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Abstract

Computer vision algorithms are composed of differ-
ent sub-algorithms often applied in sequence. Deter-
mination of the performance of a total computer vision
algorithm is possible if the performance of each of the
sub-algorithm constituents is given. Performance here
does not mean against a user criterion. Performance
here is in terms of a complete statistical characteriza-
tion of the random perturbation on the output of a
sub-algorithm as a function of the random perturba-
tion on the input to the subalgorithm.

We have done performance characterization for a
variety of edge detector and edge-linking schemes and
for a maximum a posteriori probability corner detec-
tor. And the theoretical results agree with the ob-
served experimental results. In addition we have done
some theoretical work with the operations of math-
ematical morphology and we have done an extensive
amount of annotation on the RADIUS Model-Board
Images in order to be able to permit comparisons be-
tween theory and experiment.

1 IU Performance Characterization

In the ideal world for quickly designing algorithms
for Image Understanding, there would be for each al-
gorithm step a performance characterization. This
performance characterization would be something like
a reference data sheet for an integrated circuit. It
would give expressions by which the values for the
parameters of the distribution for the random pertur-
bation on the output given the parameters of the dis-
tribution for the random perturbation on the input,
could be determined for any given description for ob-
Jject and background or clutter.

To then design an algorithm that solves a new task,
a data set of representative images would be given.
From this training set, the appropriate parameters of
the random perturbation processes for the objects of
interest and for the clutter would be estimated. These
estimates combined with the performance characteri-
zation expressions for any algorithm step would then
be utilized by the Image Understanding engineer. The
engineer would input these into an appropriate com-
putational optimization tool to design an algorithm
sequence and determine the values for the associated
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algorithm tuning parameters to solve the new task as
well as be able to estimate the performance of the de-
signed algorithm in the specified application domain.

This is the end goal of performance characteriza-
tion. The theoretical work of performance character-
ization involves choosing appropriate stochastic mod-
els so that expressions may be derived that express
the relationship between the parameters governing the
output random perturbation process in terms of the
parameters of the input random perturbation process,
the algorithm tuning parameters and the distribution
of the parameters of the image population in the ideal
world.[3]

To do this requires first annotating image data sets
for the purpose of validating the stochastic models and
estimating the values of the random perturbation pro-
cesses active on the image. We discuss the annotation
we have been doing in the next section. Then we dis-
cuss the kinds of feature extraction algorithms we have
been exploring to give a sense of how the probabilities
related to the output random perturbation process can
be derived. We are working not only on operations
such as edge detection, edge linking and corner detec-
tion, but as well we are understanding how finite ran-
dom sets propagate through mathematical morphol-
ogy operations and how to calculate uncertainty in
3D inference algorithms using one or more perspec-
tive projection images. Related to this work we have
developed expressions for calculating the covariance
of any computed quantity that minimizes a given ex-
pression with or without constraints. The calculated
covariance does not depend on how the minimization
is done, only on the expression being minimized and
the constraint expressions, if any. And we have worked
out experimental protocols for validating a stochastic
model.

2 Image Data Annotation

To support the estimation of input random pertur-
bation process parameters, we developed a protocol for
use in annotating the Radius model board I, J, and K
images. On each image we have appropriately labeled
all the building and non-building boundaries. As well
we have located the coordinates of all ground control
points on all images. Finally, we have located all the
building vertices of all buildings on all K images.[7]
We are currently working on locating all the building
vertices of all the [ and M images.



From the labeled annotated images we have been
able to determine the gradient distribution of the
building boundaries and the non-building boundaries.
They are different. Likewise we have been able to
measure the variance of the perturbation for areas of
building boundaries and areas of non-building bound-
aries. We have also been able to determine the distri-
bution for the angles between adjacent line segments
of buildings and non-buildings. And we have been able
to determine the line-length distributions for building
lines and non-building lines. Knowing this kind of in-
formation then influences the parameters in sucessive
feature extraction algorithms.

