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Abstract

Edge detection is the most fundamental step in vision elgorithms. A number of edge detectors have
been discussed in the computer vision literature. Examples of classic edge detectors include: the Marr-
Hildreth edge operator [11], Facet edge operator (6] and the Canny edge operator [2]. Edge detection
using morphological techniques are attractive because they can be efficiently implemented in near real
time machine vision systems that have special hardware support [10]. However, little performance char-
acterization of edge detectors has been done. In general, performance characterization of edge detectors
has been done mainly by plotting empirical curves of performance. Quantitative performance evaluation
of edge detectors was first performed by Abdou and Pratt [1]. It is the goal of this paper to perform a
theoretical comparison of gradient based edge detectors and morphological edge detectors. By assuming
that an ideal edge is corrupted with additive noise we derive theoretical expressions for the probability
of misdetection (the probability of labelling of a true edge pixel as a non-edge pixel in the output).
Further, we derive theoretical expressions for the probability of false alarm (the probability of labelling
of a non-edge pixel as an output edge pixel) by assuming that the input to the operator is a region of flat
graytone intensity corrupted with additive Gaussian noise of zero mean and variance o2, Even though
the blurring step in the morphological operator introduces correlation in the additive noise, we make
an approximation that the output samples after blurring are i.i.d. Gaussian random variables with zero
mean and variance 02 /M where M is the window size of the blurring kernel. The false alarm probabilities
obtained by using this approximation can be shown to be upperbounds of the false alarm probabilities
computed without the approximation. The theory indicates that the blur-min operator is clearly superior
when & 3 by 3 window size is used. Since we only have an upperbound for the false alarm probability
the theory is inadequate to confirm the superiority of the blur-min operator, Empirical evaluation of the
performance indicates that the blur-min operator is superior to the gradient based operator. Evaluation
of the edge detectors on real images also indicate superiority of the blur-min operator. Application of
hysteresis linking, after edge detection, significantly reduces the misdetection rate, but increases the false
alarm rate.

1 Introduction

Edge detection is the most fundamental step in vision algorithms. Ideal intensity edges are defined by rela-
tively steep intensity changes between two regions in an image. These intensity changes are often modelled
as step, ramp or roof functions. Examples of classic edge detectors include: the Marr-Hildreth edge detector
[11], Facet edge detector [6] and the Canny edge detector [2]. Edge detection using morphological techniques
are attractive because they can be efficiently implemented in near real time machine vision gystems that
have special hardware support [10]. A number of edge detectors have been discussed in the computer vision
literature. However, little performance characterization of edge detectors has been done. In general, perfor-
mance characterization of edge detectors has been done mainly by plotting empirical curves of performance.
Quantitative performance evaluation of edge detectors was first performed by Abdou and Pratt [1]. It is the
goal of this paper to perform a theoretical comparison of gradient based edge detectors and morphological



edge detectors. By assuming that an ideal edge is corrupted with additive noise we derive theoretica” xpres-
sions for the probability of misdetection (the probability of labelling of a true edge pixel as a non-- pixel
in the output). Further, we derive theorctical expressions for the probability of false alarm (the p- .bility
of labelling of a non-edge pixel as an output edge pixel) by assuming that the input to the ope  orisa
region of flat graytone intensity corrupted with additive noise.

2 Analysis of Gradient based Edge finding methods

2.1 Edge detection — Noise model

The input image gray values are assumed to be corrupted with noise which may be modelled as a Gaussian
distribution with zero mean and standard variance ¢. That is:

I(r,c) = L(r,c) + n(r, ) (1)

where, I(r,c) is the observed image gray value, I;(r,c) is the true gray value and n{r,c) is the noise
component. Often 7(r,c) is assumed to be zero mean Gaussian with a standard deviation of o In order to
obtain misdetection characteristics, we assume that the edge is a ramp edge with true gradient magnitude
Gy and we analyze the effects of the noise in the estimated gradient magnitude. In order to analyze the

false alarm characteristics of an operator, we assume that 7,(r,c) is a constant value in the edge operator
neighborhood.

