N and choose
Cr, the value of S/N for which P(E) = 0.25,
as the contrast threshold. The value of P(E)
corresponding to the C'r is chosen half way be-
tween pure chance (P(E) = 0.5) and perfec-
t (P(E) = 0.0). If the particular application
so demands, the value of P(FE) that defines the
contrast threshold C'r can be chosen differently.

Step 4: For different values of the variable of inter-
est V, repeat steps 1, 2 and 3 and plot contrast
threshold Cr versus the variable of interest V.
This curve now characterizes the effect of the

variable of interest in terms of the effect of con-
trast. The effect of any variable can be mea-

sured by its effect on the contrast threshold.

In summary, steps 1 and 2 result in an unbiased
measure of performance using standard decision anal-
ysis. Step 3 provides a measure in terms of a signal
variable at a fixed S/N ratio. Step 4 measures the
effect of any other variable by the common currency
of the signal variable.

3 The Experiment

3.1 The Detection Task

We illustrate the general methodology with an
analysis of a particular issue in edge and line detec-
tion. The question raised is — How selective is an edge
detection algorithm to irrelevant edges? For example,
can the algorithm detect an edge in the context of a
zexture full of oriented edges? A simiiar problem has
been analyzed for human detection performance in
'3]. The input is either a target image or a non-target
image. The target image consists of a vertical edge
at a known column position, irrelevant square wave
grating at varlous orientations, and Gaussian noise.
The non-target image consists of only the grating and
the Gaussian noise — no vertical edge. The task is to
detect the presence or absence of this edge and ignore
the grating.

3.2 The Algorithms
3.2.1 Algorithm 1

This algorithm also has two stages: an edge detection
stage followed by a line detection stage. For edge de-
tection we use the second directional derivative facet
edge detector [9]. For the second stage, the line de-
tection is done by the Burns line finder [2].

The Burns line finder takes the output of the edge

detector and labels all the connected lines it finds.
Next, we count the number of pixels in the middle

three columns that were classified by the Burns line
finder as line pixels and use the count as the evidence
strength.

3.2.2 Algorithm 2

This algorithm has two stages: an edge detection
stage followed by a line detection stage. For edge
detection, as in Algorithm 1, we use the second di-
rectional derivative facet edge detector [9]. The line
detection is performed using the Hough transform
technique [13].

The line detection stage takes the output of the
edge detector and maps the edge pixels to the
distance-angle Hough space. Since, we know in ad-
vance the exact location of the edge, only the pixels
in the vicinity of the edge need to vote for the edge.

3.3 Experimental Protocol

The images used were 513x 513 pixels. The grating
has a 50% duty cycle and has a half period W of 16
pixels. The phase ¢ of the grating is the offset of



the rising edge of the grating from the rising edge
of the vertical edge of interest. When the ofiset is
zero, the phase is 0 degrees and the grating has a
constructive interference. YWhen the offset is equal to
WV, the phase is 180 degrees, and the grating has a
destructive interference on the vertical edge. For the
experiment the phase is fixed at 180 degrees, i.e., the
offset was V. The orientation 8 of the grating with
respect to the edge is varied through a set of possible
angles. The rotation of the grating is around the
center pixel of the image. The contrast C, of the
edge and the grating C, (the step size in terms of
fractions of the mean gray value Ly) are also varied.
Similarly the standard deviation, o, of the Gaussian
noise also takes up values that are fractions of Lo.
The mean, p,, of the noise is assumed to be zero.
The values of the parameters of the experiment are
as follows: Ly = 100, C;n = 10 % of Lg, W = i6
pixels, o, = 20% of Lo, pwy = 0, & = 180 degrees
{destructive phase), C, = 2% of Lo,..., 26% of Lg, 8
=0,1, 3,5, 45, 90 degrees. Two sample images used
in the experiment are shown in Figure 1.

Figure 1: Sample images for the experiment. (a) This
image has only the grating at an orientation of 45
degrees. (b) This image has the grating at the same
orientation as (a) as well as the vertical edge.

4 Results

The performance of the line detection algorithm is
analyzed using the four steps outlined above.

The first atep is to measure the frequency distribu-
tion of the evidence strengths for a vertical edge given
images with or without an edge. For Algorithm 1, the
evidence strength is the count of vertical edge pixels
detected by the Burns line finder in the center of the
image. The frequency histograms are shown for the
case with o, = 20, § = 45 degrees in Figure 2. As ex-
pected, the edge images result in a distribution with
higher evidence strength values and this appears to
the right of the graph.
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Figure 2: Step 1 — Histogram for evidence strengths
for images with and without the vertical edge. In
this case the grating angie was 45 degrees, the edge
contrast was 6%.

