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Abstract

Computer vision algorithms are composed of dif-
ferent sub-algorithms often applied in sequence.
Determination of the performance of a total com-
puter vision algorithm is possible if the perfor-
mance of each of the sub-algorithm constituents
is given. The performance characterization of an
algorithm has to do with establishing the cor-
respondence between the random variations and
imperfections in the output data and the ran-
dom variations and imperfections in the input
data. In the paper by Ramesh and Haralick, [1],
theoretical models for the random perturbation-
s in the output of a vision sequence, involving
edge finding, edge linking and line fitting were
presented. They modelled the process that de-
scribes the breakage of a true model line segment
by a renewal process with alternating line and
gap intervals. However, their paper assumed in-
dependence of gradient estimates obtained from
neighboring pixel locations.

In this paper we show how one can relax the
independence assumptions and derive perturba-
tion models that include the effects of correlation
between neighboring gradient estimates. Under
the assumption that the ideal data is corrupt-
ed with additive, independent additive gaussian
noise, we derive expressions that describe the re-
lationship between an edge gradient estimate at
a given location and an edge gradient estimate
for a neighboring pixel. We illustrate how the
model line breakage process can be modeled as a
Markov process whose parameters are functions
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of the true edge gradient, edge operator’s neigh-
borhood size, and the noise variance. Further-
more, we derive theoretical expressions for the
mean positional error as a function of the neigh-
borhood operator window size, noise variance,
the width of the true ramp edge, and the true
edge gradient. We also outline an experimental
protocol used for evaluating edge pixel position-
ing errors and discuss the results obtained from
the experiments.

1 Introduction

Computer vision algorithms are composed of dif-
ferent sub-algorithms often applied in sequence.
Determination of the performance of a total com-
puter vision algorithm is possible if the perfor-
mance of each of the sub-algorithm constituents
is given. The performance characterization of an
algorithm has to do with establishing the cor-
respondence between the random variations and
imperfections in the output data and the ran-
dom variations and imperfections in the input
data. In the paper by Ramesh and Haralick, [1],
theoretical models for the random perturbation-
s in the output of a vision sequence, involving
edge finding, edge linking and line fitting were
presented. They modelled the process that de-
scribes the breakage of a true model line segment
by a renewal process with alternating line and
gap intervals. However, their paper assumed in-
dependence of gradient estimates obtained from
neighboring pixel locations.

In this paper we show how one can relax the
independence assumptions and derive perturba-
tion models that include the effects of correlation
between neighboring gradient estimates. Under



the assumption that the ideal data is corrupt-
ed with additive, independent additive gaussian
noise, we derive expressions that describe the re-
lationship between an edge gradient estimate at
a given location and an edge gradient estimate
for a neighboring pixel. We illustrate how the
model line breakage process can be modeled ag a
Markov process whose parameters are functions
of the true edge gradient, edge operator’s neigh-
borhood size, and the noise variance. Further-
more, we derive theoretical expressions for the
mean positional error as a function of the neigh-
borhood operator window size, noise variance,
the width of the true ramp edge, and the true
edge gradient. This paper is organized as follows.
The first section provides a brief review of result-
s discussed in [1]. The second section provides
an analysis of the positional error introduced by
gradient based edge operators. The third section
provides a discussion of a perturbation model for
the edge output that takes into account the de-
pendence of estimates at neighboring pixels. A
subsequent section provides a discussion of theo-
retical performance measure plots.

2 Review of previous results

In this section we review some of the results
outlined in the paper by Ramesh and Haralick
[1]. Our work extends the results given in [1].
Ramesh and Haralick [1], describe a theoretical
model by which pixel noise can be successively
propagated through an edge labelling algorith-
m, an edge linking algorithm and a boundary
gap filling algorithm. Assuming an edge ideal-
ization of a linear ramp edge and 1.i.d Gaussian
random perturbations on pixel grayvalues they
show how one could model the breakage of a
true line segment as a renewal process with al-
ternating segment and gap intervals. They show
that if one ignores the dependencies between ad-
jacent gradient estimates then the segment and
gap interval lengths are exponentially distribut-
ed with parameters A, and Az that are related
to the true edge gradient, the neighborhood op-
erator size and the gradient threshold employed.
They also show how the output after a gap filling
operation could still be modeled as an alternat-
ing renewal process and derive the length distri-
butions for the segment and gap intervals after
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the operation.

