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Abstract

This paper presents a corner detection method
which estimates a corner to be that point on the in-
put digital arc whose a posteriori probability of being
a corner is the maximum among all the points on the
arc. MAP estimates for the line parameters of the two
intersecting lines forming the corner are also obtained.
A corner is modelled as the intersection of two lines.
Points on these lines are subjected to random pertur-
bations to give rise to the observed arc segment. The
perturbations on the sample points are assumed to be
i.i.d Gaussian random variables of zero mean and vari-
ance o?. The perturbations on the points are assumed
to be orthogonal to the ideal line. The paper dis-
cusses the theory of the corner detector, and extends
the basic theory to handle piecewise linear arc seg-
ments by sliding a context window along the arc seg-
ment and doing a two-line-segment corner detection
within each context window. Theoretical analysis for
the error in the location of the estimated corner is pre-
sented. The protocol according to which experiments
were conducted is described. Performance curves plot-
ting location error versus the noise variance, the in-
cluded corner angle, and the arc length, are provided.
The performance of the corner detector is character-
ized by its false alarm rate and misdetection rates.
Plots of the false alarm rate and the misdetection rate
versus the included corner angle, and versus the con-
text window length for piecewise linear arc segments,
are given. Experimental results are shown to match
the theoretical results. Results on real images are also
presented. A protocol to characterize the performance
of the corner detector on real image sets is outlined.

1 Introduction

There are two primary groups of corner detection
algorithms: one is based on detection directly from the
underlying imagel1~5], the other one is based on detec-
tion from arcs or curves!®—19] produced from previous
low level image processing operations such as edge de-
tection or line finding followed by thinning, linking and
labeling. In addition, some researchers/?3] have also
explored corner detection based on combinations of
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these methods. Corner detection on arc segments can
be used to detect dominant points for curve segmenta-
tion, so that shapes of object boundaries or meaningful
curves can be described either by dominant points or
parameters of the segmented curves between each pair
of consecutive dominant points. Further, the shape

can be analyzed and recognized(¢-12],

This paper presents a maximum a posteriori (MAP)
probability corner detection method. For a given arc
segment, the corner is estimated to be that point
whose a posteriori probability of being a corner is the
maximum among all the points on the arc segment.
The method is not only an arc segment corner detec-
tion scheme but also provides a way of determining a
polygonal approximation to a set of boundary points.

We model an ideal corner as the intersection point
of two straight lines. Our mathematical formulation
of the corner detection incorporates the prior distribu-
tions for corner model parameters, such as the param-
eters of the lines forming the corner and the index of
the corner point along the arc segment. If the prior in-
formation is ignored, the method becomes a maximum
likelihood corner estimator or a maximum likelihood
polygonal approximation of a planar curve. Prior dis-
tributions specific to each application domain can be
incorporated in our method and the corner detector
can thus be tuned for specific applications.

The detection procedure involves sliding a context
window of specified length over the given sequence of
pixels forming the arc segment, and doing a two-line
segment corner detection within each window. This
context window length is chosen so that the assump-
tion that there is only one corner within the context
window holds.

The paper first discusses the theory of the two-
line-segment corner detector in the Bayesian frame-
work, and its application to multilinear segment arcs.
The problem turns out to be a nonlinear optimization
problem. We discuss a two step strategy for the opti-
mization. The first step produces an initial estimate
of the solution and the second step uses the gradient
search to obtain the final approximation. Next, we an-
alyze the error in the location of the estimated corner.
Finally we discuss the experiments and results for the
proposed approach on synthetic data as well as real

data.



2 Motivation and Theory

A corner is a discontinuity of the curvature of a
curve and the location of the discontinuity can be ap-
proximated by two straight lines in its local neighbor-
hood. The discontinuity point is called the break point
or the dominant point. For a piecewise linear approx-
imation of a curve, dominant points are also called
corners. Each corner has its own local neighborhood
defined by the points on the two line segments form-
ing the corner. In general a point sequence contains
multiple corners, and we would like to detect only one
corner in each neighborhood specified by two inter-
secting line segments.
2.1 Corner Model and Its Detector

We model an ideal corner as the intersection of two
straight lines. Given an observed sequence of ordered
points arising from two line segments, the last ob-
served point arising from the first estimated line seg-
ment is what we want to detect as the corner. The
problem is to decide which of the points in the ob-
served sequence has the maximum e posteriori proba-
bility of being the “last” point from the first line seg-
ment. The following is the formalized problem state-
ment:

Problem Statement
Given: an observed sequence of ordered points from

an arc segment, 5 = {( z‘ Y i=1,..,I;(#,&) €
1

Zg X Zc}, where Zr x Z¢ is the image domain, I

is the number of points and (#;,¢&),s = 1,...,I are

the results of random perturbations on the points

(ri, i), =1,...,I constrained by

ricosl; +c;sinf; —p; = 0,i=1,...,k;
ricosl; +c;sinf; —p; = 0,i=k+1,...,1,

where 6;,p;j;7 = 1,2 are line orientation and loca-
tion parameters for the two line segments. and k is
the index of the true corner position (r¢,ck). Assume
perturbations to be independently introduced on each
sample point with Gaussian distributed noise in the
direction perpendicular to the line segment. Pertur-
bations on the two line segments can be expressed by

;i = 1;+mc0801;¢; =c; +misinby;i=1,..,k;

i = r;+micos03;¢ =c; +mnisinby,;i=k+1,...,1.

where 7; ~ N(0,02).

