Proteus: Control and Management System

Robert M. Haralick, Yung-Hsi Yao, Linda G. Shapiro, lhsin T. Phillips, Arun K. Somani,
Jeng-Neng Hwang, Mike Harrington, Craig Wittenbrink, Chung-Ho Chen, Xufei Liu, and Su Chen
Dept. of Electrical Engineering, FT-10
University of Washington
Seattle, WA 98195

Abstract

The Proteus is a highly parallel MIMD, multiple in-
struction, multiple-date machine, optimized for large
granularity tasks. The system is designed to use 256
1o 1,024 RISC processors. Computer vision algorithm-
s consists of sub-algorithms, which can be erecuied in
parallel. Advanced software system for partitioning,
scheduling, development, and ezecution of tasks can
utihize this fact in a data flow programming paradig-
m to increase throughput. This Paper describes how
these modules interact with each others such that per-
mits the efficient control of large grained parallelism
without having to handle the general concurrency prob-
lem.

1 Introduction

Computer vision has been regarded as one of the
most complex and computationally intensive problem-
s. It also transcends a wide range of representations
and forms of processing which requires flexibility. The
quantity of data processed in a machine vision system
suggests that it seeks to have a higher input data rate.
High efficiency for computationally intensive activities
suggests the algorithm driven systolic network. Flex-
ibility suggests reconfigurability. The combination of
the two suggests a data flow architecture.

However, the kinds of data units that are processed
in computer vision change as the processes proceed
from low to high level. This suggests that instead
of thinking that the architecture processes small data
units such as a pixel, we can visualize an architecture
which processes more complex data units such as the
image, digital arc, sets, and relations.

In factory applications of computer vision, the same
vision algorithm is applied repeatedly to a succession
of images. The input is not an image, but a sequence
of images. The output to each image processing oper-
ation likewise is a sequence of images. The processor,
instead of only processing one simple operation such
as an add or multiply on the primitive data unit now
must perform an arbitrarily complex sequence of op-
erations on the large data unit. The code run on the
processor now does not have to be the kinds of spe-
cialized code used for vector processor, pipelines and
systolic arrays, or digital signal processors. Rather

the code can be the same kind of code written in lan-
guages such as C or Ada and which can be tested on

standard workstations.

For high input data rate and simple algorithms,
such an architecture runs in a single program mul-
tiple data stream mode. For low input data rate and
highly complex algorithms, such an architecture can
reconfigure itself to function in a pipeline network or
full multiple instruction multiple data stream mode.

We call this architecture the Proteus data flow archi-
tecture.

High-level programs for Proteus are written in the
INSIGHT programming language [8][9]. Insight is
dataflow language rather than a sequential language.
This means that the program can translate into a
graph structure, where each node is an task to be per-
formed, and each arc is data variable. This graph
structure lends itself to a parallel computation sys-
tem, since when a node’s input data is ready, it may
perform its computation without regard to any oth-
er node’s state of computation. Thus, when a node in
the graph has completed its computation on an image,
it may pass its data to next node(s) and may imme-
diately begin computation on the next image in the
sequence when the previous node(s) finishes its com-
putation. In this manner, two types of parallelism are
permissible: (1) separate parts of the algorithm may
be completed on the same image simultaneously on d-
ifferent processors and (2) pipelining of the sequence
of the images through the processor may occur. The
INSIGHT program describes the flow of a sequence of
images, and other data structures, and their resultant
data structures through the Proteus. Each process of
the network performs one or more operations on its
input image(s) and/or structure(s) to produce output
image(s) and/ or other data structure(s). The most
important aspect of the INSIGHT language is that it
expresses relationships, not commands. The relation-
ships dictate a graph structure that defines the flow
of data through the system. Figure 3 illustrates the
graph structure for a program given in Figure 4.