2.2 Probability of Misdetection of a Gradient Edg-

Here we analyze edge detectors that use the gradient across a pixel to label a particular pixel as edge or
non-edge pixel. We assume that the gradient at a particular pixel is estimated by computing a least squares
to the gray levels in the pixel's neighborhood. It is also assumed that the input image is corrupted with
additive Gaussian noise with zero mean and variance o2. If we approximate the image graytone values in
the pixel’s neighborhood by a plane ar + Be+ 7, then the gradient value 9= +v/a?+ 32 To estimate o and
3 we use a least squares criterion. On the basis of these estimate, we can derive the density function for the
estimated gradient.

Under our assumptions about the noise model in the input image it can be shown that the fitted pa-
rameters & and § are Gaussian random variables with means Ko, s and variances o2, ag respectively. We
use the notation U; to denote unit normal random variables with zero mean and unit variance. Under this
notation we can rewrite the expressions for a and B as: @ = py+o,U; and 8 = g + osls. Note that:

gol = 05?2 when a square neighborhood is used in the fit and they are related to the input noise variance o2

by the expression:
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Here E,Xcr" is the summation of the squared row index values over the neighborhood used in the least
squares fit.

By definition )~ U2, where U;’s are i.i.d. unit normal variables, is distributed as a chi-square distribution

with v degrees of freedom. Also, Ef(U, + 6;)* is distributed as a non-central ¢! .-square distribution with
non-centrality parame: = 37_. 62, Now:

GP=a+ = o2(Up+6.)° + o5(Us + 85)° ()
oo x1*(62) + 03.x:1%(62)

where: §, = % and 65 = g—g. Now, (U + 84)* and (U, + 63)* are non-central chi-square distributed with

noncentrality parameters §2 and 6:;;. and 1 degree of freedom. The distribution of the sum of two non-central



chi-square distributed random variables is also non-central chi-square distributed. Press [13] has shown that
the distribution of linear functions of independent non-central chi-square variates with positive coefficients
can be expressed as mixtures of distributions of central chi-square’s. In addition, the non-central chi-square
distribution is a special case of a type I Bessel function distribution and the more general form of the
distribution of a linear function of Bessel independent random variables is derived in Springer [14].

We have shown that the distribution for the gradient can be derived from first principles. In the situation
where the input noise is additive zero mean Gaussian noise we have shown that the ratio G?/04? is a non-
central chi-square distribution. with 2 degrees of freedom and non-centrality parameter C = (Ha+up®) /o

Now, the gradient edge detection process labels a pixel as an edge if G2 > T?2. Hence a pixel is labeled
as an edge pixel if G?/0,> > T2/0,2. But 04® = 02/, Z.r? and G*/aa? is distributed like a x22(C).
Therefore the probability of detecting the edge can be glven by

(4)

R 5 TZ rE 2
P(CG® > T?) = Prob (xg“(C) N ﬂ)

a2

and the probability of midsdetecting the edge is given by

(5)

n T2E B2
Pmisdetecti(;n = Prob (AQ-’(C) < —T'L)

a2

2.3 Probability of False alarm at the edge detector output

We assume that the input data at the edge detection step is a region of constant gray tone values with
additive Gaussian noise. Since a pixel is labelled an edge pixel if the estimated gradient value, G, is greater
than a specified threshold, T, the probability of false detection is Prob(G > T). The coefficients @ and 8 of
the facet model described in chapter 2 are normally distributed with zero mean. If the input noise variance
is o2 then the variance of «, 042 is equal to:

O’E/ZZT’2. (6)

The variance of 3, 032, is equal to:

JE/ZZCE. (7)

Note that the summations are done over the index set for » and c. Since G? = a? + (32, if we assume a
square neighborhood then the G*/v4? is chi-square distributed with 2 degrees of freedom. So the probability
of labelling of a noise pixel as an edge pixel can be computed once we know the variance for the parameter
. Specifically, the probability of false alarm is given by:

. T2 . ?,2
Pfufsea(arm = Prob (,\"2“ = __Zar_zz—) (8)

Note that only when the operator uses a square neighborhood the estimates of the variances for « and
3 are equal. The above simplification is possible only under this condition. On the other hand when a
rectangular neighborhood is used the only difference is that G? is distributed as a linear combination of two
chi-square distributed random variables.

