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Abstract

Corners play important roles in high level image understanding. They are
the main features in many 2D or 3D image models associated with image under-
standing algorithms. The Bayesian corner detection method inputs a sequence
of row-column paris along an arc and outputs the corner positions and the cor-
ner included angles that maximize the a posteriori probability. Experiments on
artificially generated sequences permit the measurement of errors of the esti-
mated corner positions and included angles versus different noise perturbations,
angles and line lengths respectively.

1 Introduction

Corner detection can be divided into two kinds. One kind detects corners directly
from the gray scale image. The other detects corners from an ordered sequence
which can be the results of low level image operations. An ordered sequence is a set
of row-column pairs, which represents the successive coordinates along an arc. It is
this kind of corner detection that we discuss in this paper.

From the point view of arc segmentation, corner detection is a way to segment
arcs according to the detected breaking points. Many papers discuss arc segmenta-
tion and corner detection[1-11]. The techniques include iterative end point fitting
and splitting, tangent angle deflection, prominence, or high curvature. Corners are
those points which separate the sequence into subsequences in which each is a max-
imal sequence coming from a given model such as a line or a curve of specified form.
The end points of the subsequences are called corner points, breaking points or
dominant points and once found can be employed in polygon detection or polygon
matching.



2 Motivation and Theory

We are given an observed sequence § =< (Feé)ii= Ly & 5, Where (T, Ek) is
the row-column pair within the specified domain Z, x Z.. For the sake of simplicity
of our initial description, we assume that the sequence S consists of two contiguous
subsequences Sy =< (71,81),...,(Fk, é) > and S =< (Pe41, €kt1), - (Fr, 1) >,
arising from two arcs in a specified class. The corner can be estimated by determin-
ing the index k and the included corner angle § maximizing

P(k,0|8)k=1,..,K,0 € [-7,x]

where k is the index indicating the corner location and 8 is the included angle
between the two contiguous subsequences at the kth location.

A twoline segment sequence consists of two subsequence, S; and S3, with respec-
tive line angles of ¢y and ¢,, where the ¢, is the counterclockwise angle between the
first line and the row axis and ¢ is the counterclockwise angle between the second
line and the row axis. The included corner angle 8 is given by ¢» = ¢, + 6. The
domain of ¢;;7 = 1,2 is defined over [-7/2,7/2]. Let p; be the distance between
the line and the origin. P(S | k,6) can be expressed as follows:

P(S18,0) = [ [P(41,01,5 |k, 0)ddrdpn,

AL ¢y

[ [ P(51161,00)P(S2 | 62,0)P(61) (o).
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Suppose that the noise perturbation model for (7;, G)isfi=ri+& and & = ¢;+m;,
where {; and 7; are independent and identically distributed Gaussian noise with a
zero mean and a variance of . Then

k

P(S1 | ¢1,p1) = P((%1,¢1), v (Pl Bk} | Bagin) = HP((T:I',E:‘) | #1,p1)-

1i=1

where, P((7;, &) | é1,p1) = P(é; | 75, $1, 1) P(7i | é1,p1). Next, we explore the two
conditional probabilities.
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where a; and by are the line parameters of the first line for the representation of
¢; = a1 + b17;. They can be obtained from the given line determined from the first
line angle ¢; and the line location p;, which limit the line points (7;,¢;) by the
equality constraint —r;sin ¢y + ¢; cos ¢y = py.



Since we do not know the true value of r; which should reflect the observed value
7i in the case of the given line model (ay,b;), then we have to integrate over the r
domain defined as [0, 128]:

P('f‘,’ ! ¢1,p1) = /P(T:'ﬁi ' ¢1,p1)d'r
= /P(ﬁ [ 7,81,01)P(7 | ¢1,p1)dr.

Assume that  is uniformly distributed along the line model (a1,b1), then we can
express P(r | ¢1,p1) by a constant Wj.

P(: | d,p1) = Wi f P(#; | 7, ¢u, p1)dr

!r‘-—r)z
lis: /e' a2 dr.
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The probability distribution of the second line on condition that ¢1 and 8 are given
can be integrated on p;:

P(S2161,0) = [ P(p2,5:] 1, 0)dps,

P2

_/P(Sz | p2,61,0)P(pa | ¢1,0)dp,

P2

[ P(S212.61,6)P(02)dp.