In reality, there is an overlap between the edge
detector neighborhoods centered around pixel-
s and hence there is some dependence between
gradient estimates obtained for neighboring win-
dows. In addition, if one assumes that the noise
at each pixel is locally dependent then the cor-
relation in the noise would introduce correlation
in the gradient estimates. In addition, the analy-
sis in [1] did not include positional errors. These
positional errors are of significance if one wishes
to analyze higher-level matching algorithms.

In other work, [2], we focussed on performing
theoretical model-based comparison of gradien-
t based edge finding schemes and mathematical
morphology based edge finding schemes. The
performance analysis was done by assuming an
ideal edge model and a noise model and by deriv-
ing expressions for probability of false alarm and
probability of misdetection of edge pixels. Under
the Gaussian noise model assumption, the theory
indicated that the morphological edge detector is
superior to conventional gradient based edge de-
tectors, that label edges based on gradient mag-
nitude, when a size 3 by 3 window was used. We
performed experiments to validate our theoreti-
cal results and the empirical plots indicated that
the morphological edge operator was also superi-
or when a 5 by 5 window is used. However, the
theoretical plots did not confirm this because the
theory provided only an upperbound. In [2] we
also included comparisons of results obtained for
real images. A simple analysis of hysteresis link-
ing was also done in this paper and it was shown
that hysteresis linking improves the performance
of the edge operators.

3 Positional Error Analysis
of Gradient Based Edge
Detectors

In this section we derive the expression for the
mean error in the edge pixel location. We
consider an ideal edge model that has an one-
dimensional intensity profile of a ramp. Specifi-
cally, the intensity profile is defined by:

I{z) = a+ Gz

forz=—-K—-1/2,...,K—-1/2

(1)



= a—G(K -
= a+G(K -

1)/2 forz < —-K —1/2
1)/2 forz > K — 1/2

We assume that the edge detection is performed
by computing the gradient by fitting a planar
surface to the grayscale values as in [1]. In
1-dimension this problem is equivalent to fit-
ting a line to the data for each 1 by K neigh-
borhood. There are two kinds of errors that
are introduced in the fit, one error is the sys-
tematic bias that is introduced in the fit due
to the approximation of the function I(z) by
a linear fit in the 1 by K neighborhood and
the other error is the error introduced due to
the additive noise in the input. Let G(z) be
the gradient estimate obtained when the least
squares fit is performed for the window of ideal
data I(i),i==z— (K -1)/2,...,z+ (K —1)/2.
Clearly, G(0), the gradient estimate when the
neighborhood overlaps the entire ramp, is equal
to the true slope G. Also, G(z),|z| > K is e-
qual to zero. In addition, one can note that
G(z) is a symmetric function since I(z) is sym-
metric. When the discrete samples are corrupt-
ed with additive i.i.d Gaussian noise with ze-
ro mean and variance o2, then the estimates
for the gradient values, G(z), are normal ran-
dom variables with true mean G(z) and variance
0?/5° 1% where the sum is taken over values of
i= —(K-1)/2,...,(K - 1)/2. Neighboring
gradient estimates, G(z) and G(z + j), are de-
pendent random vanables because of the overlap
in the neighborhoods used during the estimation
procedure.

We show in the appendix that if we viewed the
sequence of 2K — 1 random variables G(z), z =

—(K-1),...,K—1as arandom vector G then G
is dlstnbuted as a multivariate Gaussian random
variable with mean vector G(x) and covariance
matrix A¥A’, where the matrix A is obtained
from fitting kernel coefficients as described in the
appendix and ¥ is the covariance matrix of the
additive noise vector which is assumed to be o21.
The matrix A captures the dependence between
the adjacent gradient estimates.

In order to compute the error in the edge pix-
el position, we assume that the pixel with the
maximum gradient magnitude along the gradi-
ent direction is labelled as an edge, while all the
other pixels are labelled as non-edge pixels. That
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is, the edge pixel’s index is ep when:

é(ep) > C:’(:u)
Vo> —(K —1),z < (K —

(2)
1)! T #ep

Hence the probability that the location ¢ is la-
belled as edge is given by a multivariate integral
with appropriate limits specified by the gradient
threshold used. That is, the probability is given
by the expression:

Prob(ep=1) =

ft‘:T /_ / 8(G(x), ASA")dz:dz;
jz;u j"='==- _/ 3(G(x), AZA')dzdz;

where @ is the multivariate normal distribution
function. ® has two sums in the integral because
the threshold T is actually on the absolute value
of the gradient. The mean error in the edge pixel
location is then given by:

K-1

h= Z i Prob(ep = 1)

1=0

(4)

4 Boundary Model incor-
porating Dependencies in
Estimates

In the previous section we addressed how errors
in grayvalues propagate to errors in pixel loca-
tions at the output of the edge operator. An
alternating renewal process with gaps and edge
segments ([1]) is used to describe the breakage of
a true model segment into short edge segments
and gaps. Under the assumption that the gra-
dient across the edge is constant along the true
model boundary and ignoring the dependence be-
tween gradient estimates from local neighbours,
it was seen in [1] that the edge segment length-
s and the gap lengths can be approximated as
exponential distributions. In this section we il-
lustrate how the boundary model given in [1] can
be extended to include the dependencies due to
correlation of gradient estimates.

We assume the ideal model for the intensity
profile across the boundary to be a ramp edge



with constant gradient as one walks along the
model line. In addition we assume that the sam-
ples are corrupted with i.i.d. additive Gaussian
noise. It is shown in the appendix how one can re-
late the gradient estimate obtained at a particu-
lar location, (7, c), to the gradient estimate at a n-
earby location, (r+k, c+7). Using these relation-
ships one can derive the expression for the prob-
ability that the gradient estimate é(r +k,c+3)
is greater than the threshold T given that the
gradient estimate G(r,c) > T. For simplicity, we
can assume that the ramp edge is oriented across
the column direction. In this situation we are
interested in modelling the relationship between
the gradient estimates at successive rows. This
scenario is equivalent to the examination of the
gradient estimates in neighboring pixels, as one
walks along the true model line. We visualize the
sequence of edge labels (1’s and 0’s) as we walk
along the model line as a series of binary random
variables. It is easily seen that if we are dealing
with independent Gaussian noise at each pixel,
the gradient estimate G(r,c)is dependent on the
previous (G(r — k,c),k = 1,. ., K) estimates.
In this sense, the binary edge sequence forms a
binary Kth order Markov chain. The Markov
chain can be specified by the conditional proba-
bilities: Prob(X, = 1|X,_, =1) ,k=1,...,K
and Prob(X, = 1|X,-1=1,...,X,_; =1),j =

., K. These probabilities can be easily de-
rived from the joint distribution for the é()’s
by computing the appropriate multivariate in-
tegral. For example: Prob(X, = 1|X,_; = 1)
is equal to Prob(G(r, c) > T|G(r — k,c) > T)
and is given by: Prob(G'(r, c)>T,G(r -k c) >
T)/Prob(G(r — k c) > T). The numerator in the
above expression is obtained by integrating the
joint distribution of G(r,¢) and G(r — k, ¢) with
limits of integration from T to co. The denomi-

nator is the integral of the distribution function
for G(r — k, c).

5 Protocol for image gener-
ation (for edge pixel accu-
racy) and evaluation

Synthetic images of size 51 rows by 51 columns

were generated with step edges at various orien-
tations passing through the center pixel (R, C) =
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(26,26) in the image. The gray value, I(r,c),
at a particular pixel, (r,c), in the synthetic im-
age was obtained by using the function where

p = (r — R)cos(8) + (c — C)sin(8).
I(r,e) = Ipin, p<0 (5)
= Ingz, otherwise.

Imin and I, .. are the gray values in the left and
right of the step edge. The variables R and C
designate a point in the image on which the step
edge boundary lies. In our experiments we set
Irin to be 100 and I, to be 200, We used
orientation (@) values of 0, 15, ..., 175 degrees.
To generate ramp edges, we averaged images con-
taining the step edges with a kernel of size 4by4 so
that the resulting ramps have 5 pixels width. To
these ramp edge images we added additive Gaus-
sian noise to obtain images with various signal to
noise ratios. We define signal to noise ratio as:

SNR = 20log (0'_,) (6)
On

where o, is the standard deviation of the gray
values in the input image and o, is the noise s-
tandard deviation. We used SNR values of 0, 5,
10, 20 dB. They correspond to o,/c, values of
1, 1.78, 3.162, and 10 respectively. Groundtruth
edge images were generated by using the follow-
ing function where p = (r — R)cos(8) + (¢ —

C)sin(8).
Ii(r,c) = 0 p<—0.5 (7)
= 1 otherwise.
I(r,e) = 0 p<0.5
= 1 otherwise.
I(r,e) = Ii(r,c) exor Iz(r,c)