Find: the estimated corner (#g+,é+),2 < k* <I -1,
along the arc S and the estimates of two line param-
eters, (63, p;) and (63, p3) so that

(k*,61,p1,63,p3) =

arg  max
(k,01,p1,02,p2)

By Bayes’ formula this can be written as
(k*,61,p1,63,03) =

ar, max
(k,61,p1,032,p3)

P(kxelxplaoh P2 l g, I)° (1)

P(kiolxpho?;p? l S', g, I)

P(é I k)011P1:02)p2,aaI)'

The first term of the right side of the equation is
the likelihood of observing the given sequence of points

-

S, given the parameters of the two lines forming the
corner, the noise standard deviation o, I and the index
k of the true corner. The model says that the observed

sequence S can be separated into two sub-sequences,

or sub segments, $; and $,, where, §; = {( z' ) |
1

i=1,.,k}and §; = {( g:j )|i=k+1,..,I}. Since
perturbations on the first line (61, p1) are independent
from those on the second line (63, p2), the likelihood
of the observed $ given two lines (61, p1), (632, p2) can
be written as
P(g I k,61,p1,63,p2,0, I) =
P(S1 I ksol)phax I)P(S'Z l ksaﬁsp21‘71 I)'

The perturbation model assumes that Gaussian
noise is independently added onto each point of each
line segment in the direction perpendicular to the line
segment. The conditional probability of observing the
first sub segment given the true line parameters is
given by

P(gl I kaolrplsa)I)
= P(S‘l I klaliplsa)
= P((F1,&1) s (Frs &) | 61, p1,0)

k
— HP((ﬁ,és)' Iolxplxa)

k
_ ( 1 )k He—;ﬁ(ﬁ.—ca:h-}-éuinh—p;)’.

270"

Similarly, the conditional probability of observing
the second sub segment S; can be computed by

P(§2 lk,92,p2,0',1) =

I
( 1 )I-—k H e—;b-(ﬁcasﬂ;+é.-:in9;—p,)’

V2no

The index k and parameters (61, p1), (62, p2) are
independent of o, hence

P(k,601,p1,02,p2 | 0,I) = P(k,61,p1,603,p2|1I).

Further, the index k is independent from the line
parameters (61, p1) (62, p2), and these line parameters
are independent of the number of points I. So

P(k,61,p1,62,p3 | I)
= P(02,p2,61,p1 | I)P(k | I)
P(63,p3,601,p1)P(k | I)
= P(6z ]| p2,61,p1)P(p2 | 61,p1)P(p1 | 61).
P(61)P(k | I)
= P(ag |01)P(p2)P(p1 |01)P(01)P(k I I).

i=k+1




The index k, i. e. the index of the last point arising
from the first line, is assumed to be uniformly dis-
tributed between the second point and the second-
from-last point, i. e.

P(HI):{ (I)f,,:l/I—Z, 2<k<I-1,

otherwise.

0, is assumed to be uniformly distributed in [0, 27], i.
e. P(6,) = 1/2x.

The conditional probability distribution P(p; | 6;)
is a probability density of the distance p of the line
from the origin, given 6;, which is the orientation of
the vector normal to the line.

We assume that the image domain is a square, i.
e. Z =| Zr |=| Z¢ | and centered at (| Zr | /2,|
Zc | /2). We also assume that the distance of the line
from the origin lies in [0 < p; < Z) (region Ry) with
probability one, and in [Z < p; < 1/2Z] (region R;;)
with probability zero, and that the distance of the
line to the origin has a uniform distribution in region
R; and has probability zero in region Ryr. So the
probability distribution of p; given #; can be shown
to be constant and equal to 1/Z. P(p;, | 61) = 1/2.

p2 is assumed to be uniformly distributed in [0 <
p2 < Z] and has zero probability in the region of [Z <

p2 < V27]
P(p2)=1/2,0<p2< Z

The conditional probability distribution P(6; | 6,)
is assumed to be determined just by the angle included
between the two lines.

P(6; |61) = P(| 62 — 6 |).