The input to the INSIGHT program shown in Fig-
ure 4 is a 256x256 gray scale image GO, and the output
is a 256x256 binary image B4. Intermediate gray scale
images G1, G2, and G3 and intermediate binary im-
ages B1, B2, and B3 are also produced during execu-
tion of the program. The first relation says that gray
scale image GO 1s to be thresholded using threshold T1
(a constant), and the result is to become binary image

B1. The second relation says that GO is also to be the
input to a morphological closing operation [4]. with a
structuring element that is a box (rectangle) of dimen-
sion 5 x 5, with the result becoming gray scale image
G1. The third relation specifies the production of an-
other binary image B2 that is the result of performing
an opening in G1, subtracting the opening from G1
itself and thresholding the result of the subtraction.
The other relations can be analyzed in a similar fash-
ion. A high level data flow language called INSIGHT
is used to specify the relation in the Proteus network.
The INSIGHT program can be translated into a graph
structure, where each node is an task to be performed,
and each arc is a data variable.

The parallelism of computer vision algorithms can
be exploited through an advanced software system for
partitioning, scheduling, development, and execution
a data flow programming paradigm. System software
includes a translator for the INSIGHT language, a par-
allel debugger, and high level simulators, and Proteus
Control and Management system (PCMS).

In section II of the paper we describe the Proteus

Hardware Hardware. In section III we describe the
Proteus software System.

2 Proteus Hardware System

Proteus is a high-performance MIMD machine.
The whole hardware system for Proteus architecture
contains a Host as front end processor and 8 to 32
processing groups connected in a hypercube structure
with each node of the hypercube representing a group.
A top level view of the system is shown in Figure 1.
The external input is received on 32 parallel chan-
nels which are equally distributed to the enhanced
hypercube nodes. The Host works as user interface
and file server for back end processors. Algorithms
are developed, mapped, and down-load through the
Host. The final output generated by the number-
crunch processing elements is also collected by the
Host. We use Sun Sparc 10 as the Host and a sin-
gle board SUN SparcEngine 1E with the VMEbus and
Ethernet interfaces as Group Controller. All of them
operate under UNIX operating system environment.
Each group communicates with the host through the
Ethernet link.

Data communication between groups is through a
circuit switched enhanced hypercube connection. An
enhanced hypercube contains two links in any one di-
mension of a regular hypercube, as shown in Figure 2.
A centralized algorithm at the host may route any ar-
bitrary permutation [3]. The 32 groups in a full scale
system can thus communicate with each other in an
arbitrary permutation for rapid exchange of data. By
not buffering the data at the intermediate nodes, the
transmission across the diameter of the hypercube are
negligible.

Each group contains nine processor clusters, one
generalized communication interface board (GCI), one
group controller and a crossbar switch. Each group
has its own local VME bus backplane which is acces-
sible to all of the clusters, GCI, and the group con-
troller.

Data communication within a group is through a

circuit switched cross-bar connection. The GCI board
of each group provides the external input interface and

supports the communication interface between within-
group and outside-group data exchanges.

The GCI board has an Intel 80960CA as its con-
troller. It provides high speed serial communica-
tions capabilities to enable efficient transfer of da-

ta. Each board contains four frame buffers. Each
with a HotRod receiver and transmitter capable of

transferring data concurrently at 250MBaud. The

HotRod receiver and transmitter are GaAs devices
that provide synchronous point-to-point serial com-

munications. The frame buffers are used to facilitate
the synchronization of potentially asynchronous ex-

ternal (to the Group) data sources. Each frame buffer
contains 256 KByte RAM. Typical operation would be
to receive asynchronous data into the frame buffer and
then re-transmit it with the system in a synchronized
fashion.

The basic function of the crossbar switch is to en-
able the switching of the high speed serial data stream-

s. Each Cluster in the same Group has a HotRod
transmitter that is connected to an input of the cross-
bar switch. Similarly each cluster also contains a
HotRod receiver that is connected to an output from

the crossbar switch. Each of the four frame buffers
of the GCI bpard has a HotRod transmitter connect-
ed to a crossbar switch input and a HotRod receiver

connected to a crossbar switch output. The crossbar
switch is programmed by the 80960CA on the GCI
board.