3 Feature Extraction

We have been exploring feature extraction algo-
rithms for edges,[5] edge-linking, boundary detection,
and corner detection.[8] We have been able to analyt-
ically propagate the random perturbation of the im-
age input data through edge detection, linking, and
boundary extraction as well as corner detection. As a
result of this theoretical work, we have defined the ba-
sis for a better building boundary detection algorithm
than has been previously available.

With regard to edge detection, it is well known that
for edge boundaries having gradient magnitude g, the
distribution for the estimated squared gradient mag-
nitude 32 times N?(N —1)(N +1)/0? is a non-central
x? with 2-degrees for freedom and with non-centrality
parameter g?/o%, when the estimated gradient magni-
tude is computed over a N x N neighborhood, N odd.
And if the clutter is modeled by independent Gaussian
Noise with variance o?, then the edge detection false
alarm rate p; is given by
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where T is the gradient threshold.
We have derived the theoretical expression for the

distribution of the estimated gradient direction € as a
function of the true gradient magnitude, g, the true
gradient direction, @, the estimated gradient magni-
tude, g, the noise variance, o2, and the neighborhood

size, N x N, N odd. § is distributed as a Von Mises
distribution:
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These results imply that even for signal to noise
ratios for which the gradient magnitude estimates
are reasonable close to the true gradient magnitude,
the estimated gradient direction can have excessively
large variance. Therefore, special care must be taken
when employing estimated gradient directions in edge-
linking or boundary detection algorithms. It is this

fact which has led us to combine the estimated gradi-
ent magnitude in narrow elongated directed neighbor-
hoods for determining a more stable estimate of the
gradient direction.

We have also examined the hystersis edge-linking
performed by the Canny edge detector. We have de-
termined that the probability p. that an edge is cor-
rectly detected can be expressed in terms of the high
threshold 77, the low threshold 75, the cumulative
probability distribution P for the estimated gradient
g and the neighborhood size W,

pe=1-P(g < T\)+[1-Plg < )V NPTy < g < T})

Having these and related kinds of probabilities, we
can determine the length distribution for detected
chains of edge pixels that are really boundary chains
and the length distribution for detected chains of edge
pixels that are due to clutter. This then makes it
possible to select an intelligent (optimal) chain length
threshold in terms of the prior distribution of true edge
chain lengths, the noise variance of the clutter, and the
noise variance around the true edges.

We have developed a corner detector which esti-
mates a corner to be that point on the input digital
arc whose a posteriori probability of being a corner is
the maximum among all the points on the arc segment
around the point. The detection procedure involves
sliding a context window of specified length over the
sequence of pixels constituting the arc segment, and
doing a line segment fit for each of the two segments
starting at the hypothesized corner and ending at one
or the other end of the context window. The a poster:-
ori probability of a corner is then calculated by using
the prior information about corner included angle and
adjusting the previously calculated fitting parameters
so that the parameter values are found that maximize
the a posteriori probability of the point being a corner.

We have theoretically determined the false alarm
and misdetect rate performance of the corner detector
analytically and in and extensive set of experimental
trials found these results to be comparable to those
measured experimentally.

4 Random Perturbation Propagation

We have explored the propagation of random per-
turbations through a variety of different kinds of al-
gorithms and in terms of basic models that are appli-
cable to multiple kinds of algorithms. For example,
many vision algorithms employ some sort of optimiza-
tion. The result that is calculated is a value that mini-
mizes a given criterion function. Whether the problem
has the form of an unconstrained minimization of con-
strained minimization, we have derived expressions for
the covariance of the computed result as a function of
the covariance of the input data. Our result does not
depend on knowing any explicit form for how the op-
timization was done.[1]

In addition we have explored propagating random
perturbations through morphological operations of di-
lation, erosion, opening, and closing. Here, our results
are in terms of bounding the probability that a ran-
dom set is contained in a given set. Here our work



is with perturbations that act as additive or act as
subtractive noise in binary images.[2]

