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Abstract — This paper presents a technique for transla-
tion invariant binary convex polygon shape recognition
based on a morphological shape decomposition. The tri-
angle shape primitives from the decomposition of convex
shapes are used as features for shape recognition. The
shape primitives are smaller and simpler than the tem-
plates of shapes, thus they are more eflicient in
representing shapes for discrimination. Maximum
entropy reduction is used as an optimization criterion for
selecting features from among the shape primitives at
each node of a decision tree. Experiments on the
classification of 10 classes of noisy polygon shapes, where
5 replications per class were used for training and 50
replications per class were used for testing, achieved a
recognilion rate of 98.80% on the test set.

I.INTRODUCTION

Mathematical morphology is a natural processing
approach for image object identification sinee it is a
technique based directly on shape [1]. Shape recognition
using morphology demands systematical methods of
selecting features {rom a given set of shapes to be
classified. The problem approached in this paper is
based on the morphological decomposition of convex
shapes [2.3]. As an inherited characteristic from morpho-
logical operations, the recognition technique is shape-
translation invariant. The recognition svstem is a deci-
sion tree classifier. The shape primitives from the decom-
position are used as features at nonterminal nodes. The
appeal of this approach lies in the fact that the shape
primitives are smaller and simpler than the templates of
shapes, and they can be generated automatically using
the decomposition technique. For efficient classification,
maximum entropy reduction is used as a criterion in
selecting features from among all shape primitives [4,5].
Although the system works on convex polygon shapes, it
is of practical value since complex shapes can be decom-
posed into their convex pieces [6]. Thus the algorithm
described here can be those for a subsystem of a complex
shape recognition system.

This paper is organized into 6 sections. In Section 2,
the background materials on morphological operations
and decision tree classifiers are provided. The basic ideas
of recognizing shapes using morphological shape decom-
position is given in Section 3. The algorithm for the con-
struction of the decision tree is in Section 4. In Section 5
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the experimental results are provided, and Section 6 con-
tains a concluding discussion.

II. BACKGROUND

Morphological Operations

Morphological operations are defined on sets in E¥.
Sets in £? correspond to the foreground regions in binary
images. Let P€£? be the image undergoing analysis,
S€EE? be the structuring element, and let the translation
of P by s€S be denoted by (P),, i.e.,

(P)y ={PEE*|p =p + s for some peP ).

The morphological operation of dilation, erosion, and
opening of P by § are defined as follows [1]:

Dilation: P @ § = U(P Vi

s€S
Erosion:. P @58 = N (P),,

scs
Opening: PoS =(P ©05)@ § .

From shape transformation point of view, dilation is a
shape-expansion operation. erosion is a shape contraction
operation, whereas opening is a compound shape
transformation defined as the erosion of an image fol-
lowed by the dilation of the eroded result. The opening
of an image corresponds to an elimination of foreground
image details smaller than the structuring element
without introducing global geometric distortion of
unsuppressed features. If P is unchanged by opening it
with S, we say P is totally openable by §; if the open-
ing results in an empty set, then we say P is not open-
able by §.

Decision Tree Classifier

The decision tree classifiers are well suited to a
feature based recognition system, where successively
more features can be utilized to discriminate more and
more detailed differences between objects through a
hierarchical decision procedure. Theoretical guidance to
the design of a decision tree classifier is available in [4],
where a purity function describing classification purity
was defined as a quantitative measure for optimizing the
threshold of decision rules at each nonterminal node,
The maximization of the purity function is shown in [7]
as including the maximization of the entropy reduction
in a recognition system as a special case. In this paper
we use the entropy reduction as the criterion for select-
ing features at each nonterminal node.
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We consider a non-overlapping decision tree
classifier. Assuming that at the root node there are N
classes of objects and each class has the same number of
training samples. A decision rule is applyed at the root
node to split the training samples into descendent child
nodes, each corresponding to a decision region. For a
non-overlapping decision tree, the decision boundaries
are constrained such that no training samples of the
same class will be split into different child nodes. If at
any child node, there are training samples from more
than one class, a decision rule at that node is then
applied to further split the training samples into the
children nodes of that node; if a child node has training
samples from only one class, then it becomes a terminal
node. This process is repeated until N terminal nodes
are generated, each being associated with one class.
Specifically, consider the jth node of the decision tree,
Tet NU) be the number of possible classes for a training
sample at the node, h; be the number of decision regions
produced by the decision rule at the node, nq(j) be the
number of shape classes in the ¢th decision region, the
entropy reduction due to the expansion of the node j
into the h; child nodes is then defined as (7,5]