Let 6,2 :I 6, — 6, IE [0, ‘ll']. 6,2 is called the in-
cluded corner angle. It is assumed that there is a
higher probability that the included angle is close to
the right angle. This assumption is consistent with
some practical applications such as roof corner detec-
tion of buildings in aerial images/?4=26], We assume
the probability distribution of ;3 to be

P(813) = K eKa#in(612),

where K; and K; are two constants.! K, can be
estimated from the empirical distribution of 6;; by

K, = 1/63 ., and K; can be estimated by

5 1
=,
eK: lil’l(alz)dalz

O3

where &7 _ is the estimated variance of the empirical
distribution of 6,,.

! This distribution is nothing but a truncated form of the
Von Mises distribution with mean=n/2.

Taking logarithms on equation 1, the problem be-
comes that of finding the (k*, 63, pi, 63, p3) that max-
imizes

k
1 R a .
K - %57 E (Ficosy + é;5inby — py)? —
i=1
1 I
357 E (Ficosby + é;s1nb; — pg)2 +

i=k+1
+K, sin(l 6, — 6, l),

where

K =log K1 — log(27) — 2log Z — log(I — 2) — Ilog(v/270).

2.2 Optimization of Parameter Estima-
tions

The above problem is a nonlinear optimization
problem. We use a two step procedure to find the
solution. In the first step, we use maximum likelihood
estimation to quickly find a good initial estimate and
in the second step, we make use of a gradient search
scheme to find the solution.

2.2.1 Initial Parameter Estimation

To maximize the posterior probability for a fixed k is
to minimize

f(011p1’02ap2) =

k
E(f‘; cos 6, + &;sinf; — p;)? +
=1
I
Z (i cos 8 + & sinb; — p3)* + g1(61,62),(2)
1=k+1

where g1(61,60;) = —20%K; sin(| 6, — 0, |). Setting the
first derivative of f with respect to p; to zero

k

ad )

% =2 E (7i cos 8y + é;sinby — py)(—1) =0,
1 =1

and p; can be estimated by

P = c08017_‘(§1)+5in016(§1)s (3)

E k
a1 . a1
7(S1) = z Zr.-, &(S1) = Z Zc;.
=1 =1
Similarly, p; can be estimated by

p2 = cos0;F(§2)+sin025(-§z), (4)



I
A 1
' C(Sg) = m Z C;.
i=k+1 i1=k+1
Let
_ ) 62—-6,, 0<6; —6, <,
"‘—{ Z(62-6:), —7<6;—6,<0. (5)

Therefore, the objective function can be rewritten into
a function only containing two explicit parameters

f(01, 02) = G(Bl, 02) + 0‘2K2 sin(a(ﬂl, 32)),
where
G(61,6,) = (6)

k

Z(i‘,’ cos 0y + & sinb; — p1)? +

=1

I

)" (Ficosb; + & sin; — py)?.

1=k+1

In order to decrease the domain of search for minim-
imizing the objective function, we can make good ini-
tial parameter guesses by obtaining 8; and 6; from the
optimization only based on the two likelihood terms
G(61,03). Setting the first order derivative of G with
respect to 6, to zero, we get

of .o
,aTl = 2;(;, cos @ + ¢;sinf; — Pl)

(—F;sin6; + é;cos6,) =0, (7

Substituting the estimated p; from equation 3 into
equation 7, we get

k k
% sin 261~ Y (F: — 7($1))? + Y (& — a(51)")+

k
cos 2613 (7 — 7(51))(& — &($1))] = 0.

From this equation, the initial §; can be estimated by

60 = Lap-1_ Zee(51)
2 ﬂ’rr(sl) - /‘cc(sl)

where

k
pr(81) = o (R - G
Beel31) = o7 D& (3

k
Bre(31) = o (R~ H(8))(E — (1),

Similarly, the initial 6; can be estimated by setting
the derivative of G with respect to 6; to zero.

2ﬁrc(1§2)
- 5 N Ay?
Horr (SZ) - /‘cc(SZ)

A 1
9g0) = 5 tan_l

where

for(32) = I_—;_lgl(ﬁ—(f(éz)))%
peclBs) = 3 PICRICEE
Bre($s) = I—_;le? ~ #(82))(& — &(51)).

Once the good initial guesses on égo) and égo) have

been estimated, the location parameter ﬁ(lo) and ﬁgo)

can be estimated by

ﬁgo) = cos é§°)F(§1) + sin égo)é(s'l)’
A = cos6V7(8;) + sin 675(5,).

2.2.2 Parameter Modifications by Gradient
Search

Once the initial guesses on ego)’ Ggo), pgo) and pgo)

have been found, then more precise estimates of these

parameters can be iteratively obtained by the gradient

search method. Let current estimate vector be 6(%) =
(6), )’ and
G 060G .