The cluster architecture is a shared memory multi-
processor system. Communication within a cluster is
through shared memory. Each cluster consists of four
Intel 1860 as Processing Elements (Pixel Processors or
PP), one Intel 80960CA as cluster controller, 1 Mbytes
SRAM dual port memory and a shared memory with
8 MBytes of DRAM upgradeable to 32 MBytes. The
Intel i860 is a 40MHz /MIPS processors with 8k Bytes
on chip data cache, and 4k Bytes on chip instruction
cache. Each PP has 1 Mbytes of external cache. The
cache can also be configured as local memory under
software control. The cluster controller is responsible
to scheduling task for each PP, controls the synchro-
nization among four PE, manages the cluster commu-
nication with group controller, and controls the dual
channel DMA of the communication unit.

Figure 2 shows Proteus with 4 cube, and the extra
links connecting all nodes in the vertical dimension.
The links marked a, b, ¢, and d are the high speed se-
rial links input and output for one group. The e link is
the additional link which allows full permutation ca-
pability. The exploded view of the group contains the
Unix board group controller (GC), the clusters (C0
to C8), and the communication interface or crosshar
(xBar). Clusters are connected by crossbar to each
other and to the enhanced hypercube. I/O from ex-
ternal sources is fed through the I/O buffer marked
as IB. An exploded view of a single cluster is shown,
and consists of the cluster control processor (CCP),
the shared memory (SM), the I/O buffer and memory
(I/O DPM), and the RISC processors (or pixel proces-

sors, PP). Pixel processors in a cluster share memory

and a serial I/O link. External caches and control
processors help ease contention and multiprocessing
performance degradation.

Currently, a prototype group with 8 clusters and
one GCI board has been implemented. In addition, a

emulator board has been built to emulate the exter-
nal input source. The emulator has almost identical

configuration as cluster board. Instead of having four
pixel processors, 32 Mbyte RAM is installed. First,
GCI receives data from emulator board, stores it into
frame buffer and then re-transmit it to proper cluster
from the frame buffer.

3 Proteus Software System

Figure 5 illustrates a top level view showing how the
software relates to the Proteus hardware. whose pro-
cessors are partitioned into groups and within groups
partitioned into clusters. The system software consist-
s of a INSIGHT translator runs on the Proteus host,
Proteus Control and Management system (PCMS),
which run on the group controller, cluster controllers,
and GCI, and a simplified version of PCMS runs on
the pixel processor.

3.1 INSIGHT Translator[7]

The INSIGHT translator converts an INSIGHT
program into a sequence of tasks run on the Pixel Pro-

cessors. The translator is responsible for parsing the
algorithm, creating a network of data dependencies,
and partitioning the work between the logical proces-
SOIS.

3.2 Communication System

The Proteus system consists of a large number of
processors, running asynchronously with each other.
This form of computing system places the communica-
tion architecture as a key component. The communi-
cations then become the arteries of a Proteus system.

The goals for the proteus communication system
are:

e Be expandable to allow system changes to be as

easily incorporated as possible.

e Low overhead — especially for the pixel processors.

e Common interface between processors for the ap-
plication code, regardless of the actual physical
means of communication.

e Reliable communications.

e Allows any given task on a given processor to send
and receive messages on the same or others pro-
Cessor,

Message transmission i1s the transferring of data
from the memory space of one processor to the memo-
ry space of another processor. In the case of a Cluster
Controller (CC) and a Pixel Processor (PP) or from
a CC to the Group Controller (GC) a change in the
owner (which processor can write to the memory con-
taining the message) processor.

Each GC can directly communicate with the Host
and any of its CCs. The CC is capable of directly com-
municating with its Group Controller (GC) and each

of its four PPs. If any processor sends a message to a
processor that it is not directly connected to, the mes-
sage is automatically forwarded through any needed
intermediate processors until it arrives at the destina-
tion processor. Message forwarding through interme-
diate processors is invisible to the requesting software.

All transmission requests complete immediately up-
on being received by the communication software. The
transmission requests are queued in communication
software queues and are serviced in a first in, first out
basis.

The communication software provides a reliable
communication mechanism. All messages sent and re-
ceived by the requesting software will be error free.
The communication software will apply the error cor-
rection, request for re-transmission, and unrecoverable
error logging. All unrecoverable errors will be logged
to the Host computer.