2.4 Analysis of edge operator with hysteresis thresholds

In this section we show Low the above analysis can be used to derive expressions for the false alarm and
misdetection probabilities when the hysteresis linking idea of Canny [2] is used. Canny uses two thresholds:



e a high gradient threshold, 77, to mark potential edge candidates, and

® a low gradient threshold, T3, that assigns edge label to pixels if there exists at least one pixel in the
pixel’s neighborhood that has gradient magnitude greater than T3.

More formally:

O(r,e) = 1ifG(r,e)> T or
if G(ryc) > Ty and 3(R,C) € N, . 3 G(R, Yy > 1.
= 0 elsewhere (9)

Let Fy denote the cumulative distribution function for the gradient magnitude. Let W denote the number
of pixels in the neighborhood. Ti. :« the probability of labelling a pixel as an edge pixel is given by :

P(edge) = 1 — Fy(T1) + ((Fy(T1) — Fy(T2))(1 = {F(T)}¥ YY) (10)

The term 1 — Fy(T1) is the probability that the gradient magnitude is greater than 73. The rest of the
term is the probability that the current pixel being examined has a gradient magnitude between T5 and
Ty and there exists at least another pixel with gradient value greater than 7). Here we assume that the
candidate pixels considered in the window have similar orientation estimates. That is, their edge orientation
estimates are close to each other. One can relax this assumption and include the effects of the noise on
the orientation estimate. The cuni:lative distribution would then be on two variables, the orientation and
gradient magnitude.

2.4.1 Probability of misdetection

Using equation ( 10) we can write the expression for the probability of misdetection (when hysteresis linking
is used) as:

Prisdetection = Th = Fg(TQ) G (Fg(q—i) - FQ(TZ))FE(Tl)W_I (11)
A glance at the above expression indicates that this probability is going be smaller than the misdetection
probability for an edge operator with a single gradient threshold. The probability of misdetection, when
hysteresis linking is not used, is given by F,(T}). Since T3 is much less than Ty, Fy(Ty) is less than Fy(Ty).
The second term in the above expression can be atmost equal to Fy(T1) — Fy(T2). Hence g5 <= Fy(Th).

2.4.2 Probability of false alarm

Using equation ( 10) we can write the expression for the probability of false alarm as:

Pfalaea!arm =1- ng{Tl) + ((Fyf(Tl) = Fgf(TE))(l - {Fgf(Tl)}W_l)) (12)

where F; is the cumulative distribution function for the gradient magnitude when the input data is a flat
graytone surface with additive noise. The above expression indicates that the probability of false alarm is
higher than when a single gradient threshold of T} is used.

3 Analysis of Morphological edge detectors

In the previous section we derived the expressions for probability of misdetection and probability of false
alarm for conventional gradient based edge detectors. \We turn our attention to morphological edge detectors.
Specifically, we derive the expression for the probability of false alarm and the probability of misdetection
for the blur-min edge detector given in Lee et al [10].



3.1 Blur-min edge detector — Description

We first provide the definitions of grayscale dilation and grayscale erosion and give the details of the blur-min
edge detector. The dilation of a gray-scale image f(r,¢) by a grayscale structuring element b is denoted by
d and is defined by:
d(r,c) = max; j(f(r—i,e — j) +b(4, ) (13)
where the maximum is taken over all (i, j) in the domain of b such that (r —4,¢—j) is in the domain of f.
The domain of the result is the dilation of the domains of f and b.
The erosion of a gray-scale image f by a structuring element b is denoted by e and is given by:

e(r,e) = min; ;(f(r +1i,c+ j) — b(i, 7)) (14)

where the minimum is taken over all (i, j) in the domain of b. The domain of e is the domain of f eroded
by the domain of b.