VG(é(k)) = (5@:, 3—02)

then, a new estimate vector of §(*+1) can be approxi-
mated by

G+ = §0) _ A) ¢ G(M)),

where A(*) is a sufficiently small positive scalar and
g(k+1) = (§k+1) G(:+1))" Once the §(*+1) has been
updated, p; and p; can be updated by

A = cos 6FHVR(S)) + sin 84 &(S,),
ﬁg’”’l) cos égk"'l)F(S'g) + sin éng)E(S'z).
In a real scenario, the iterations can be stopped by
inspecting whether YG(6(*)) = 0 or | G(4(k+1)) —
G(6(%)) |< €, depending on which is first satisfied,

where € is a small constant.
When 0 < 6;—6; < 7, equation (6) can be rewritten

f(01,02) = G(01,82) - 20’2K2 sin(ag — 01)



In terms of equation (7) and the computations for
frr(Sj), Bec(S;) and f3,c(S;);7 = 1,2,, the partial
derivatives of f are

% = A;sin26; + B;cos26; + 202K, cos(6; — 6,)
1
g-éf— = A3sin26; + B, cos 20, — 202 K3 cos(6; — 6,)
2
where
Al = (k - 1)(p'c¢(‘§1) - ﬁrr(gl)))

B, = Z(k — l)ﬁrc(gl)l
A = (I-k—=1)(Bec($3) = e (52)),
B, = 2(I —k— l)ﬁrc(s‘Z):

When —7v < 6; — 6, <0,

% = A;sin26; + B; cos26; — 20° K, cos(f; — 6:),

1

aG , ,

% = A;sin 26; + B; cos 260, + 20° K, cos(6; — 6,).
2

2.3 Application to Multi Linear Segment

Models

In the above discussion, we assumed that there is
only one corner in a given sequence of points. In real-
ity, we may be provided with pixel chains that contain
more than one corner. In this case, we can use the two-
line-segment corner detector within a certain context
window length and slide the window to perform de-
tection on the entire arc. The procedure begins by
examining the first I pixels in the chain. If a corner
is detected, the corner detector puts the next context
window to start at the point following the detected
corner. If no corner is detected, the window is moved
along the pixel chain in a fixed step size lgusua,lly one
pixel) and the corner detector is reapplied.

For any context window, there is always one whose
a posteriori probability of being a corner is the max-
imum among all the points in the window. However,
there may actually be no true corner located in the
context window. In this case, the point with the MAP
probability of being a corner should not be claimed as
a detected corner point. Therefore, we need a way of
determining whether the MAP probability of a point
being a corner is high enough so that the detector
should label the point as a corner.

We first concentrate on the likelihood part of the
detector. The maximization of the likelihood of ob-
serving the given sequence from the estimated corner
model is equal to the minimization of

k
1 . -
X = = E (7i cos 61 + & sin b, — p1)2+
=1

I
1 n PO
1 E (7i cos @3 + &; sin 6; — p3)? (8)
i=k+1

When there is no corner in the window, 6; = 6, X;
would be a x? distributed random variable with I de-
grees of freedoms.

We choose a confidence level ar and set a threshold
T, so that

Prob(X, < Tp) = ar.

This is the probability that a x2 random variable with
I degrees of freedom is less than Tj,. In reality, we have

two estimates for the angles of the lines §; and 8; and
we compute the quantity:

I
.1 . Ao A .
X; = mln{; E (Ficos @y + é;sin b, — p;)?,

$22l

I

1 . A, L A <ind.

= E (7 cos 63 + é; sin 6, —Pz)z}, (9)
=1

and then compare X; with the determined threshold
T,. If X3 is larger than T}, the estimated break point
is claimed as a detected corner. Otherwise, the esti-
mated breaking point is not claimed as a corner.

The motivation for the criterion is as follows: if
there is no corner, i. e. (61, p1) is same as (62, p2), X;
is a x? distributed random variable but X, is not a
x? distributed random variable, since the minimum
of the two dependent x? random variable is not 2
distributed. Intutively, X, is a statistic that computes
the minimum error that could be obtained by using the
left or the right line segment as the true line segment.
The minimum error corresponds to the line segment

(é;,ﬁ,-) that is the best approximation to the entire
sequence. When X; > T, the best fit that can be
obtained by fitting a single line segment to the given
pixel chain gives a squared error that is more than the
threshold, i. e. the probability of there being no corner
is less than 1 — ap.

If, according to the above criterion, no corner is
claimed, the detector is moved along the given arc
by a defined step (usually one pixel). If a corner is
detected, the detector is moved to the next window
starting at the pixel next to the detected corner. This
procedure is repeated until the tail of the detector win-
dow reaches the last point of the given arc.