The operators employed included the gradient
based (Gradient computed using the slope facet
model) operator and the morphological blur-
minimum operator discussed in [3]. In the Blur-
minimum morphological edge detector a pixel is
assigned an edge label if the edge strength com-
puted is above a given threshold T. The edge

strength I, is given by the equation:
I, = min{I;— erosion(I,, disk(r)),

dilation(I,, disk(r)) —

(8)

where I; is the input image and r is the radius of
the disk that is used as the structuring element



in the morphological erosion/dilation operations.
We used 5 by 5 neighborhoods for the edge oper-
ator and the blur-minimum operator. The edge
accuracy evaluation proceeded as follows. The
edge pixel location error F is defined as the dis-
tance along the gradient direction from the true
edge pixel to the nearest labelled edge pixel (if
one exists, in the edge detector output). A given
ground truth edge pixel is assumed to be miss-
ing in the detector output if if there are no edge
pixels in the detector output within an interval
centered on the ground truth edge pixel. The
interval is oriented along the gradient direction
and the number of pixels in the interval is equal
to the edge operator width. We will refer to this
interval, as the “valid zone” for each pixel.

In addition to the computation of edge pixel
location error as given above, we also compute
the following statistics from the output image.
We visualize the edge and non-edge labellings en-
countered as one walks along the valid zone as a
sequence of alternating 0 and 1 runs. We com-
pute the mean and variances for the lengths of
the gaps and the edge segments. In the ideal case
when there is no error the edge segment lengths
will have mean value of 1 and a variance of ze-
ro, whereas the gap segment lengths will have a
mean value equal to the |W/2]|, where W is the
window operator neighborhood size. At low lev-
els of edge gradient threshold the edge detector
responses are thick regions and the edge segment
length values may vary from 1 to W. The seg-
ment length and gap length statistics capture this
aspect. Given the true ground truth segment, the
edge segment length and gap length statistics and
a value for the probability of misdetection of the
edge operator, we can generate a realization of
the edge detector response by following the pro-
cedure outlined in the appendix.

6 Plots and Discussion

The results obtained from the experiments are
given in figures 1 through 6. The curves were
obtained by taking the running mean of adja-
cent samples. The window size for the running
mean operation was 5. The results shown in the
plots are the results obtained after 10 replica-
tions. Figures 1 and 4 illustrate how the mean
length of the run of edge pixels varies with edge
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strength threshold for the morphological opera-
tor and the gradient based operator. It is clear
from the plots that as the edge strength thresh-
old is increased the run length drops to a value of
1. When the gradient threshold is high, we label
lesser number of pixels as edge pixels in the out-
put and hence the runs encountered are of small
width. Another point that the plots illustrate is
that as the signal to noise ratio increases from
-5 to 420 dB the slope of the curve increases.
This effect is due to the fact that the noise has
the effect of smoothing on the ideal run-length
profile. Ideally, we expect the run-length to be
a linear function of the threshold {since the in-
put consists of linear ramp edges). Figures 2
and 5 illustrate how the mean gap length varies
with the edge strength threshold. As expected,
the mean gap length monotonically increases as
a function of the edge strength threshold. In the
ideal case, we expect the mean gap length to be
a linear function of the edge strength threshold
and in the presence of large degree of noise this
ideal function is blurred. Figures 3 and 6 il-
lustrate how the mean edge pixel positional error
varies with edge strength threshold. It is clear
that the error drops to zero when the signal to
noise ratio is high. When the signal to noise ra-
tio is 0 or 5 dB it can be seen that the mean
error is as much as 0.5 pixels. A comparison
of the plots for the morphological and gradient
based operators indicate that the gradient based
scheme is superior for signal to noise levels of 0
dB and higher. The gradient based scheme has
comparable errors when the signal to noise ratio
is -5 dB. The conclusion in [2] was that the mor-
phological operator had superior false alarm vs
misdetect characteristics. The experiments here
point out that the morphological operator has
poorer localization performance. In a subsequent
paper we will attempt to compare the empirical
results obtained with theoretical results by utiliz-
ing the theoretical expressions for the mean pixel
positioning error. The exact expression for the
distribution of pixel error for the morphological
edge operator discussed in [3] still needs to be
worked out. We are also in the process of evalu-
ating the noisy edge generation procedure, that
utilizes similar statistics as in our experiments,
to see how closely it models errors that cccur in
real images.