In the Blur-minimum morphological edge detector a pixel is assigned an edge label if the edge strength
computed is above a given threshold T. The edge strength I, is given by the equation:

Ie = min{ly — erosion(I),dilation(l,) — I, }. (15)

The operation of the blur-minimum edge detector can be illustrated by a simple example. Consider an one-
dimensional step edge sequence and let the neighborhood size for the blur, dilation and erosion operations
be 3. That is, the erosion and dilation use a flat structuring element with domain {—1,0, 1}. We use the
following notation in the example: o - original data, b - blurred original, e - erosion of original, and d -
dilation of original.

o 00 0 E E E
b oo £ 2 g g
e(b) o0 o £ 2 p
d(b) 0 £ 2 £ E E
b-e(b) o0 F £ £ o
d(b)-b o £ £ £ o o

min(b-e(b),d(b)-b) 0 0

It can be seen that if the threshold chosen is % then the third and fourth pixels in the one-dimensional
sequence will get labelled as edge pixels.

co| by
wty

0 0

3.2 Distributions of Grayvalues in Dilation and Erosion Residues

We now derive the cdf for the grayvalues in the dilation-residue and the erosion residue. Let M be the
number of pixels in the neighborhood. Let Z; denote the grayvalue at the ’th pixel location before the
blurring step. Let X; denote the grayvalue at the ’th pixel location after the blurring step. The blurring
step in the blur-minimum edge detector introduces correlation between neighboring pixels’ grayvalues. In the
derivations that follow the false alarm and misdetection characteristics for the blur-minimum edge detector
is obtained by ignoring the effects of correlation on the additive noise. If Zi’s were 1.i.d Gaussian random
variables with zero mean and variance JE, then the .X;’s are Gaussian distributed with zero mean and variance
o3 /M. However there exists correlation between heighboring X;’s. The probability of false alarm obtained
by assuming that the X;’s are independent with zero mean and variance o?/M is actually an upper bound
for the probability of false alarm obtained by taking correlation into account. We do not rigorously prove
this claim, but provide an explanation for this in the appendix.,



3.2.1 Dilation, Erosion Residues and Edge Strength
The dilation residue at the jth location is given by:
maz;(X;) — Xyp= maz{X; — Xj, Xo — Ny, Xpr — ,Yj} (16)

Note that the maz operation is over all elements in the edge detector’s neighborhood. We can see that
each term that is an argument to the maz operator is distributed as the difference of two Gaussian random
variables. Let: Y; = X; — X;. Then the dilation residue at pixel j, Ya(j), can be written as:

Ya(4) = mazi iz; {maz{Y;},0}. (17)
Similarly the erosion residue can be written as:
Ye(J) = —ming iz ; {min{¥;}, 0}. (18)
The output edge-strength O is given by:
0(j) = min(Ya(J), Ye(4))- (19)

In order to obtain the cumulative distribution function for O, we first derive the expressions for the distri-
butions of maxima and minima of ¥;’s and then obtain expressions for the distributions of Y; and Y,. In
these derivations we assume that the ¥;’s are independent random variables, but they need not be identically
distributed.

3.2.2 Distribution of maxima and minima of ¥;’s

The cumulative distribution function of the minimum of ¥;’s (the first order statistic Y{(1y.) is given by:

Prob(min(Yy,i=1,..., M- 1)< x) Prob(Y;) < z)
= 1-Prob(Y; >z i=1,...M—1)

If the ¥i’s are independent and identically distributed with cdf Iy, we have:

Fyy(x) = Prob(min(Y,i=1,...,M —1)<z)
= 1— {Prob(Y; > z)}M!
= 1—{1-Fy(z)}""! (20)

The cumulative distribution function of the maximum of i.i.d. ¥i’s (the highest order statistic Yiar-n) is
given by:
Fypuy(z) = Prob(maz(Y;,i=1,...,M -1)<z)
= Prob(Yar-1) < z)
= Prob(Y;j<zi=1,...M-1)
= ()N (21)

When the Y;’s are independent, but not identically distributed, then the c¢df of the minimum value of Yi’sis
given by:

M-1
Fy@)=1- [[(1-F) (22)
=1
where Fy, is the cdf for Y;.
Similarly, the cdf of the maximum of ¥;’s is given by:
M-1
Bomadds [ By (23)
i=1



3.2.3 Distribution of ¥; and Y,

We know that: ¥, = —min{¥{y),0}. Hence ¥, can be written as:
Y = ¥ FYyxo
= 0 elsewhere (24)
The cdf of Y, is given by the following expression when the Y;'s are i.i.d random variables:
Fy(x) = (1-=Fy(—e))M? z>0
= 1-(1-F0ON)"*! z=o0 (25)
When the Y;’s are independent but not identically distributed: the cdf of Y, is given by:
M-1
Fy(z) = J[(-Fy(-2) e>0
= M-1
= 1- [Ja=Fu0) =z=o0 (26)
i=1

Similarly, Yq = maz{Y{r_1y,0}. Hence Yy can be written as:

Yo = Y-y ¥y >0
= 0 elsewhere (27)
Then the cdf of Yy, for i.i.d ¥}’s, is given by:
Fy,(z) = F,(x)™'  z>0 (28)
When Y;’s are independent, but not identically distributed, Fy, is given by:
M—1
Fr2)= ] Fu(®) 220 (29)
i=1

3.3 Distribution of Edge Strength

The output edge strength is given by O = min(Yy, Ye). The cdf for O can be easily obtained if Ys and Y,
were independent. In order to derive the expression for the cdf of O, we rewrite the expression for O as:

O = maz(min(—Y1), Y{ar-1y), 0). (30)

This is done in order to bring out the fact that the distribution of edge strength is dependent on the joint
distribution of the min and max of the samples in the detector window. The Joint density of the minimum
and maximum of the ¥i’s can be written (for i.i.d Yi’s) as:

flryiza) = (M = 1)(AM = 2) fy(21) fy(22)[Fy(2) = Fy(2)M™2 2y < 2 (31)
The cdf for O (for iid ¥;’s) is then given by the following expression:

Fo(z) = l—/_xf flzy, za)deidzs (32)
= (1= Fy(=e)M1 + (F,M Y z) — (Fy(x) = Fy(~z))M-1)  z>0 (33)

The cdf for O for independent, but not identical ¥;’s, is given by the expression ( 32) with f(z1,z2) equal

to:
M-1

f(.?:;,ﬂ:r_)]: Z fy.(xl)fyj(rE) H Fyk(‘EE)_Fyk(xl) (34)

(4,7),i#] k=1k#i k]

=1



3.4 Probability of False alarm

In this section, we use the results of the previous section(s) to derive the expression for the probability that
a non-edge pixel gets labelled as an e pixel. We assume that the input to the detector is a sequence of
L1.d Gaussian samples with zero mea . ..ud variance o2,

The probability of falsely labelling a noise pixel as an edge pixel is given by: p= 1 — Fy (T), where T is
the edge strength threshold used, where Fo(T) is the cumulative distribution function for the edge strength
obtained when the ¥;’s are Gaussian with zero mean and variance 262, where o2 = a2/M.

3.5 Probability of Misdetection

Using the results obtained in previous sections, we can derive the expression for the probability of mis-
detection of the blur-min edge detector. Let the true gradient value (the slope of the ramp) be Gy. Let
the neighborhood size be M pixels. Assuming that the slope spans the entire neighborhood the gray val-
ues in the ramp can be written as: I + ((G,)i),i = 0,..., M — 1, where I; is the gray value in the left
most pixel in the window. We assume that the image values are corrupted with additive Gaussian noise
with zero mean and variance o2. We can see  t the X;’s in section ( 3.2) are nothing but Gaussian
random variables with mean I} + (G,i) and va...nce o®. The differences of X;’s, Y;’s, are also Gaus-
sian random variables with means, u;, and variance 202. Here the p;’s are specified by the sequence:
Gi(M—1)/2,G:(M =2)/2,...,G,—Gy,...,—G(M — 2)/2, =Gy(M —1)/2. Note that there are only M — 1
Y;’s, because the difference from the center pixel is zero. Since the Y;’s are independent, we can use equations
(22) and ( 23) to obtain the cdf’s for the minimum and maximum of ¥;’s. The derivation for the ¢df of the
output edge strength is analogous to the derivation in section ( 3.2). If Fp is the cdf for the output edge
strength, the probability of misdetection, when a threshold T is used, is given by:

Pmisdetection = Fo (T) (35)

As was seen in section ( 3.2) we need to numerically integrate f(z1,z,), the joint pdf of the minimum and
maximum of the random variables, in order to compute the above probability. When the noise standard
deviation ¢ is less than G/4, we can use the following approximation for computing the distribution of the
edge strength:

Prob(O < z) =1— Prob(Z, > 2,72 > 1) (36)

where Z; and Z; are independent random variables with cdf’s given Fz(z) by:

(M=1)/2
Prob(Z <z)=1- H ) (37)
i=1

Here Z; and Z» are the dilation and erosion residues. Hence the edge strength distribution is given by:

Prob(O <) =1-(1- F.(z))* (38)

The above simplification is possible because modes of the density functions for the Mth sample and the first
sample are well separated and the min and the maz of the samples may be considered to be independent of
each other.

When ¢ is comparable to &, then equation ( 32) will have to be used and the probability has to be
computed by numerical integration.

4 Theoretical Plots and Comparison

In this section we plot the theoretical and empirical false alarm and misdetection curves for the edge detectors
evaluated. We plot Ppisdetection and Pralseatarm against gradient or edge strength threshold T, for various

oo



noise variances 63. We also plot the theoretical operating curve Ppisdetection VS Ptalseatarm for these edge
detectors. The theoretical plots were obtained by varying/setting the values for the parameters in the ranges
specified below:

Ideal edge gradient values — 0, 3, 3.5, 4, 8, 10, 100

¢ Noise variance values — 1, 10, 25, 100

e Gradient threshold values - 0.1 to 50.0

o Iidge operator window size — 5 x 5, 3 x 3
o hysteresis threshold value — T5 = 0.5 % T3.

From the theoretical analysis, it is clear that gradient edge detection with hysteresis linking is superior to
gradient edge detection without hysteresis linking. As has been pointed out by Hancock and Kittler [4], the
output from the hysteresis linking algorithm may consist of short segments obtained due to correlated noise.
For a given threshold 77 the probability of false alarm with hysteresis linking is higher. This is expected
since we are admitting more pixels to be edge pixels based on contextual information. However, if T} is
sufficiently large, the false alarm obtained with hysteresis linking is comparable to that obtained without
hysteresis linking. The plots obtained confirm the above points.

Figure 1(a) gives the theoretical false alarm vs misdetection plot for a conventional gradient based edge
detector. The graylevel noise variance was set at 25, and a 5 by 5 window size was used. The true edge slope
was varied from 2 to 5. In a normal image only a fraction of the pixels are true edge pixels and hence the
absolute count of the number of pixels falsely labelled as edge pixels would be quite high. Figure 1(b) gives
the theoretical false alarm vs misdetection plot for the blur-minimum edge operator. Figure 1(c) gives the
plots comparing the detectors for an edge slope of 4.0, noise variance of 25 and window size of 5 by 5. It can
be seen that when the edge slope is equal to 4, the false alarm rate of the gradient based edge detector, for a
misdetection rate of 10% is approximately 2 percent. It can be seen that for a misdetection rate of 10%, the
corresponding false alarm rate for the blur-minimum edge detector when correlation effects (due to blurring)
are not considered is as much as 18%. But this value can be shown to be an upperbound for a range of
edge strength threshold values (Please see appendix A). Hence no quantitative statement about the false
alarm rate for the blur-minimum edge operator can be made. Figure 1(d) shows the comparison of the edge
detectors when a window size of 3 by 3 is used. It can be seen that the gradient based detector performs the
worst. An intuitive explanation for this is as follows: the blurmin operator uses "min” and "max” to estimate
the edge strength and as the sample size grows (i.e. the window size is bigger) the estimates for the min and
max will tend towards —co and co. Thus the estimated edge strength will be large, even though the noise
variance is not as high. On the other hand with the gradient based scheme, a larger the window size implies
better fit and the lesser variance for the estimates. Hence one would expect the false alarm probability to
decrease with increasing window size for the gradient based operator, whereas the probability would increase
(if one ignores effects of correlation) with increasing window size for the morphological operator.

