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Abstract

We describe several techniques to detect
corners in digital images which operate directly
on the gray tone image. These gray tone cormer
detectors are based on the facet model which
considers the pixels values in a given
neighborhood to be discrete quantized mnoisy
samples from an underlying continuous gray tome
intensity surface. Under this model any property
of the neighborhood 1is computed from that
continnous surface.

Among the various facet model corner detectors
proposed we find that the onme that performs best
is the one which considers a cormer point as an
edge point where incremental change in gradient
direction along & contour line exceeds a given
threshold and which wuses the nearest facet
neighborhood to each of the points tested om the
contour line. The next best is the simplest ome,
which measures the incremental change along a
tangent line and wuses only the central facet
neighborhood for all the points tested on the
tangent line.

We show experimental results indicating that
our corner detector performs better than the
Kitchen—Rosenfeld corner detector and the
Dreschler—Nagel corner detector using the
criterion of probability of correct assigmment.

I Introduction

The detection of cormers in images has been
shown to be extremely useful for computer vision
tasks. Huertas (1981) wuses cormers to detect
buildings in aerial images. Nagel and Enkelmann
(1982) use corner points to determine displacement
vectors from a pair of consecutive images takem in
time sequence. Much of the past research in
corner detection has relied on prior segmentation
of the image and subsequent eanalysis of region
boundaries. Rutkowski and Rosenfeld (1978)
provide a comparison of several corner detection
techniques along those lines,

More recent research has focused on developing
"'gray tome cormer detectors'’ which detect
corners by operating directly on the gray tomne
image. As Kitchen and Rosenfeld (1980) point out
the main advantage of such corner detectors is
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that their performance is not dependent on the
success or failure of a prior segmentation step.
Among the earliest such cormer detectors is
Beandet's DET operator (1978) which responds
significantly near cormer and saddle points.
Kitchen and Rosenfeld report results using several
operators which measure cornerness by the product
of gradient magnitude and rate of change of
gradient direction. Dreschler and Nagel (1981)
investigate points lying between extrema of
Gaussian curvature as suitable candidates for
corner points.

Our approach to cormer detection is based on
the facet model for digital images (Haralick
(1980}, Haralick and Watson (1981)). The basic
philosophy of this model derives from recognizing
that the discrete set of values which form the
digital image are the result of sampling and
quantizing a real-valued function f defined on the
domain of the image which is a bounded and
connected subset of the real plame. Thus, any
property associated with a pixel or a neighborhood
of pixel values should be evaluated by relating it
to the property of the corresponding gray tomne
surface f which underlies the neighborhood. This
involves estimating the surface function f
locally, from the neighborhood samples available
to us. The most natural way of accomplishing this
is by assumming & parametric form for f and thenm
estimating its associated parameters. In this
paper we have chosen to represent the gray tone
surface f by a cubic polynomial in the row and
column coordinates of the neighborhood array.

More precisely for each neighborhood f is of the

form:

f(r,c) =k, +k,r +k,c +k rz + k. ro + k6c2 (1)
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In this paper we investigate that property of a
pixel which we will call '’'cormermess’’., Suppose
for instance that we are shown aerial
photograph of a city and are asked to identify
cormers in it. Our attention would be likely
drawn first to objects such as buildings where the
concept of corners expresses itself very clearly
in a natural way. Two walls of a building meet
usually at 90 degrees and we would declare the
intersection point to be a cormer. But there are
other places where we would see cornmers as well,
where the shadows due to two adjacent walls meet,
vwhere two roads intersect, in a patch of field of
a certain shape, etc. In general what we are
usually inclined to call & corner occurs where two
edge boundaries meet at a certain angle or where
the direction of an edge boundary is changing very
rapidly. We sssociate corners therefore with two
things: the occurence of
changes in edge direction,

an

an edge and significant

These two concepts have a very straight—forward
and clear meaning under the facet model. Edges
under this model have been investigated by
Haralick (1980). In particular a step edge
operator based on zero—crossing of second
directional derivatives has been developed by

'Haralick (1982) with very encouraging results even

in such difficult imagery as aerial scenes. Edge
'direction is most naturally expressed as a
direction orthogonal to the gradiemt direction at
the point of occurremce of an edge.

Section II  describes the essentials  of
Haralick’'s zero—crossing of second directional
‘derivative step edge detector which we will use as
part of the cormer detection process. In section
III we describe several corner detectors based on
the facet model and in section IV we present our

experimental results and comparison against the
Eitchen-Rosenfeld and Dreschler—Nagel corner
detectors.