3 Location Error

The squared location error d? is the squared dis-
tance between the detected corner position and the
true corner position,

@ = (fre = 1) + (e — )2, (10)

where k* is the index of the estimated corner position
(r*,c*), (r°,c°) is the true corner position, i. e. the
intersection of the two lines forming the corner. Let
k' be the index of the last point in the sequence that
actually arises from the first line segment. From the
perturbation model, when 2 < k* < &/,

Pks = Th+ + N+ C086]; e = Cie + M- 5in 65. (11)



and when k' < k* < I -2,
The = The + Mg €0805; e = Ci+ + Mi+sin63. (12)
where n} ~ N(0,02).
It can be shown that
d? = (ree—7°)2+(ck» —c°)? + 72, (13)
where k* € 2,1 - 2],
Let & = (©,0)', where © = (63,43,63,03)". The
distance d? is a function of the observed sequence S.
Its expected value is

E[d?| @] =
E[(ris — r°)? | 8]+ E[(cks — °)? | @] + o?,
where the expectation is taken over all possible $ that
can be observed. The quantity (rg. —7°)% + (cg+ —c°)?

is independent of n2.. Therefore, the variance of the
squared distance can be proved to be

V[d® | 8] = B{[(rx- — r°)* + (cx» — ¢°)*]? | 8}~
{E[(r> — r°)? | 8] + E[(ck~ — °)? | ®]}* + 20%,

where

1-1
E[(rg- —1°)? | @] = Z (ree — 7°)2P(k*; ®)
I-1
El(ck» —c°)? | 3] = Z (ck+ — c°)?P(k*; @)
and
E[{(re- =) + (cxe — )’} | @] =
I-1
3 w5+ (ene = PR3 )

where P(k*;®) is the notation used to denote the
probability that the observed sequence S is such that
the corner estimated from it has index k*, given that
the parameters of the underlying lines are © and the
noise standard deviation is o.

This probability P(k*;®) is estimated as follows.
This is the probability that the observed sequence S
is such that the corner detector detects the point with
index k* from the sequence as the corner. We approx-
imate this probability by the probability of observing
S when the true corner index, i. e. the index of the last
point arising from the first line segment, is k£*. This is
equal to

P(5,k*|®)

I
Y P(5,il2)
1=2

P(S|k*, ®)P(k*|®)

I
> P(8]i, ®)P(i|®)

1=2

In the numerator, P(k*|®) is the probability that the
index of the last point arising from the first segment
is k*, given that the underlying line parameters and
the noise variance are ®. In our model, we have as-
sumed that this index is independent of the true line
parameters © and the noise standard deviation o, so
this probability is just the prior probability of k* be-
ing the index of the last point arising from the first
line. This prior probability was assumed uniform on
integers between 2 and I — 1.

. 1/I-2, 2<k<I-1,
P(k):{o’/ <k<

otherwise.

In the denominator, the terms P(i|®) are, by the same
reasoning, all equal to Ti_z Thus we have

P(k*; ®)
P(Sk*, )
I
> P(3i, @)

1=2

Foreach 7,2<i< I -1,

P(S[i, ®)
1 J
— ( )] He—z—:,(ﬁ cos 67 4¢; sin ﬂf—p‘;‘)"
L L
I
He—;%,(r‘; cos03+¢; sin63—p3)?
j+1

The numerator P(S|k*, ®) can be calculated similarly.

More rigorous analysis involves the derivation of
P(k*|S,©,0,k), which is the probability that the cor-
ner detector detects the point having index k* as the
corner, given that the underlying true sequence is S,
the true line parameters are ©, o and the index of the
last point actually arising from the first line segment
is k. This is the subject of another paper [?].

In a following section, experiments for examining
the location error as a function of the noise standard
deviation and the included corner angle are described,
and experimental results are compared to theoretical
results. In the experiments for examining the location
error as a function of the noise standard deviation o,
for each value of o, many trials are performed with the
same value of the included corner angle. For each trial,
an pair of line segments is generated and is sampled,
and then the samples are perturbed with Gaussian
noise of variance o2?. For each of the N trials there
is a different observed sequence S(n), n = 1,..., N,
and the observed points in S(n) are substituted in the
above expression to obtain an estimate of E(d?|®).
Thus an estimate of E(d?|®) is obtained from each
trial, and these are then averaged to obtain a better
estimate of E(d?|®). This average is the theoretical
value that is plotted in figure 1(a) as a function of



o for constant included corner angle. In figure l(b)
the average variance of the squared location error 1s

plotted as a function of o.

4 Experimental Protocol and Results

This section contains three experiments: 1) the lo-
cation error measurement, 2) the algorithm perfor-
mance measurement, and 3) the application of the
detector to real images. The first two experiments
are implemented on synthetically generated sequences.
The third experiment is implemented on data pro-
cessed from real images.