AHY) = jogNU) - hz ngt?)
g=1

i)
NG log nt7/ .

This measure of entropy reduction is used in the work of

this paper.

III. SHAPE DISCRIMINATION
Decomposition of Convex Polygon Shapes

It was shown in [2] that any convex polygen shape
in the real plane R? is decomposable through dilation
into triangles ( line segments are considered as special
cases of triangles). Let P be a convex polygon shape in
R% and S;,1 < i < n, be the triangles from the decom-
position of P, then P can be represented as the succes-
sive dilations of these S;'s, i.e.,

=595, - @5,
We call the triangles 5;, 1 < 1 < n, the shape primitives
of P. Fig. 1 illustrates the decomposition of a polygon
P into a line segment S, and three triangles S,, S3, and
Sy For details about the decomposition procedure we
refer readers to [2].

Fig. 1 A convex polggon P is decomposed into 4 shape
primitives S, through 5.

To decompose a polygon shape P in the discrete
plane Z?% we first map P to the real plane R™
P — C(P), then decompose C(P) into C(S,), C(S.),

-, C(S,), and finally we map the shape primitives
back to the Z* plane: C'(S;) — S, i =1, - ,n. The
mapping of a polygon shape from Z? to R? is taken as a
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convex hull transformation: and the mapping of the
shape primitives from R? to Z? is a sampling on the
image grid points. For some problems of the sampling
effect on shape decomposition see [2,7] for details.

Discriminating Shapes Using Shape Primitives
The idea of using shape primitives for shape

discrimination is based on the following pair of proposi-

tions [1]:

(1). PoS C P

(2). If P=S5;@ 5, then PoSy(orS,)=P.

This pair of propositions indicate that if a shape is
decomposable through dilation into a set of shape primi-
tives, then it is totally openable by any of its shape
primitives, but it is not openable or not totally openable
by shape primitives that do not belong to any of its
decomposition. When we refer that a shape primitive
belongs to a decomposition, we also imply those that are
similar to the shape primitive but are of smaller sizes.
The normalized opening residue measures the degree of
matching of a shape P to a shape primitive §, e,

r=1-#(PoS)/#(P),

where # (X) means the number of pixels in the shape X
having value of 1. If § is a shape primitive of P, then
r = 0; otherwise 0 -2 r < 1. The normalized opening
residue can thus be used as a discriminant function in
the decision tree construction.

The distance between opening residues of distinet
shape classes can further be improved by using the next
proposition [7]:

(3) Po(S,® S,) C PoS,.

This proposition together with proposition (2) indi-
cate that if §,; and 5, are shape primitives for shape
P, but are not shape primitives for shape P,, then the
difference of opening residues between P; and P, will
increase by using the structuring element S; @ S, than
using §; or 5, alone. Therefore if the distance between
opening residues of different shape classes are not large
enough, the feature structuring element can be enlarged
by the dilation of another shape primitive.