II Zero—Crossing of Second Directional Derivative
Edge Detection

wéﬂhder the facet model step edges occur at
rolative extrema in first directional derivative
of the continuous gray tone function f underlying

& given neighborhood of pixel values. Relative
oxtrema in first directiomal derivative can reveal
themselves as zero—crossings of the second
iirectional derivative. More precisely, a pixel
is marked as an edge pixel if in the pixel’s
immediate area there is & zero crossing of the
second directionmal derivative taken in  the

direction of the gradient (Haralick (1982)). It
has been shown that this kind of edge detector can
rulppnq to weak but spatially peaked gradients,
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Given a surface function f defined in the row

and column coordinate system of a given pixel
neighborhood, the gradient vector function vf is
given by

a0 L af af

vi = (—n-") (2)
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For a given direction vector (sin®, cos@),
well known that the directional
f' (r,c)
as the compoment of the

direction vector, that is

it is
derivative
of f in the direction © can be evaluated
gradient Ve along the

of af
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Using (2) om f£'_(r,c) the second directional

derivative £'' (r,c) of f in
be readily eva?uated as:
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the direction © can
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on a line passing

through the point (r.c.) in the direction ©.
070
Then:
(5)
r=r1,+ psin@, ¢ = ey * P cos@
We take @ to be the gradient angle at (rooo).
Hence
af/ar (r ,c,)
0 = tan Lt (6)
af/ac (roco)
Using the cubic polynomial approximation of
f given by (1) gradient angle © becomes:
2 2
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Hence, we declare the point (rD,co) to be an edge

point if for some p, |p|(p0 where Py is

slightly smaller than the length of the side of a

pixel, f"e(ro,coip) = 0 and f'e(ro,coip) # 0.

III Corner Detectors

As previously discussed, under the facet model
corners occur at edge points where a significant
change in gradient direction takes place. Now,
this change in gradient direction should ideally
be measured as an incremental change along the

We do not desire, however, to

following since that would
segmentation step. There are
have tried to circumvent
this problem based on the realization that
according to our model the direction of an edge
point, that is the tangent to the edge boundary at
that point, is orthogonal to the gradient vector
at that same point. The simplest approach is to
compute the incremental change in gradient
direction along the tangent line to the edge at
the point which is a cormer candidate. The second
approach is to evaluate the incremental change
along the contour lime which passes through the
corner candidate. Finally we can compute the
instantaneous rate of change in gradient direction
jn the direction of the tangent lime. In what
follows we investigate each of these approaches,
In all of them the analysis is based on a
continuous surface f obtained by least squares
fitting an NxN square neighborhood centered around
the corner candidate pixel to the cubic polynomial
described in (1).

edge boundary.
perform boundary
require a prior
several ways in which we

The properties of those points away from the
neighborhood center and possibly outside the pixel
itself have been computed by two different
methods: a) nusing the surface fit from the
central neighborhood b) using the surface fit from
the neighborhood centered around the pixel closest
to the tested point.

Although the first method is computationally
less expensive than the second ome the possibility
of better accuracy exists in the second one.

III.1 Incremental Change Along Tangent Line

Consider a row—column coordinate system
centered at the cormer candidate point. Let
0(r,c) be the gradient at coordinate (r,c) and let
6. =6(0,0). Then (sin®_,cos0.) is a unit vector
in the direction of the gradieént at the origin.
If the origin is an edge point, the tangent line
to the edge boundary which passes through it has
direction given by (-cosO_,sin®_ ) and an arbitrary
point lying om that line is p(—coseo,sineo).
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Consider two points P_ = (r_,c.) P, = (r.,c.)
equidistant to the origin and lyin% on %he tangent
line. (See fig. 1).

(rz,c)

(o,0)

e

6

( ﬁ: C1)

Fig. 1
P, and P, are given by —R(coseo,ainﬁ ) and
R%-cosﬁ ,s1n00) respectively where R° is the
distancé from each point to the originm. If R is
not too large we can expect the true boundary to
lie not too far away from either P, or P,. In
this case & suitable test to decide whet%ar the.
origin (0,0) is a cormer point would involve
meeting the following two conditions:
(1) (0,0), (rl,c ), (r;,c,) are edge points
(2) For a given threshold™ 0
lotz ,e ) — 0,01 > @

III. 2 Incremental Change Along Contour Line

It is reasonable to assume that points on the

edge boundary to each side of the cormer point and
close to it are likely to have similar gray tome
intensities. This motivates us to approximate.the
edge boundary by the contour line f(r,c)=£(0,0)
which passes through the corner candidate point at
the origin of the coordinate system.