The input parameters to the corner detector are the
context window length cwl, the estimated standard
deviation of the noise o, and the confidence coefficient
arp.
The first two experiments utilize synthetically gen-
erated two-line-segment sequences. So we will first
discuss the process of the two-line-segment sequence

generation.

4.1 Two Line Segment Arc Generation
A two line segment arc can be generated in three
steps:

1. Specify the starting point (r1,c1), the first line
length L;, the second line length L,, the first
line angle ¢; and the included corner angle 6,2,
where ¢; is the counterclockwise angle between
the first line and the row axis. In this step, for
each line Ly or Ly, if | cos ¢; [>|sing; [;5=1,2,
we sample the data by increasing the row coor-
dinate by unit steps, otherwise, by increasing the
column coordinate by unit steps. For the first
ideal line generation, if | cos ¢; |>| sin @y |, then
S =< (r,,c‘)lr, =ri+1 ¢ =c+ 1tanz¢1)
;1=0,...,3, where i* = |L; cos ¢1] +1 otherwise,
5 =< (r,,ct)lr. =r1+icot(h); ci =1 t+i>
;1 =0,...,3%, where i* = |L; sin¢;|. For the sec-
ond ideal line generation, if | cos ¢z |>| sm é2 |,
then, S; =< (ri,ci)|ri = Lycos¢y +1 —it;¢; =
Ly sin ¢1+(i—2*)tan(¢2) >;¢ = 1t +1, ..., I, where
I =4+ |L; cos @2 ], otherwise, Sz =< (ri,¢;)|ri =
Ly cos ¢y +(i—1t) cot(¢2); ¢i = Lysingy+i—it >
yi=1'+1,...,I, where I = i* + |Lysin¢y|. The
true corner (rt,c') = (Lj cos ¢1, Ly sin ¢1).

2. Generate a sequence of samples < my;1 =
1,..,I >, where each m;; ¢ = 1,...,I is an inde-
pendent random sample coming from a Gaussian
distributed random variable with zero mean and
a standard deviation o.

3. Obtain a perturbed sequence of the arc segment <
(ri + micosby,c;i+m;sinb,);i=1,...,i >, and
< (ri+m; cos by, c;+mysinby);i =it +1,...,I > .

~

Thus, a perturbed two line segment arc § =<
(7i,&);1=1,...,I > is generated.

4.2 Experiment One (Location Error
Measurement)

In this experiment, we measure the location errors
versus noise standard deviation, the included corner
angle and the arc sequence length. For measuring the
location error, we utilize synthetically generated two-
line-segment sequences, and obtain the distance be-
tween the true corner and the detected corner. In this
experiment, the context window length is equal to the
length of the sequence, o is systematically set up, and
ar 18 not used.

1. Location error versus the noise standard
deviation

e Let 612 =90°, L; = Ly = 50 units.

e For each o € {0.0,0.2,0.4,...,5.0} and for
all of 6, € {0°,1°,...,359°}, generate 10 se-
quences of two-line- segment arcs. There are
360*10 runs, defined as N,,,, for each o.

e For each sequence, apply the corner detec-
tor, and obtain the squared location error
by

dn(n) _ (~(n) t(n))2 + (e‘(:‘)_ct(n))Z,

where (r("),“fz')), 1,..., Ny, is the

estimated corner and (r’("), ct");n =
1,..., Npyyn is the related true corner.

e Obtain the root-mean-square error by

run

d,

and its related variance by

Nrun

varld) = (=5

Figures 7?(a) and ??(b) are respectively the root-
mean-square location error and the root-mean-
square variance of the location error versus the
noise standard deviation. It indicates that the
error linearly increases as the noise increases and
the variance of the error quadratically increases
as the noise increases. It indicates that the theo-
retical computations and the experimental results
are consistent.

2. Location error versus the included corner
angle
This experiment is the same as above except that
013 is chosen from the set {10°,20°,...,170°} and
o=1.0
Figure ??(c) illustrates the root-mean-square lo-
cation error versus 6;2, and indicates that the de-
tection has the tendency of having smaller error
for 90° included corner angle and larger error for
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included corner angles away 90°. In addition, the
rather flat region around 90° corner angle indi-
cates that the algorithm is more stable over a
large range of corner angles.

3. Location error versus the arc sequence
length
This experiment is the same as that in the first
case but at this time the arc length is varied from
10 to 100 by a step of 10 pixels and the two line
segment lengths are kept the same, ie. Ly = L.

Figure ??(d) is the root-mean-square location er-
ror versus the arc length. The result indicates
that the algorithm is stable with different arc

lengths.

4.3 Experiment two (Performance Mea-

surement)

Once the algorithm has been designed, it’s perfor-
mance should be characterized [22l27], In this experi-
ment, we test the performance of the detector by plot-
ting its false alarm rate and misdetection rate versus
the context window length cwl, the included corner
angle 6;2 and the distance threshold dy which is a
special parameter used during performance test.