3.2.1 Inter-Processor Communication

The proteus system uses several different mediums to
transfer data between its components, i.e.:

1. Ethernet from the Host to each GC

2. VME within each Group - the GC, GCI and each
CC can be bus masters to send message and in-
terrupts.

3. Shared memory and interrupt lines within each
cluster — the CC and each PPcan write to any
shared memory location on the Cluster. Each PP
has one interrupt line to its CC, and one from its
CC.

4. High Speed serial — Each cluster in Proteus is a
node on a network of high speed (250 Mbit/sec)
lines. The interconnection is controlled by a cross
bar switch in each Group. The input images to

Proteus arrive via this network. The network is
also used to transfer images between clusters.

There are a variety of communication paths on the
various levels of processors in the Proteus system.

3.2.2 Message Format

Even though there are several different physical meth-
ods for the processors to communicate with each other,
each message will have a standard format. The stan-
dard format will allow the using of the same source
code as much as possible from one processor type to
another.

The message is made up of a header section and the

actual information carried DATA . The header contain-
s the destination and sender addresses, the message

type, the length of the data portion of the message,
and a checksum for the header. Each parameter in the
header is 32-bit word.

Destination Address

Source Address

Message Type | Message Sub-Type
ength of Data body In byfes

Spare

Spare

Spare

Two’s Complement Checksum

Data

This message format is maintained as the message
passes through PCMS, even as the message is con-
verted from an Ether packet to a VME data structure
to a Cluster Shared Memory Structure.

Each node must have a unique address in this com-

munication network. Addresses are used in all mes-
sages to 1dentify the sender and the receiver. Each n-

ode uses its own Id for its address subfield. Thus, this
address scheme is physical. The addressing scheme
used provides:

e Unique address for each node (processor) in the
Proteus system.

o Generic address mode, it is simple to parse an
address to understand which processor is being
addressed.

e Provides a broadcast address format that can be
subdivided.

e Does not limit the number of processors that can
be supported in a Proteus system.

Address Subfields The node addresses are Jike a
Class B Internet address 1in layout.

the addressing is to take into account the hierarchical
arrangement of a Proteus system and use that to our
advantage. The format of a Proteus processor address
is:

GROUP.CLUSTER.PIXEL

Each subfield (GROUP, CLUSTER, or PIXEL) par-
titions the address down to the hierarchy level for the
processor being addressed.

The address is implemented as a 32 bit word. The

word is broken into bit fields as follows. The least
significant four bits will be used to represent PIXEL

(allowing up to 16 PPs per cluster), the next least
significant five bits are used to represent CLUSTER
(allowing up to 32 clusters per group), and the next
seven least significant bits are used to represent the
GROUP (allowing up to 128 groups). In the most
significant 16 bits, the four least significant bits are
reserved for specifying a Host port number in future
implementations. The remaining 12 bits are spare,
and reserved for future use.

Physical Layout of Address Word

Spare | Host Socket | GC CC PP
12 bits 4 bits 7 bits | 5 bits | 4 bits
31-20 19-16 159 84 3-0

Message Type This is used by the message system
to determine which task on the TARGET processor is
to receive the message. It optionally consists of two
parts:

he main i1dea of

e Major Type - the general classification of the mes-
sage (i.e. Debug) and is contained in the Most
Significant two bytes of the TYPE.

e Minor or Sub-Type - a more specific classification
of the message and is in the Least Significant two
bytes of the TYPE.