We consider two points P, = (r,,c,) and
P, = (rz.c ) equidistant to the “origin and lying
on the con%our line instead of the tangent line as

in III.1. (See fig. 2). Let 6(r,c) be the
gradient direction at coordinates (r,e).
The test to decide whether the origim (0,0) is a

is similar to the one used in the
That is, (0,0) is declared to
the following two conditions

corner point
previous approach.
be & cormer point if
are satisfied:
(1) (0,0), (rl,c Y (rz.cz) are edge points
(2) For a given %hreshold 1]

le(r,,c,) - 08(x,,c,)| >0
This approach is Computationally more
than the previous one due to the

expensive
need of
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Fig. 2

intersecting the cubic curve f(r,c) = f(020)2 (thE
| contour line) with the quadratic curve r +¢” = R

in order to determine the points P1 and I’2 a
| distance R from the origin.

III. 3 Instantaneous Rate of Change

Let ©(r,c) be the gradient directiom at
coordinates (r,c) and let G'u(r,c) be the first
directional derivative of €(r,c) in the direction

a; We can compute S'G(r,c) as follows.

Let f(r,c) be the surface function underlying
the neighborhood of pixel values centered at the
corner candidate pixel, Let f (r,c) and f (r,c)

denote the row and column partial derivatives of
f. Consider the line passing through the origin
in the direction a. An arbitrary point in this
line is given by p(sina,cosa) and the
gradient direction at that point is given by

(9)
: fr(psinu, pcosa
8(psina, pcosa) =
i fc(psina, pcosa)
which can be written as:
@4 (10)

rs B(p) = fr(p)/fc(p)

‘Differentiating with respect to the parameter p
results in

4 (11)
fc(p)f (p) - fr(p)f’c(p)

2 2
(£ (o))" + (£_(p))

Using the cubic polynomial approximation
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for f given in (1) we have:

fr(p) =&y * (2k4sina + kscosp)p
i 2 g 2 2
+ (3t7sxn a + lkssznacosa + kgcos a)p
fc(P) =k, + (kssinn + stcosa)p

+ (kssinzu + 2kgsinacosu + Sklocosa)pz

f'r(p) = (2k4sina + kscosa)
+ 2 (3k7sin2a + ZkSsinucosu + kgcoszu)p
’ =
f c(p) (kssina + 2k600sa)

. 2 :
+ 2(k851n a + 2k9s1nacosa + 3k10cosa)p

the rate of change of gradient directiom

in the direction a evaluated at the
origin (p=0) is then:

(12)
57 T = k,(2k,sinatkcosa) + k,(kcsina + 2k cosa)
a 2 2
kz + k3
We are interested in the value of Q'E(O) when
the direction a is orthogonal to the gradieat
direction at the origim (the edge directionm).
Since (kz,k ) is the gradient vector at the
origin, (=k, k,.) is a vector orthogonal to it, amnd
3772
(13)
= -2 _
a = tan kslkz
Finally using (13) in (12) we obtain
5 2 (14)
, _ —2(k2 k6 - k2k3k5 + kg k4)
@ a(o) - 2 2.3/2
(k2 + kg, )

The test to decide whether the origim (0,0) is
a corner point is as follows. We declare (0,0) to
be a corner point if the following two conditions
are satisfied:
(1) (0,0) is an edge point

(2) For a given threshold @

ler(o) | » a.
a



IV Experimental Results

We evalnate the performance of the wvarious
facet model based gray tome cormer detectors by
applying them to two digital images. The first
one represents a set of artificially pgenerated
rectangular shapes at varions oriemtations. The
second one is & real aerial image of an urban
scene. The first image is 90x90 pixels and
contains rectangular shapes of 20x20 pixels with
orientations ranging from 0 to 90 degrees in 10
degrees increments. The rectangles have gray tome
jntensity 175 and the background has gray tome
intensity 75. Independent Gaussian noise with
zero mean and standard deviation 10 has been added
to this image. Defining the signal to noise ratio
as 10 times the logarithm of the range of signal
divided by the standard duration of the noise, the
artifically generated image has a 10DB signal to
noise ratio. The perfect and noisy versioms are
shown in figure 3.

Section IV.1 illustrates the performance of the
various facet model based gray tone cormer
detectors. Section IV.2 compares the performance
of the best facet model based gray tome cormer
detector against the performance of the best
Kitchen—Rosenfeld gray tome corner detector and
the Dreschler—Nagel cormer detector. It is shown
that the facet model based gray tome cormer

detector performs best on the basis of probability
of correct assignment.