Selecting Features from Shape Primitives

Given the decomposed shape primitives of the set of
shapes to be classified, a certain criterion needs to be
developed to select the important and disecriminating
shape primitives as features for shape recognition. It is
commonly true that large sized shape primitives
represent the main feature of a shape whereas smaller
ones represent details. In the classification stage, using a
large sized shape primitive to open the test shapes can
immediately eliminate the possibility of any smaller sized
shapes and hence reduce the search complexity. The
importance of the shape primitives can therefore be
determined according to their sizes. For triangles the
perimeter lengths are used here for size description. As
this notion of size is mainly empirical, the maximum
entropy reduction is further used as a quantitative meas-
ure of the importance of the shape primitives. Consider-
ing the tradeoff between optimality and training time,
the entropy reduction is calculated for a few large-sized
shape primitives at a node and the one giving maximum
entropy reduction is selected as the feature structuring



element. Taking into account of the effect of noise, the
size of shape primitives are also varied from its decom-
posed value to some smaller scale. This size variation is
also treated as a parameter to be optimized using the
entropy criterion.

IV. DECISION TREE CONSTRUCTION

Assuming that the training shape samples are from
N classes, each class has + samples, and for each class a
representative shape can be obtained from the ~ samples,
the construction of a decision tree involves the following
steps.

Step 1.

Decompose the representative shapes for each class.
Order the shape primitives of each shape class from large
to small according to their perimeter lengths.
Specifically, let Sy (m;)) denote the m th shape primitive
(its sides are scaled by the scale parameter A) of the
representative shape of class k, the shape primitive sets
for the NV representative shapes are:

{S; (1), S;(2N), -+ - S;(mpN}, =1, N,

where X € A, and A contains a few candidate scaling fac-
tors with max(\) = 1.0.

Step 2.

At each node undergoing expansion, we have a set
of training shape samples and a set of structuring ele-
ments which are shape primitives chosen as candidates of
the feature structuring element for the node. Let P‘-(_;’,') be
the vth training sample from shape class ¢ at node j,
assuming the samples are from NU) classes, then the set
of shape samples is { P,-Eﬁ), 1<v <9,1<i £ N,
Let 5,/)(1;\) denote the 1st shape primitive, scaled by X,
of the kth class at the node, the structuring element set
is {SYN1,0), €A k €K }, where K contains the
indices of the largest few shape primitives at the node,
| K | is kept small considering computation time.

_ For cach shape sample P;{J), caleulate the residue
r,-fﬁj)k(l;X]’s by opening the shape with S,,{j](l;)\) for every
X € A and k € K. The residue is defined as

) = 1- # (PSS / # (P

Step 3.

For each shape primitive 59 1;)), formulate an
opening residue interval R,-f{j(}\) for each shape class i ,
1< i < NU), where R;{{)()) is defined as the coverage of
the residue intervals of the class, t.¢€.,

() = i (7) 1)
R\,i (>‘) [ 121‘:”%1{ LE .v,t()‘) }: l%nuaéq{ f:,v,k(k) }]
Step 4.
" Expand the node j into child nodes. The child
nodes are formed by assigning the shape classes with

their residue intervals separated smaller than a margin
¢, into the same decision region, see (7] for details.

Assuming h; number of child nodes are thus gen-
erated, there are then A; residue intervals, one for each
node, which is the coverage of the residue intervals of
every shape class contained in the node. Let Q)
denote the residue interval for the ith child node,
1<i<h;, where the child nodes are indexed by the
order that their residue intervals occur on the real axis
from left to right.

Step 5.

Let n,4Y\) be the number of shape classes in the
gth child node, the entropy reduction due to the expan-
sion of node j using the structuring element S,7)(1;\) is
then

() ) ) (1)
AHMI(N) = logNV/ - Xj ~NG) log ng' /(M) -
g=1

The AHU)N) is calculated for all possible k¥ € K
and » € A. Let & be the minimum entropy reduction of
interest, If AHk(J) A= max AHU)N) > 6, then

Sk(.” (A*) is chosen as the feature structuring element for

node j. The threshold between the decision regions of
the m th and the m +1th child nodes is calculated as

TH(m) = (max{QY).(A")} + min{@7), ,.(\")})/ 2.

If max AHUI)\) < 6, then change the structuring ele-

ment list at the node to
{510 & SV 2N, NEN Kk EK Y,

i.e., each structuring element is enlarged through the
dilation of another shape primitive. Using the list of
new structuring elements as candidates for the feature
structuring element, repeat the steps 2 through 5 on the
same node until a satisfactory entropy reduction is
obtained, see [7] for details.