3.3 Executive Scheduler

. The Executive Scheduler is the software that re-
sides on both the Group and Cluster controllers that

decides which tasks should be executed next. The Ex-
ecutive Scheduler is an event driven non-preemptive

round robin scheduler with four distinct task priority
level. The Executive Scheduler is driven by both ex-
ternal and internal events. These events are listed be-
low and grouped by internal (an event occurring on or
by the local processor) and external (an event caused
by a hardware fault or external processor action).
Internal Events An internal event is usually a
software driven event. The list of internal events are:

o Explicit call to executive scheduler by a task -
a task may call the ScheduleTask and Schedule-
TaskPri routines to cause a task to be explicitly
scheduled.

e Waited for resource availability—a task may wait
on a region of memory to become available. When
the memory waited on is freed by another task,
the dynamic memory system causes an event to
schedule the waiting task.

e Timer interval expiring—a task may request of
the timer system to be notified when a given timer
interval has expired. At the end of the specified
interval the timer system causes an event that
schedules the specified task.

e Reception of a specified message—a task may
“walt” on a specific or general message type.
When that specific message is received by the
message system that meets the message type cri-
teria the message system causes an event to sched-
ule the specified task.

External Events An external event is usually
caused by the action of another processor or an ex-
ternal hardware device.

e Interrupt from another processor—the processor
hardware interrupt support is used to vector to an
interrupt service routine that directly schedules a
task. This is used to receive messages from the
attached processors.

e Interrupt from timer chip—this interrupt is vec-
tored to the clock interrupt routine to update the
software time of the processor, and to declare an
event if any timer interval request has come due.

e Interrupt from EOT hardware—at the End Of
Transmission interval for the GCI system, and in-
terrupt routine causes a task to become scheduled
to perform the post GCI transfer processing.

3.4 Loader

According to the INSIGHT program, INSIGHT
translator generates an assignment file. Each assign-
ment file provides a deseription of the logical assign-
ment of the data flow graph nodes to the logical pro-
cessors. In addition, the file contains details of the list
of input and output arcs for each data flow node as
well as the number of buffers assigned to each arc.

According to the assignment file(s), a list of tasks
is assigned to each physical processor. Each task con-
tains the following attributes: Program.d, input._arcs,
output_arcs, constant parameters. Each task has a u-
nique task ID assigned by the loader. Each arc has a
unique arc ID assigned by the loader.

The Host Loader packs all the schedule informa-
tion needed by a cluster and sends them to each clus-
ter controller through the messaging system. These

schedule information are stored in the cluster con-
troller database to control the allocation of memory

and processing resources. The cluster controllers allo-
cate physical buffers to each arc.

For each cluster, according to the tasks assigned
to its subordinate pixel processors, the loader deter-
mines which programs should be loaded to that cluster
and assigns memory space in shared memory to each
program. Then, the host uses the socket facility of the
Unix system to send a loading request message to each
group via Ethernet. These request messages include
two parts. The first part specifies that the action is
loading. The second part is the full path name of the
transfer request file. According to the received mes-
sage, Group Controllers retrieve the transfer request
files from disks. Each Group Controller reads in files
specified in the request file, writes them to the VME
buffer of the destination cluster(s) and requests the

destination Cluster Controller to move them to the
shared memory starting from address specified in the

request file.
3.5 Debugger

The debugger interacts with the user through the
host’s window system. It has the capability to support
the development of system and application programs.
The debugger provides the user with the capabilities
to control and monitor the execution of all the pixel
processors in the Proteus system.

On the Host, the debugger is simply a front-end in-
terface that interacts with the user, and manages the
bulk of debugging information (e.g. symbol tables)
that allows it to map symbolic information to physi-
cal addresses in the hardware. However, the memory
accesses, and modification of processors’ execution s-
tates must be done by system services provided by
the cluster controllers and the pixel processors from

the hardware side.) ,)
Debugger provides two levels of debugging capabil-

ity. At the high level, the debugger allows the user to
control execution by setting image watch-points (i.e.
data breakpoints) in the INSIGHT data flow graph.
When a pixel processor reachs an image watch-point,
it will report back to user. At the low level, the sub-
ject language is the assembly language of the 1860 pix-
el processor. The user may trace through the execu-

tion of a program by a pixel processor by setting code
breakpoints inside the program and single-stepping
through the program.

3.6 Pixel Processor
Modules

Pixel processor task scheduling modules are a col-

lection of Cluster Controller tasks and subordinate
routines that control scheduling of pixel processor ac-

tivity. These tasks are run under the control of the

Executive Scheduler of CC and active whenever the
state of data buffer changes in the cluster. The mod-

ules are:

Task Scheduling

3.6.1 Get Data

It is scheduled by the arrival of an image data. Image

data are sent to the cluster either from an external
source or from another cluster.