5 Validation

Since we have an emphasis on estimating the pa-
rameters of a random perturbation process, there is
the issue of validating the model of the random pertur-
bation process. Here our questions have been relative
to how to test that the observed data follows the ran-
dom perturbation model we are using, whether that
data be image input data, or whether that data be
some intermediate form that is calculated by a vision
algorithm. To do this we have developed experimental
protocols using both real and synthetically generated
image data.[3]

6 Inverse Perspective Inference

Inverse perspective inference has to do with infering
the 3D geometry of objects based on models or par-
tial models and observed image data in one or more
images. Because this is a geometry based area, we
work with points and lines and conics. Partial object
models are specified in terms of relationships existing
between points, lines, and conics. At this time we are
incorporating all distance, and angle relationships that
can exist between points and points, points and lines,
points and planes, lines and lines, lines and planes and
planes and planes.[-ﬂl]hThe general form of the problem
for this inference is then a non-linear constrained least
squares problem. An example of this kind of a prob-
lem is: given the 2D observed perspective projection
of vertices of some building, where the faces of the
building are assumed to be planer and the angles be-
tween the intersecting building faces are given, and
given the exterior orientation for all the images in the
observation image data set, and given the covariance
for all the observations and all the exterior orientation
parameters, estimate the 3D location of all building
vertices , where the estimated 3D positions satisfy the
constraints in terms of which 3D points must lie in
the same plane and the intersecting planes having the
user specified angles.

7 CD-ROM

Because of the importance and the usefulness of
fully annotated data sets, we are collecting all the an-
notations which we have done and organizing them
to be issued on a CD-ROM. In addition to the Ra-
dius images and their annotations, we include derived
information such as the exterior orientation for all
images,  the government supplied 3D ground control
points, and the additional building vertices that we
have located by triangulation. Alsc derived informa-
tion about the random perturbation processes will be
included. Such information will be relative to noise
variances, gradient distributions, line-length distribu-
tions, angle distributions, and gap distributions for
building and non-building objects.

Formats for this kind of information will be con-
sistent with IUE specifications and for that kind of
information permitted by Radius will appear in a Ra-
dius format as well.

8 Conclusions

Exploring computer vision algorithms from this
point of view leads to insights about the design of bet-
ter algorithms as well as making possible the optimal
settings of algorithm tuning parameters to optimize
the expected value of a specific user criterion function
at the last algorithm stage. This becomes possible be-
cause the expected performance is just the average of
the criterion function taken over the distribution that
describes the output random perturbation. And it is
this distribution that is determined from the theoret-
ical work.fG%

We are also led to a shift in emphasis: we must pay
more attention to having good models for the ideal
world and good models for the perturbation of the
ideal world. Therefore, we must commit ourselves to
more data gathering of input images and suitable an-
notate those images so that estimates can be made of
the parameters governing the input random perturba-
tion process.

References

[1] R. Haralick, Propagating Covariance In Com-
puter Vision, ICPR-94, Jerusalem, 1994.

[2] R. Haralick, S. Chen, and X. Zhuang, Finite Ran-
dom Sets And Morphology, ICPR-94, Jerusalem,
1994,

[3] R. Haralick, Performance Characterization Pro-
tocol in Computer Vision, IUW94,

[4] X. Liu, A. Bedekar, and R. Haralick, Optimzation
Methods For Estimating 3D Object Parameters,
TUW94,

[5] V. Ramesh and R. Haralick, An Integrated Gra-
dient Edge Detector: Theory and Performance
Evaluation, ITUW94.

[6] V. Ramesh and R. Haralick, A Methodology For
Automatic Selection of IU algorithm TUning Pa-
rameters, [UW94,

[7] K. Thornton, D. Nadadur, V. Ramesh, X. Liu, X.
Zhang, A. Bedekar, R. Haralick, Groundiruthing
The RADIUS Model-Board Imagery, [UW94,

(8] X. Zhang, R. Haralick. V. Ramesh, A. Bedekar,
A Bayesian Corner Deteclor: Theory And Per-
formance Evaluation, TUW94.