Step 6.

Repeat the steps 2 through 5 on every node waiting
to be expanded until N terminal nodes are produced,
each being associated with a shape class.

V. EXPERIMENT

Experiments were performed on random polygons of
10 classes, the average block size of the polygons was
131%121. The vertices of the polygons were disturbed by
a uniformly distributed noise on the interval [-5, 5]. A
disk shape noise were further added to the boundaries of
the vertex-disturbed polygons. The centers of the disk
noise were at each pixel on the edges of a polygon and
their radius were varied over [0, 3]. This noise
transforms the smooth edges of a polygon into zigzag
ones.

In training, 5 noisy shapes from each class were
used. A representative shape for a class is obtained by
averaging the corresponding vertices from the 5 vertex-
disturbed shapes. This representative one is then decom-
posed into a set of triangles. The 10 representative
shapes are shown in Fig. 2. In constructing the decision
tree, the residue margin ¢, for shape class separation was
chosen as 0.2, the minimum entropy reduction § was 0.0,
the number of shape primitives considered at each node,
| K |, was 2, and the scaling factor €A = {1.0, 0.9, 0.8}.
The decision tree constructed is shown in Fig. 3. Each
node of the tree displays a list of shapes to be classified,
the feature structuring element used in expanding the
node, and the entropy reduction (in natural logarithmic)
thus obtained. Each branch of the tree displays the
threshold of residue that classifies the shapes into the
nodes under the branch. The feature structuring ele-
ments in the decision tree are shown in Fig. 4. In recog-
nition, 50 noisy shapes (independently generated with
the same noise level used in the training sample) for each
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10 classes were tested and the results are tabulated in
Table 1. Of the 500 noisy shapes 494 were classified
correctly. The system achieved a recognition rate of

LAY

*@ir >N

9 10
Fig. 2. The representative shapes from the 10 shape
classes used in tﬁe experiment.

(1,2,3,4,56,7,809, 10}
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Fig. 3. The classification tree: each node displays a list
of shapes to be classified, the structuring element used in
expanding the node, and the entropy reduction (in
natural logarithmic% thus obtained; each branch displays
the residue threshold that classifies the shapes into the
nodes under the branch.

A /

55(1; 09) §4(1; 1.0) §4(1; 1.0)
5,(L2; 1.0) S4(1; 0.9) $a(1; 0.9) §s5(1; 0.9)

Fig. 4. The feature shape primitives used in the
classification tree.

Table 1. Recognition result

test

shape 1 2 3 4 5 6 4 8 9 10

1 47 0 3 0 0 0 0 0 0 0

2 0 50 0 0 0 0 0 0 0 0

3 0 0 [ 50| 0 0 0 0 0 0 0

4 0 0 0 |5 |0 0 0 0 0 0

5 0 0 0 0 48 2 0 0 0 0

6 0 0 0 0 0 |5 {0 0 0 0

7 0 0 0 0 0 0 ]50 |0 0 0

8 0 0 0 0 0 0 0 |5 | 0 0

9 0 0 0 0 0 0 0 0 |5 | 0
10 0 0 1 0 0 0 0 0 0 49

VI. CONCLUDING DISCUSSION

The experiment showed that simple shape primi-
tives from the morphological decomposition of shapes
have potential power for shape discrimination. The shape
primitives are much smaller than the templates of
shapes, thus a considerable saving in decision time is
achieved. We believe the recognition errors occurring in
this experiment were mainly due to the insufficient
number of shape samples used in training. The calcu-
lated residue threshold may not always have been
optimal. Greater flexibility in the decision tree could be
obtained if we used the overlapping rather than the
non-overlapping decision tree [4]. For systems working
on a large number of shape classes, some savings in work
can occur by measuring the similarity between shape
primitives. Searching for features among the large set of
shape primitives can then be reduced to a searching
among similar shaped shape primitive classes.
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