In order to verify our theory we generated test ramp images with varying levels of additive noise and
plotted the false alarm vs misdetection characteristics. One such plot obtained, when the true edge slope
was 4.0 and the input noise variance was 100, is given in figure 2(a). Figure 2(a) shows that the performance
of the blur-minimum operator is the best. followed by the gradient based edge operator. The performance
of the blur-minimum operator (when noise is not correlated) is poor as predicted by theory.

From the expressions for the false alarm and misdetection probabilities for the morphological edge de-
tector, it is not easy to infer whether it is superior to the other detectors. Since the theoretical false alarm
characteristics only gives an overestimate on the probability of false alarm for the blur-minimum operator,
one cannot say anything about its superiority over the gradient based edge detection scheme. We are in
the process of computing the edge strength distribution, by taking correlation effects (introduced during
blurring) into account. Currently, our theoretical model assumes that the output after blurring is a ramp
edge with additive Gaussian noise. The added noise at each pixel is assumed to be i.i.d Gaussian samples.
We will address the effects of correlation between neighboring pixels in a subsequent paper.



Figure 3 illustrates the results obtained by applying the edge detectors on the Dr.Einstein image and the
brain image. The operator window size was set at 3 by 3 and the threshold varied. One can view both the
output from both edge detectors as estimates of the edge strength and the fundamental difference between
the two detectors is the way in which the edge gradient estimation is done. The morphological estimates
the edge gradient by a non-linear technique whereas the conventional least squares fitting method uses a
linear filter. In order to evaluate the detection schemes with real images we fix a particular threshold, T,
for the blur-minimum edge operator and then vary, T,, the threshold for the - ~dient based edge operator
until the same degree of false alarm (due to texture in the data) was obtaine. ¢ can be seen from figure 2
that the blur-minimum edge operator output captures more of the structure .u the brain image. Also, the
edges obtained by using the blur-min operator are thinner. A thorough evaluation of the performance of the
operators on real images can be done if the images were obtained by controlled experiments and if ground
truth information were available.

5 Conclusion

In this paper we gave a theoretical evaluation of the performance of gradient based edge detectors and
morphological edge detectors. The performance analysis was done by assuming an ideal edge model and a
noise model and by deriving expressions for probability of false alarm and probability of misdetection of edge
pixels. Under the Gaussian noise model assumption, the theory indicates that the blur-min edge detector is
superior to gradient based edge detectors when a 3 by 3 window is used. The empirical plots indicate that
the blur-min edge operator is superior when a 5 by 5 window is used, however the theoretical plots do nat
confirm this because the theory just provide an upperbound. We also see that hysteresis linking significaniiz
improves the misdetection rate, but the false alarm rate increases for a given gradient threshold. In our
analysis of hysteresis linking we assumed that the candidate pixels for the linking operator were grouped
based on similar orientation. The derivations for the probability distribution of the orientation estimate is
given in [9]. We can use those results in conjunction with our results to study the effects of the grouping
threshold and the gradient thresholds T\ and 75..
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A Upper bound for the Probability of false alarm of Blur-min
operator

In our derivation of the cdf of the edge strength, we stated that we ignored the effects of noise correlation
introduced by blurring. Assuming that the X;’s, inputs to the dilation and erosion operations, are indepen-
dent random variables, we derived the probability of false alarm of the morphological operator. Here we
show how the probability of false alarm obtained is an upper bound of the probability that will be obtained
when the correlation effects are considered.