Here, cwl is chosen smaller than the sequence
length, o is systematically set up, and ar = 0.9.

The false alarm rate is defined as the probability of
a true noncorners being detected as a corner, ie.

Prob(detected as corner | true noncorners)

and the misdetection rate is defined as the probability
of a true corner not being detected as a corner, ie.

Prob(not detected as corner | true corner).

Define a circle of radius dy, called the distance thresh-
old, centered at a true corner. If no point exists within
this circle, a misdetection happens. If the detected
corner does not fall into any region centered by a
true corner with the given radius do, this detection
is claimed as a false alarm.

Define

fio = #{misdetections} = #{true corners
not being detected as corners},

f11 = #{detections} = #{true corners being
detected as corners},

fo1 = #{false alarm} = #{non-corners being
detected as corners},

foo = #:{non detections} = #{non-corners
not being detected as corners},

and define
the false alarm rate = L, (14)
fo1r + foo
the misdetection rate = ——L (15)

fio+ fun'

1. False alarm rate and misdetection rate ver-
sus the context window length.
Let 6,2 = 90°, Ly = L; = 50 units, Ty = 3. For
each cwl € {3,4, ..., 70}, where cwl < 2 * 50. and
all of 6; € {0°,1°,...,359°, generate 10 sequences
of two-line-segment arcs. For each context win-
dow length, there is N,,, = 360 % 10 runs. For
each generated curve, detect corners. Obtain the
false alarm and misdetection rates.

Figure 7?(a) is the false alarm rate versus the
context window length and it implies that the de-
veloped algorithm is more stable if a context win-
dow length is large enough to contain sufficient
information for the estimation.

Figure 7?(b) is the misdetection rate versus the
context window length and it shows that the rate
drops linearly when the window length increases.

2. False alarm rate and misdetection rate ver-
sus the included corner angle.
This experiment is the same as above except that
the included corner angle 6;; at this time is var-
ied from 1° to 179° by a step size of 1° and the
context window length cwl = 2 * 50 unit.

Figure ??(c) and ??(d) are the false alarm rate
and the misdetection rate. They show that the
algorithm has small false alarm rate and misde-
tection rate around the 90°.

3. False alarm rate and misdetection rate ver-
sus the distance threshold d,.
This experiment is the same above except that
the distance threshold is varied from 0 to 15 pix-
els by a step size of 1 pixel and the included corner
angle is fixed at 90°.

Figure ?7(e) and ?7(f) are the false alarm rate
and the misdetection rate versus the distance
threshold dy. These rates drops nonlinearly with
the increase of the distance threshold dg.

4.4 Experiment Three (Real Image Ap-
plication)

In this experiment, the corner detector operates on
input produced by image processing operators which
produce the desired pixel chains and applied to the
real image. The image datasets used were the aerial
images from the RADIUS datasets. An edge detec-
tor is first run on the image, producing a set of pixel
chains, on which the corner detector is run.

The input to the corner detector is produced by
using a two-step edge detector. The first step in-
volves the estimation of gradient magnitude (in the
row and column directions). We use the slope facet
operator, Haralick [?], for this step. The second step
uses Canny’s hysteresis linking procedure to perform
edge linking. Canny [?], uses two thresholds:

e a high gradient threshold, T, to mark potential
edge candidates and

e a low gradient threshold, T3, that is used in order
to include additional edge pixels.



The linking procedure is a boundary tracking proce-
dure. First pixels with gradient magnitude greater
than T are marked as candidate edge pixels. Then
non-maxima suppression is performed by retaining
only pixels whose gradients form local maxima. Start-
ing from each potential edge candidate the procedure
tracks the boundary by the examining each neighbor
along the edgel (specified by the normal to the gradi-
ent direction) and including edge pixels if the gradient
magnitude is greater than T,. The tracking terminates
when a candidate neighboring pixel having a gradient
magnitude less than T3 is encountered. The linking
procedure produces ordered pixel chains. These chains
are subsequently used as input to the corner extrac-
tion scheme. There is one parameter called minimum
chain length Th; to choose sequences during imple-
menting the corner detection. If the sequence with its
length less than Th;, the sequence will not be imple-
mented with the corner detector. In this way, we can
avoid some small sequences which may be caused by
perturbations or could be the sequences we are not
interested.

To evaluate the performance of the corner detec-
tor on real images, we use the RADIUS model board
image data set. The performance measures being ex-
amined are the false alarm rate and the misdetection
rate.

To evaluate the performance of the corner detec-
tor, the data on which the corner detector is operated
should conform to the assumptions made in the model.
This will show the best performance the detector is ca-
pable of. For instance, the detection is performed by
sliding a context window along the edge pixel chain.
The detector assumes that there is no more than one
corner within each context window length. If the input
to the detector contains corners located much closer
than the window length chosen for the detector, the
corner detector will not be able to pick them up.