Mean edge run length vs Edge strength threshold
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Figure 1: Plot of Mean edge run length vs Edge
strength threshold for various signal to noise ra-
tios. Orientation of the true edge was 15 degrees,
Window size 5 by 5 for Morphological operator
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Figure 2: Plot of Mean gap run length vs Edge
strength threshold for various signal to noise ra-
tios. Orientation of the true edge was 15 degrees,
Window size 5 by 5 for Morphological operator
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Edge pixel localization error vs Edge strength threshold
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Figure 3: Plot of Mean pixel positional error
vs Edge strength threshold for various signal to
noise ratios. Orientation of the true edge was 15
degrees, Window size 5 by 5 for Morphological
operator
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Figure 4: Plot of Mean edge run length vs Edge
strength threshold for various signal to noise ra-
tios. Orientation of the true edge was 15 degrees,
Window size 5 by 5 for Gradient operator



Mean gap length vs Edge strength threshold
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Figure 5: Plot of Mean gap run length vs Edge
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Window size 5 by 5 for Gradient operator

Edge pixel localization error vs Edge strength threshold

( Gradient based operator)
0.80 T T

—— SNR=-5d8
-—— SNR=0dB
---- SNA=6dB
——- SNR=10dB
060 ~-— SNR=204B
0.40 1
"
-'\"".\‘-.-.
4 o
\‘|\ i .j“'\
(%) L.aF
0.20 | \".ﬂ,‘ =y
Won
\ Y
W
ot
5]
1
ix
e A ; .
2000 400.0 600.0 800.0 1000.0
Figure 6: Plot of Mean pixel positional error

vs Edge strength threshold for various signal to
noise ratios. Orientation of the true edge was 15
degrees, Window size 5 by 5 for Gradient opera-
tor
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7 Conclusion

In this paper we provided extensions of results
provided in [1] and illustrated how one can re-
lax the independence assumptions to derive ran-
dom perturbation models that include the effects
of correlation between neighboring gradient esti-
mates. Under the assumption that the ideal data
is corrupted with additive, independent additive
gaussian noise, we derived expressions that de-
scribe the relationship between an edge gradient
estimate at a given location and an edge gradient
estimate for a neighboring pixel. We illustrated
how the model line breakage process can be mod-
eled as a Markov process whose parameters are
functions of the true edge gradient, edge opera-
tor’s neighborhood size, and the noise variance.
Furthermore, we derived theoretical expressions
for the mean positional error as a function of the
neighborhood operator window size, noise vari-
ance, the width of the true ramp edge, and the
true edge gradient. We also outlined an exper-
imental protocol used for evaluating edge pixel
positioning errors. The results from the experi-
ments illustrate that gradient based edge schemes
are superior (when edge localization is of inter-
est) to the morphological scheme discussed in [3].
‘We also provided an algorithm to generate syn-
thetic noisy edge images that utilize the statistics
used in the experiments.
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8 Appendix 1

We assume that the gray values in each neighbor-
hood in the input image can be approximated by
computing a planar fit. We assume further that
each pixel in the input image is corrupted with
additive Gaussian noise, n(R, C) with zero mean
and variance o?. Let &g c, ,GR ¢, and Yp ¢ de-
note the e5t1mates for the coeflicients best fitting
plane that approximates the N by M neighbor-
hood surrounding the center pixel specified by
row and column coordinates (R, C). In this ap-
pendix we derive expressions describing the re-
lationship between the estimates &gy c4r and
&g,c for oryi,c4r and ap c. Let o, B, and v be
the true plane coefficients. It can be easily shown
that @gr,c and ﬁR ¢ are equal to:

A _ ErH—N E;--M (R, C)
QRcCc = 7
Er*-—N Ec——M r
Er:—N Zc:—M C’?(R: C)
M

Ei\rz—N Ec:—M c2

Now, we have: Gryr,ctj = o+ :
Yot on e (R A7 +k,C+c+ )
Ei\;-N Zﬁ-m i

The difference, Gryr,c — &r,c is given by:

()

B+

Brc = (10)

(11)

C+M R-N+k-1

Z S (R-R)m(R,C) (12)