Rather than giving a general proof we take a one-dimensional case and illustrate why this is true. Let the
number of pixels in the operator’s window be M (assume 2L + 1 = M). Let Z;’s be independent Gaussian
random variables with zero mean and variance o2 The X;’s may then be written as:

] Lt
Xe=ar D) Zm (39)
m=—L+4i
Then Xy — X;, 0< k < L is given by:
1 Ltitk —Litk—1
Xiar = Xi = o= E Zm— Y. Z} (40)
m=L+i41 I=—L+i

When the edge operator window is centered on pixel locations ¢ and ¢ + k£ the windows overlap. The above
expression just states that the difference between grayvalues at two pixels £ distance apart is given by the
difference between the sums of the Z;’s in the right and left non-overlapping areas. It can be seen that the
differences,(.X; — X;)’s (in the operator’s neighborhood) are given by:

B ¥ Ni4+Wen.s MFVedood ¥y You Yab¥os, YadVigh..¥g (41)

where the ¥;’s are independent Gaussian random variables with zero mean and variance 20%/M? (denote
density by fy(z)). To illustrate how these terms were obtained, let us consider Y. In this case, the operator
windows centered on pixel locations i+ 1 and i have Af — 1 pixels in common and the difference EMA;—Z;LL
is equal to ¥7. In general we set:

V- ZEsi4i — L Lyigi—1
=

M (42)
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and the differences X;4 — X; are equal to:

"
¥ k>0
i=1

-1
DY k<o (43)

i=—k

The cdf for the edge strength can then be obtained by using the joint distribution of the min and maz of
the random variables given in the equation ( 41).
Let us consider a window that is 5 pixels wide. Then the differences Nitg~X; fork=-2,-1,0,1,2 are
given by:
Yo, Ya4Y, 0 Y, Vi4+4% (44)

The random variables with the negative subscripts are independent of the ones with the positive subscripts.
[Tence we can think of computing the edge strength in two stages. First compute the edge strength O, that
corresponds to min(—min(Y_1,Y_; + Y_3,0), maz(Y_1,Y_1 +Y_5,0)) and then compute edge strength O,
that corresponds to min(—min(Y:,Y; + Y2, 0) ;maz(Yy,Y; + Vs, 0)). We can then take the minimum of the
two results to obtain O.

The joint density of the random variables Y] and Y5 + Y} is given by a multivariate normal distribution,
g(z1, z2), with zero mean and covariance matrix 3. The diagonal « ::tries are equal to 202 /M? and 4o,/ M?
respectively and the non-diagonal entries are equal to the covariances, 202/M?. The Prob(0 = 0), the
probability that the estimate of the edge strength is equal to zero, is given by the integral of g(z,,z5) with
limits for z; and z2 going from 0 to co. This integral can be shown to be greater than 0.5. When correlation
effects are ignored, the probability is 0.5. In addition, it can also be seen that the joint density function
(when correlation is used) for the minimum and maximum of the random variables Y1 and Y7 + Y3 is given

by:
M2 —(J}Q—- ;I,’l)")ﬂrfz (—($1)2M2 —-(.‘1‘32)2M2
flz1,z2) = Py exp ( i exp —-—ia—gu-—— +ezp (T ] (45)

This function decreases rapidly, compared to the joint density function for uncorrelated case, as r; and
zy increase. Hence the cdf: Prob(O <= T) for a given threshold is greater than, Prob(Oy, <= T), the
probability obtained by making the uncorrelated assumption. The probability, P(O > T), is given by:
P(Oy > T)P(Oz > T). Since we have upper bounds for each of these probabilities, we have an upper bound
for the final probability desired. This final probability is nothing but the probability of false alarm. This
illustrates how the theoretical expression for the false alarm probability obtained by ignoring correlation
effects is an upper bound of the actual false alarm probability.
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Figure 3: Results with real images: (a) gradient based operator, 3 by 3 window, T = 7, Image 1 (b) blur-min
operator (3 by 3 window, T=7), Image 1 , (c) Image 2 - gradient based operator ( 3 by 3 window, T=7 ),
and (d) Image 2 — blurmin operator (3 by 3 window, T=7 )
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