IV.1 Facet Model Based Corner Detectors

Figure 4 (a), (b), and (¢c) illustrates the
results of applying each of the cormer detector
techniques discussed in section III to the
artificially generated noisy image. In all cases
the neighborhood size is 7x7 pixels. The gradient
threshold for edge detectiom is 20. If the
gradient exceeds the threshold value and =a
zero—crossing occurs in a direction of + 14.9
degrees of the gradient direction within a circle
of radius ome pixel length centered at the point
of test them this point is declared to be an edge
point.

Also shown are the incremental change in
gradient angle threshold for each of the cases.
Two types of angle threshold have been used. The
first type maximizes the conditional probability
of assigning a cormer given that there is a
corner. The second type of threshold was chosen
to equalize as best as possible the conditional
probability of assigning a cormer given that there
is 8 cormer and the conditional probability of
these being a true corner whem a corner is
assigned.

A true corner is defined as the interior pixel
in the rectangular shape where two adjacent sides
meet. Table 1 shows the probability of correct
corner assigmment for each case, as well as the
angle thresholds. This table shows that the

method which performs best is the onme which
measures changes in gradient direction as
incremental changes along a contour line and which
computes properties of points away from the
neighborhood center using the surface fit from the
neighborhood centered around the pixel closest to
the tested point. Surprisingly the simplest facet
method which uses incremental changes along the
tangent line and properties from the centered
neighborhood performed next best. We also notice
from table 1 in order to detect most of the true
corners a significant rate of misassignment
occurred. For most methods illustrated in table 1
only ome out of every five pixels assigned 2
corner is a trme corner assigmment, Fortunately
all misassigned points occur in connected clusters
one or two pixels away from the trme cormer
points, and the true cormer points belong to the
cluster. This leaves open the possibility of
eliminating the misassigned points by further
processing.

IV.2 Comparison ¥ith Other Gray Tone Corner
Detectors

The performance of the best facet model based
corner detector according to Table 1 has been
compared against the performance of two recently
developed gray tone cormer detectors: the
Kitchen-Rosenfeld cormer detector (1980) and the
Dreschler—-Nagel corner detector (1982).

Eitchen and Rosenfeld investigated several
techniques for gray tome cormer detection. Each
onme computed for every pixzel im the image =&
measure of cornerness and then corners were
obtained by thresholding. Their best results are
obtzined by measuring cornerness by the produet of
gradient magnitude and instantaneous rate of
change in gradient direction evaluated from =&
quadratic polynomial gray tome surface fit.

Dreschler and Nagel detect cormers by the
following procedure: For each pixel in the image
compute its Gaussian curvature. This is domne by
doing a local quadratic polynomial fit for each
pixel and computing the Hessian matrix. The
Gaussian curvature is the product of the main
curvatures (eigenvalues of the Hessian matrix).
Next, locations of maximom and minimum Gaussian
curvatures are found. A pixel is declared to be 2
corner if the following conditioms are satisfied:
(1) It has the steepest slope along the lime

which comnects the location of the maximum
with the location of the minimum of Gaussian
curvature. (This is dome only for extrema
lying within a given radius from the cormer
candidate pixzel.)

(2) The gray tone intensity at the location of
maxrimum Gaussian curvature is larger than the
gray tone intensity at the location of
minimom Gaussian curvature.

{3) The oriemtation of the main curvature which
changes sign between the two extrema, points
into the direction of the associated
extremum.,



 obtaimed by
 detectors to the

Figure 5 (a) and (b) illustrates the resunlts of
applying the facet model based, Kitchen—Rosenfeld,
and Dreschler—Nagel gray tonme corner detectors to
the artificially generated noisy image. In all
cases we use a cubic polynomial fitting omn a 7x7
pixels mneighborhood. A slight modification of
Eitchen-Rosenfeld corner detector is also reported
which allows to consider only points whose
gradient exceeds a given threshold. This results
in a suobstantial improvement of the original
Kitchen-Rosenfeld method. The Dreschler—Nagel
corner detector showed to be the most semsitive to

| noise and also a gradient threshold had to be used

to improve its performance. Since all three
methods being compared use the same cubic
polynomial surface fit and the same 7 x 7 pixels
neighborhood size, the same gradient threshold of
20 was wused in each of them to minimize the
effects of the noise. The search for Gaussian
curvature extrema was done in a 515 neighborhood.
Table 2 shows the probability of correct cormer
assignment for each case. The best results
according to this table are obtained by using the
facet model based cormer detector, next comes the
Kitchen—Rosenfeld corner detector. The
Dreschler—-Nagel corner detector performs the

‘worst.

the results

corner
cases we
x 7 pixels

equal to

Finally figure 6 illustrates
applying each of these
aerial image. In all
polynomial fitting on a 7
Gradient thresholds are

use a cubic
neighborhood.
16.