The second step is to measure the operating char-
acteristic from these frequency distributions. Figure
3 shows the probability of false alarms as a func-
tion of the probability of misdetection for the ful-
| range of possible evidence criteria. As the val-
ue of the edge detection criterion is lowered, the
probability of false alarm decreases but the prob-
ability of misdetection increases. We use a non-
negative least square optimization technique to fit
monotonically decreasing smooth curves [12]. The
operating criterion is chosen as the point for which
P(M|edge) = P(F|no— edge). The probability of
error P(E) = (P(M|edge) + P(F|no — edge))/2.
For example, the probability of error is 0.29, when
C. =6%Lo in 3.

The third step is to measure the probability of er-
ror as a function of the signal to noise ratio. For this
experiment, the signal to noise ratio was manipulat-
ed by varying the vertical edge contrast, C,. The
results for many orientations, #, are shown in Fig-
ure 4. This curve falls from a maximum expected
error of 0.5 to no errors as the edge contrast increas-
es. If the distributions found with step 1 are equal
variance Gaussian, these functions will be cumula-
tive Gaussians. Such a function is roughly linear in
its middle range and this approximation is used to
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Figure 3: Step 2 — Operating curves for grating angie
of 45 degrees and edge contrasts of 4%, 6%, and 8%.

extract the contrast threshold, Cr, at performance e-
qual to 0.25 error. Contrast threshold Cr is the edge
contrast required to get a 25% error rate or equiva-
lently 75% detection rate. More precise results can
be based on [6]. From this threshoid and a template
of these functions, one can estimate the probability
of error for any contrast.

The fourth step is to measure the effect of the ori-
entation of the irrelevant grating. Figure 5 shows the

contrast threshold for several orientations. It can be
seen that for grating orientations greater than 5 de-

grees and less than 90 degrees, you need a vertical
edge contrast of 6% of Lo to have a 75% detection
rate. The performance is remains relatively constan-
t over this range of grating orientations. There is a
sudden deterioration of performance as the grating
orientations becomes smaller that 5 degrees. In fac-
t, when the grating orientation is 0 degrees, i.e. the
grating is in destructive phase, an edge contrast of
23% is required in order to get a 75% detection rate.

The same analysis was done for Algorithm 2. The
results are plotted along with the results of Algorith-
m 1 in Figure 5. We can see that both algorithms
have similar worst case performance (grating orien-
tation of 0 degrees) — both need approximately 23 %
contrast for 75% detection rate. But, Algorithm 1 has
a better asymptotic performance. That is, when the
orientation of the grating is greater than 5 degrees,
Algorithm 1 needs about 6% edge contrast whereas
Algorithm 2 needs about 13% edge contrast. Finally,
the performance of both algorithms start deteriorat-
ing at around 5 degrees,

Without doing the analysis outlined above, it
would have been difficult to hypothesize the worst
and asymptotic performance of the two algorithm-
s from few operating curves of step 2. In addition,
it would have been difficult to predict the location
of the knee of the curve. We are currently develop-
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Figure 4: Step 3 — The effect of contrast on the equal
bias probability of error. The contrast threshold, Cr,
is the contrast required for a 25% error rate.

ing statistical measures for each step in this analysis
(10, 6].

5 Discussion
5.1 Advantages of using thresholds

This methodology follows others in using decision
analysis to combine the two kinds of errors into a
single error probability given an decision criterion.
The current analysis extends this by manipulating a
signal-to-noise variable to measure a threshold as is
common in psychophysics. Thresholds have several
advantages as performance measures:

e Thresholds are defined independent of the algo-

rithm. In our case we used a contrast threshold
that gave us a 75% detection rate.

o By defining threshold at a fixed performance
rate, one can compare the effect of other vari-
ables at a known and comparable §/N ratio.

o Thresholds vary over as large a range as the
signal-to-noise ratio. Thus, thresholds will have
a dynamic range that is not as restricted as the
probability of error measure. This is a problem
because very low error probabilities cannot be
measured in a practical experiment.

o Thresholds can be measured without factorial
experiments by adaptively choosing signal-to-

noise ratios appropriate for each set of condi-
tions.. For example, if we need the threshold
for which the P(E) is 0.25, there is no need to
run the experiment with parameters that give
S/N for which the P(FE) is far from 0.25. This
can substantially reduce the size of experiments.
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Figure 5: Step 4 — Contrast threshold, the contrast
necessary for a 75% detection rate, as a function of
grating angle for the two aigorithms Facet+Burns
and Facet+Hough.

e Thresholds provide a way to measure differences
in performance over large ranges. For example,
is one algorithm worse than another by a 10%
difference in the threshold, a 100% difference,
or a 1000% difference? Thresholds give a way of
distinguishing between large and small effects.