3.6.2 PP-Finish

It is scheduled by completion of a pixel processor task.
PP-Finish receives the Task Completion Record mes-
sage from a pixel processor, it Updates Arc Status,
and sends a job-completed message to invoke Find-
RunnableTask. PP-Finish reads the buffer pointers
for the completed job from the Task Control Block
for the pixel processor from which the message was
received.

3.6.3 PutData

It is scheduled by FindRunnableTask when consumers
of buffers created by a completed task are located ex-
ternal to the cluster. PutData acts as a dummy pix-
el processor task, producing a TaskComplete Message
when the message system indicates that the transfer
has been completed.

3.6.4 FindRunnableTask

It is scheduled by a change in buffer state. Buffer s-
tates change either when GetBuffer processes an image
buffer, PutBuffer completes a buffer transfer, a pix-
el processor completes a task, or FindRunnableTask
schedules a new job.

For each buffer, there is a state associated with it.
Legal values for the state are:

1. ready and unconsumed: the buffer has valid new
data but not all processors which require it have
accepted 1t;

2. ready and consumed: the buffer has valid data
which has already been used by the processors
that require it and the new data which is to be
loaded into the buffer is not yet ready; and

3. not ready: the buffer has no valid data in it.

The data buffer state changes whenever an image
enters or leaves the cluster, or an intermediate PP task
1s allocated or completed.

A task can be executed when all of its input buffers
are in the ready and unconsumed state and the out-
put buffers in either not ready or ready and consumed

state.
FindRunnableTask is invoked whenever any arc s-

tatus changes. Arc status changes when GetBuffer
completes, PutBuffer completes, when a pixel proces-
sor task completes, or when a pixel processor task
is scheduled. FindRunnableTask manages processes
that check arc status for:

1. Each job dependent on arcs created by the job
that finished

2. Tasks dependent on arcs scheduled for creation
on the same pixel processor, to pipeline workflow
on a single pixel processor

3. Each job that creates arcs that were consumed by
the job that finished

4. The job that just finished, in case resources had
been updated while it was running that, combined
with current resource updates, allow it to restart.

Decision points are based on arc status. The search
algorithms in the informational cluster services must
search the oldest buffers in the search area first, to
preserve job sequence order.

The architecture for FindRunnableTask is function-
al in nature. The algorithm involves a breadth-first

search for jobs that are logically dependent on the re-
sources affected by the arc state change that invoked
FindRunnableTask.

3.7 SendTCB

When a task becomes executable, the cluster con-
troller transfers task scheduling information from the
cluster to the pixel processor via a task control block.
The task control block contains the identification tag,
starting address of the program to be executed by the
pixel processor, and pointers to the buffers that will
be used for input and output.

Analysis by Levy [6] shows the 1860 to be poor for
operating system work due to its inefficient interrupt-
handling capability. So extra care was taken in de-
sign to minimize interruption of the i860’s processing.
Each PP has its own task waiting queue in shared-
memory. Whenever a task becomes executable, the
cluster controller puts a task control block into a P-
P’s task waiting queue and check whether that PP is
idle. If it is, interrupting the PP to indicate the task
waiting queue is not empty.

Whenever a PP finds its task waiting queue is not
empty, removes the first entry from the queue and

executes it. . .
When a PP finishes executing a task, a task comple-

tion message is sent back CC. According to the task
completed message, CC updates the status of data
buffers used by the task just completed, and sched-

ules tasks which become executable due to buffer s-
tates changed. When a Pixel Processor completes a

task, it consults their task waiting queue to determine
their next task. If the queue is empty, the PP just
puts itself to sleep. In this manner, busy processes
do what they have to do without ever having to be
interrupted once they begin their processing.

3.8 Monitor of Pixel Processor

The pixel processors are in either monitor or appli-
cation mode. In the application mode, image process-
ing programs are executed. In the monitor mode, it
has to

e Handle interrupt from cluster controller.

e Read the task control block.

o Bind the data in task control block to program
parameters.

e Set up the run-time environment for application
programs.

e Flush the cache.

e Generate the task completed record and inter-
rupts cluster controller.