V Conclusions

We have investigated various approaches for
gray tome cormer detection which are based on the
facet model. We have compared their performance

with Kitchen—Rosenfeld and Dreschler—Nagel gray
tone corner detectors. We found that for both the
artificially generated and the real image the

facet model based gray tome corner detector had
superior performance.

Further work needs to be done. We need to
explore the relationship of basic function kind
(polynomial, trigonometric polymomial, etec.),
order of fit, and mneighborhood size to the
goodness of fit. An statistical analysis of each
of the techniques described needs to be developed.
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Fig. 4(a) shows the corner assignments for the facet
method which uses incremental angle change along a
tangent line. The ones on top use the same central
neighborhood for all tested points. The ones on the
bottom use the neighborhood centered around the
pixel closest to the tested point. Two types of angle
threshold are illustrated, the ones on the left maxi-
mize the conditional probability of assigning a corner
given that there is a carner, the ones on the right
equalize as best as possible this probability with the
conditional probability of there being a true corner

when a corner is assigned. Parameters are in Table 1.

Fig. 4(b} Same as in fig. &(a) but using incremental
angle change along a contour line.

Fig. 5(a) shows in clockwise order from top-left the
corner assignments for the best facet model, the
Kitchen-Rosenfeld ( with and without gradient thres-
hold ) and the Dreschler-Nagel corner detectors.
Parameters are in Table 2. The thresholds used in
each case maximize the conditional probability of
assigning a corner given that there is a corner.

Fig. 5(b) Same as in fig. 5(a) but thresholds used
equalize as best as possible the conditional probability
of there being a true corner when a corner is assigned.
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Fig. 4(c) shows the corner assignments for the facet
method which uses instantaneous rate of change of
gradient direction in a direction orthogonal to the
gradient direction. Two types of rate of angle change
threshold are illustrated, the ones on the left maxi-
mize the conditional probability of assigning a corner
given that there is a corner, the ones on the right
equalize as best as possible this probability with the
conditional probability of there being a true corner
when a corner is assigned. Parameters are in Table I.

Cradlait thirsshald Max Plac/tc) Plac/tc) = Pltc/ac)
= Angle Angle
Plac/tc) | P{tc/ac) thrgesh Plac/tc) | P(tc/ac) the§h
Incremental change
along tangent line, | 0.972 0.210 40° 0.273 0.250 55°
central neighborh.,
increment=3.5pixels
Incremental change
along tangent line, | 0.917 0.192 50° 0.111 0.108 80°
nearest neighberh.,
increment=3. 5 bxels
Incremental
along contour line, | 0,972 | 0.199 | 45 | 0.278 | 0294 | e3¢
|| central neighborh.,
increment=3. 5pixels
Incremental change
| along contour line. 1.000 o
s neighborh.’, 0.207 65 0.361 0.361 94°
| increment=4pixels
Instantaneous rate | g972 | o139 | ¥/ o 16*/
B . L.083 0.07
of change pixel 4 pixel
Table | compares the performance of the facet model based corner

detector_s. Plac/tc) is the conditional probability of assigning a
cotner given that there is a corner. P(tc/ac) is the conditional
probability of there being a true corner when a corner is assigned.

Max Plac/tc) Plac/tc) = Pltc/ac)
= Plac/tc) P(tc/ac) Plac/tc) P(tc/ac)
_‘ jb.ut facet modet

Corner detector 1.000 0.207 0.361 0.361
"“Kltchen-Rosenfeld

‘o gradient threshc’J!d 0.972 0.071 0.055 0.021
.:KitCi_‘len.Rosenfeld,

gradient threshald < 20 0.972 0.l46 0.055 0.050
Dreschier-Nage,

gradient threshoid < 20 | 0-222 0.023 0.055 0.059

Tabie 2 com,
pares the performance of the best facet odel
detector with the Kitch e il
b i en-Rosenfeld and the Dreschler-Nagel
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Fig. 6 compares the corner assignments in the aerial
scene for the best facet model, the Kitchen-Rosenfeld
( with and without gradient threshold ) and the Dresch-
ler-Nagel corner detectors.