The use of thresholds is not new in signal process-
ing. The most common example is the the notion of
bandwidth. The bandwidth is usually defined as the
frequency range within which amplitude response of a
filter is is greater than 3db. In this case, the threshold
used is the 3db amplitude response.

5.2 Analyzing algorithm behavior and
design of better algorithms

Since different algorithms can be compared using
this methodology, it can be used a a tool for under-
standing the behavior of different algorithms. For ex-
ample, why should one algorithm have better asymp-
totic performance than other? What parameters in
the algorithm control the location of the “knee” of
the curve? Can they be modified to suit our require-
ments? Furthermore, these performance curves can
be used to design better algorithms using the good
features of various algorithms.

5.3 Summarizing performance curves

The methodology allows one to summarize many
operating curve by a few performance curves. In our
experiment, each histogram and corresponding op-
erating curve resulted from 100 trials. Each curve
in step 3 of the methodology represents 3 operating
curves or 300 trials. The final curve in step 4 of the
methodology represents 3 X 6 = 18 operating curves,
or 3 x 6 x 100 = 1800 trials. In contrast, most

methodologies existing in the literature today provide
only the operating curves (step 2 of our methodolo-
gy). Thus our methodology allows the researcher to
convey more information in a meaningful way.

5.4 Analytic performance evaluation

In case an analytic model is available, it is not nec-
essary to run the experiments to compute the operat-
ing curve. In fact, the probabilities can be computed
form the analytic expression for the probabilities of
mis-detection and false alarm [19]. But we still en-
counter the problem of summarizing the numerous
operating curves. Our methodology can be applied,
without modification to the analytic results, just as it
is applied to the empirical results. Thus the analyt-
ic results can be summarized just as we summarized
the empirical results. Furthermore, there are cases
when either the analytic model of an algorithm is not
numerically tractable or is not known. In such cases
it is possible to approach the performance evaluation
problem in a quantitative fashion.

5.5 Applications

A strength of the methodology is that it can be ap-
plied to any detection problem. The line detection ex-
ample developed in this paper was for demonstrating
the application of this methodology. The key steps
to applying this methodology to any algorithm are (i)
converting the algorithm into a detection algorithm,
and (ii) choosing the appropriate signal variable to
use as the threshold, .

Another appropriate example is the detection of
corners and junctions [22]. To analyze corner, consid-
er an image that does or does-not contain a corner.
The corner detection algorithm outputs an evidence
strength that indicates whether there is a corner in an
image. We can manipulate the angle of the corner to
find the signal-to-noise threshold. This performance
measure can be used to study the effect of other vari-

ables such as the length of the lines making up the
corner.

To analyze automatic target detection algorithms,
input images would either contain image of the target
or no target. The algorithm would first have to detect
the presence or absence of the target in the image.
Now, one could fix all the variables (distance, shape
of target, etc.) except the contrast of the signal. The
contrast could be used to control the signal to noise
ratio and the variable of interest could be the specular
reflectance of the target. One could study how the
performance deteriorates as the specular reflectance
Increases.

In the case of inspection of machined parts, the vi-
sion algorithm algorithm decides whether a machine
part is satisfactory (“within spec”) or not (“out of
spec”). This is a detection task. The errors are ei-
ther misdetection errors or false alarm errors. In this
case, the degree of defect in the machined part could
Fe Iusu.-,d as the signal variable. For more details see

17].

The task of pose error estimation can be convert-
ed into a detection task by asking the question - is
the estimated pose of the object within specific error



counds or not. A measure of error could be computed
as follows. After the pose of an object is estimated,
+he average distance between the vertices of the o-
riginal object and the back-projected object could be

used as an error measure. A threshold on this er-
ror makes converts the problem into a detection task.

For more details please refer to 4].

6 Conclusion

We describe a methodology for characterizing and
summarizing the performance of any detection algo-
rithm. It extends the previous applications of deci-
sion analysis by the addition of threshold measures in-
spired from psychophysics. This is a general method-
ology that can be applied to any detection algorithm.
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