When the execution of the application program is
completed, the control of the CPU is switched back to
the monitor program,

4 Summary

Proteus is a data flow architecture designed for
computer vision applications where large granularity
may be used. A prototype group with 8 clusters and
GCI board has been implemented.

We have discussed how the design and implementa-
tion of system software which easily permits the effi-
cient control of large grained parallelism without hav-
ing to handle the general concurrency problem.

References

[1] M. L. Campbell, ”Static Allocation for a Da-
ta Flow Multiprocessor,” Proceedings of the 1985

International Con- ference on Parallel Processing,
1985, pp. 511-517.

[2] S. B. Choi and A. K. Somani, ”The Generalized
Folding-Cube Network,” NETWORKS, An Inter-
national Journal, in press.

(3] S. B. Choi and A. K. Somani, ” The Generalized
Hyper-Cube,” in Proceedings of ICPP-90, August
1990, pp. 372-375.

[4] R. M. Haralick, S. R. Sternberg, Y. Zhuang,
"Image Analysis Using Mathematical Morphology,”
IEEE Transactions On Pattern Analysis and Ma-
chine Intelligence, Vol. PAM1-9, No. 4, July 1987.

[5] R. M. Haralick et. al., ”Proteus: a reconfigurable
computation network for computer vision” 11th I-
APR International Conference on Pattern Recogni-
tion. August 1992.

[6] H. Levy, Personal Communication.

[7] C. F. Olson, ”Translation of Machine Vision Pro-
grams to Reconfigurable Computational Network
Control Codes” Master Thesis, University of Wash-
ington, Aug. 15, 1990.

[8] L. G. Shapiro, R. M. Haralick and M. Goulish,
“INSIGHT: A Dataflow Language for Programming
Vision Algorithms in a Reconfigurable Computa-
tional Network,” International Journal of Artificial
Intelligence and Pattern Recognition, Vol. 1, No.
3/4, 1987, pp. 335-350.

[9] L. G. Shapiro, ” Programming Parallel Vision Al-
gorithms: A Dataflow Language Approach,” The
International Journal for Supercomputer Applica-
tions, Vol. 2, No. 4, 1989, pp. 29-44.

[10] A.K. Somani et. al., ”Proteus System Architec-
ture and Organization” in Proc. of 5th International
Parallel Processing Symposium, Anaheim, Califor-
nia, pages 287 - 294.

[11] W.W. Wadge and E.A. Ashcroft, LUCID: The
Dataflow Programming Language, Academic Press,
London, 1984.

[12] C. Wittenbrink ”Directed Data Cache for High
Performance Morphological Image Processing,”
Masters Thesis, University of Washington Dept. of
Electrical Engineering, Oct. 8, 1990.

Automatic Classification System

Group 7 ' Figure 3. Insight Program
Decompressor

function Detect
(integer array(512,512) G0:)
(binary array(512,512) B4;)
where
- 32 Parallel Channels for image transfer declare
8 Groups Expandable o 32 integer array[512, 512] G1,G2,G3;
binary array(512,512] Bl .B2,B3;
integer constant T1=195 »T'2=20,T3=25;
Each Cluster has 4 Phoiiions integer constant W]= =5.W2=15 WS-—42,W4=126.W5=3:

Each Group has up to 9 Clusters

) relations
3500 frames/second input Bl =Go < T1.
Figure 1 A top level view of the Proteus architecture o= G chossiby SeRINLWI

B2 =(G1. (a1 openedby box(W2, W2))) >
B3 = (B1 or B2) dilatedby box(W5,Ws);
G2 = fill(G1 maskedby B3);

Gl =@G2 openedby box(W3, W3);

B4 = (G3- (G3 closedby box(W4, W4))) > T3,
endwhere

Figure 4. Detect Program

CCp I/O

2T

e
S [FEI[FF]

“ Cluster
Figure 2 Expioded View of Proteus System : EEIR.S- Software View -