The protocol being followed for evaluating the per-
formance of the corner detection on the aerial images
is as follows. The groundtruth against which the out-
put of the corner detector is compared is obtained by
annotating the aerial images to delineate the edges
of buildings and other structures in the image, as
well as roads, shadows etc. [?]. From the annotated
groundtruth data, all annotated line segments (corre-
sponding to straight edges) are chosen. Out of these,
all corners formed by line segments whose total length
is greater than the context window length chosen for
the experiments are selected as the set of groundtruth
corners. (The length of the context window for the
corner detector was chosen as 50 pixels for the initial
experiments.) For each detected corner, the nearest
groundtruth corner is found. If this groundtruth cor-
ner is within a distance do (chosen equal to 5 pixels),
the detected corner is a “hit” and the detected corner
and its nearest groundtruth corner are removed from
their respective lists. If there is no groundtruth corner
within do pixels of the detected corner, the detected
corner is declared a false alarm. Every groundtruth
corner such that there is no detected corner within do
pixels of it is declared a misdetection. In this way false
alarm and misdetection rates are computed for each

image.

In the initial experiments, it was observed that the
false alarm rate of the corner detector was of the or-
der of 1% or less, whereas the misdetection rate was
between 40 and 70%. It was seen that a lot of the
corners that were missed by the corner detector, were
actually in locations where the edge detector output
was inaccurate- often there was no edge detected in
the place where the groundtruth indicated an edge,
and sometimes improper edge linking caused a cor-
ner to be missed. Thus these figures are really per-
formance measures of the edge detector and corner
detector modules put together and not of the corner

detector alone.?

To evaluate the performance of the corner detec-
tor alone, the input to the corner detector and the
groundtruth against which the output is compared,
should be such that the corner detector does not get
penalised for errors made by the edge detector mod-
ule. For this, the following protocol is being followed.
The edge detector output is filtered such that only
those pixel chains that have some “corresponding”
groundtruth line segment is selected and the rest dis-
carded. This set of pixel chains is used as the in-
put to the corner detector. Only those groundtruth
line segments that have some “corresponding” pixel
chain in the edge detector output is chosen. This
set of groundtruth segments is used to build the
groundtruth set of corners. By filtering the input and
the groundtruth in this way, we make sure that the
corner detector is not made to operate on input that
is corrupted because of errors made by the edge de-
tection and linking module, and that any false alarms
and misdetections are purely due to the corner detec-
tor alone.

This performance comparison is under progress and
results are expected soon.

Figure 7?7 shows the corner detection result on real
data. Figure ?7(a) shows the detected edges of the 3
cut model. Figure ??(b) shows the detected corners
overlaid on the original image. Figure ??(c) shows the
detected edges from one of the RADIUS model board
images, with the detected corners overlaid on them.
In figure ?7?(c), some obvious corners are apparently
missed by the corner detection. However, an inspec-
tion of the edge detection and linking output shows
that these are in fact linking errors. The linking mod-
ule fails to link together edges whose endpoints are
very close, and thus what gets input to the corner
detector is not one continuous edgel chain, but two
disjoint arc segments. This causes the corner detector
to miss the corner.

5 Conclusions

We have discussed a corner detector that is based
on MAP estimation. This detector has been developed
based on a corner detector in terms of two straight
line segments forming the included corner angle and

21t is for this reason that there is a need for a robust edge
detector that has significantly lower misdetection rates. Ramesh
et al have developed one such extraction scheme [?].



the corner model can be iteratively applied to piece-
wise linear arcs. Not only can this method be used
for corner detection on digital arcs, but the algorithm
can also be applied to polygonal approximation for
curves. In addition to the theory of the detector, we
also provided a theoretical analysis for the error in the
estimate of the corner location. Experiments showed
that the theoretical and experimental results are con-
sistent, and that this method is less sensitive to ran-
dom perturbations, more robust, stable and precise.
The nonlinear optimization is solved by a two step
strategy : first finding good initial parameter guess
and then using gradient search scheme to find the so-
lution. More rigorous theoretical analysis of this op-
erator has been done and future work will involve the
theoretical and empirical comparison of our algorithm
with traditional methods. We are in the process of
evaluating the performance of our algorithm on the
RADIUS model board image data set.
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Figure 1: (a) Location error versus o, (b) Variance of the location error versus o, (c) Location error versus the
included corner angle, and (d) Location error versus the arc length
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Figure 2: False alarm and Misdetection Characteristics
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Figure 3: (a) Extracted edges of the 3 cut model. (b) Detected corners overlaid on the original image. (c)
Extracted edges of the building model with detected corners overlaid on them.