=C-M R'=R~-N
C+M R+N+k
- Z Y. a(R,C
=C—M R'=R+N+1
C+M R+N
- Y Y awo

C'=C=M R'=R—-N+k

If we visualize the two overlapping neighbor-
hoods, the first term in the above equation cor-
responds to the difference contributed by the
nonoverlapping portion of the left mask, the sec-
ond term corresponds to the contribution from
the nonoverlapping portion of the right mask and
the third term corresponds to the contribution
from the overlapped portion of the two masks.
Similarly the difference between the B's,
,BR+k c— ﬁR ¢, can be shown to be the ratio of:

R4+N+K C+M

2 ) e

R'=R4N+1C'=C-M

(R, C") — (13)
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R-N+K+1 C+M

P2V

=R-N C'=C-M

and Ty Loy
The above results can be summarized in a com-
pact fashion using matrix notation. Let V4 de-
note a vector consisting of all the estimated &’s.
Let A denote the matrix whose rows contain the
values of the kernel used to estimate &. Let E,
denote the vector consisting of the additive Gaus-
sian random variables n(R, C)’s. It can easily be
seen that V4 = ME, + a1 For example, the ma-
trix A4 for | *BC
GR41,C
of the following matrix:

en(R’,C")

) is given by the transpose

-N 0

=N+41 -N
=1 -N+1

0 1

0 1 5 (14)

1 0
N N-1

\ o N

where § =1/ N SM . 72 and the vector
of n’s are given by:

R-N,C
5§ (15)
MR+ N +1,C
If the n’s are Gaussian random variables with ze-
ro mean and covariance matrix ¥ then we can
see that the values in the vector V4 is distribut-
ed as a multivariate Gaussian random variable
with mean al and covariance matrix AT A’.

9 Appendix 2 — Procedure
for generation of Noisy
Edge images

The procedure for generation of noisy edge re-
sponse images is explained below. First a ground
truth edge image is created. This image is now
perturbed to obtain the noisy edge image. Let,
G(r,c) denote the pixel values in the ground

truth ideal edge image,

WSIZE denote the edge operator width



PMIS denote the probability of misdetection
Gap-mean denote the mean gap length
Gap-variance denote the gap length variance
Edge-run-mean denote the mean edge run length

Edge-run-variance denote the edge run length vari-

ance

Then:

for each pirxel (R,C) in groundtruth image
if ( G(R,C) == EDGELABEL )
{
/* Ground truth pixel is an
edge pixel */

X = Uniform(); /+ Generate a uniform

random number between

0 and 1 */
if ( X < Misdetect-Probability )
{
/* Edge pixel is to be perturbed
according to the edge run and
gap statistics */

/* Currently, there are two modes of
noisy edge generation. Mode 1
corresponds to the generation of
gaps and edge runs in the
direction of edge gradient when
the user provides the mean and
variance values for the edge run
lengths and gap lengths.

*/

if ( MODE1 )

{

/* Generate a gap that is of size
less the width of the edge

operator. The gap has to satisfy

this constraint because the edge

pizel is deemed to lie within the

edge zone line (oriented along
the edge gradient direction and

is of width WSIZE pixels.) Gsample

is a procedure that generates a

sample from a Gaussian distribution.

*/

AX[0] = Gsample(Gap-mean,
Gap-variance);
while ( X > WSIZE )
AX[0] = Gsample(Gap-mean,
Gap-variance);

AY[C] = Gsample(Edge-run-mean,
Edge-run-variance);
CURPOS = AX([0] + AY[0];
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if ( CURPOS > WSIZE )
{
/* Output data consists of a gap
followed by a truncated edge run; */

else
{
i=1;
while ( CURPOS < WSIZE )
{
AX[i]

Gsample (Gap-mean,
Gap-variance);

Gsample (Edge-run-mean,
Edge-run-variance);

CURPOS += (AX[i] + AY[i]);

i++;

AY[di]

}
/* Output data comsists of
alternating gaps followed
by runs */

}

/* MODE2 corresponds to the
generation of an edge pixel run
from the specification of the edge
positional errors.

*/
if ( MODE2)
{
X = Gsample(Edge-run-mean,
Edge-run-variance);
Y = Gsample (pixel-error-mean,

pixel-error-variance);

/* Output data now consists of a
run of length X centered around
(R,€) + (r?,c’). The values r’,c’
are the coordinates of the pixel
that is of distance Y from (R,C)
along the line (oriented along
the gradient direction).

*/

¥
else { /+ Edge pixel was missed */ }

} /% End of "for each pixel

in ground truth image' */