The probability P(p;) can be associated with a constant W, if p; is assumed uni-
formly distributed on its domain. Then

P(S2161,0) = We [ P(S: ] p21,6)dp
P2

- w, ] P(Sz | pa, ¢2)dpa,

P2



where ¢ = ¢; +6. In a similar computation as that for P(S1 | ¢1,p1), we can obtain

K
P(Sz2 | pa,¢2) =[] (P& | #i, b2, p2)P(Fi | b2, p2))
1=k+1
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W
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and W; is an associated constant for P(r | ¢3, p2) under the assumption that r is
uniformly distributed along the line model (az,b2). a2 and by can be determined
from ¢; and p; in a similar way as that computation of a; and by from ¢; and p;.

Furthermore, we assume ¢; to be uniformly distributed on [—7/2,7/2], so that
P(¢1) = 1/7, expressed in a constant Ws,. If the involved sequence is produced
from an image where p; is assumed uniformly distributed on the image domain,
then P(p;) is a constant W,,,.

Therefore, the probability
P(S|k,0) = Uff91(¢1,91)92(¢1,9)d¢>1dp1,
PL ¢
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A. P(k,8) Constant

Assume k and 6 to be independently uniformly distributed on [1, K] and [—, 7]
respectively, then P(k,#) can be associated with a constant 1/27K.

Therefore, the k& and 6 can be determined by maximizing the following compu-
tation over the domain of ¢; and p,,

/_/.91(951, p1)92($1,0)de1dpy
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B. P(k,6) Nonconstant

Assume random variable k and # to be independent. Therefore, we have
Pk, 0)= P(k)P(0):

Assume k to be uniformly distributed along the sequence with the length of K, then
its corresponding p.d.f.
1
Plk) = —.
(k) K

Assume 6 be normally distributed around a 6y, then its corresponding p.d.f.
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Therefore, the k£ and § can be determined by maximizing

P(kag)/f91(¢1391)92(¢1,9)d¢1dp1
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P(6)

3 Experimental Protocol and Results

Experimental Protocol

The experiment measured the statistical distance between the estimated and the
true corner position and included angle with the assumption of P(k, ) constant. We
limit our experiments to the two line segment model for the verification of the theory.

Two line segment sequences can be generated by the following three steps:

(1) Generate an ideal data sequence by specifying the starting point (r1,¢1), the
first line length L; and the second line length L,, the first line angle ¢; and the
included angle §. In this step, for each line L; or Ly, if | cosgpj |>|sing; |;5 = 1,2,
we sample the data by increasing the row coordinate by unit steps, otherwise, by
increasing the column coordinate by unit steps. After sampling, there results a
sequence of K points whose true corner index is kt. For the first ideal line generation,
if | cosghy [>] singy |, then S =< (ri,e&)|ri = 1 +4; ¢ = ¢; + 1tan(¢y) >
i1 = 1,...,k* — 1, where k* = |L;cos¢;| + 1 otherwise, §; =< (rise)lrs = 1 +
icot(¢1); ci=c1+1>;i=1,..,kt — 1, where kt = | Ly sin ¢y | + 1. For the second
ideal line generation, if | cos ¢, |>| sin ¢ |, then, S, =< (risei)|r: = Lycosgpy +
i — k%ci = Lysingy + (i — k*)tan(¢y) >;4 = kt + 1,..., K — 1, where K = kt +
| Lz cosga| + 1, otherwise, Sy =< (risci)lri = Licosehy + (4 — k) cot(da); ¢ =
Lysingy +i—k*>,i=k"+1,..,K — 1, where K = k* + | L, sin ¢ | + 1.

(2) Generate two Gaussian noise sequences < mq;;1 = 1,.,K > and < my;;1 =
1,..,K >, where each m;;; 7 = 1,2;i=1,.... K is an independent random variable
coming from a Gaussian distribution with zero mean and a standard deviation o.



(3) Obtain a perturbed sequence < (r; + my;,¢; + mai);t = 1,..., K >. Since
the sequence may violate the ordering constraints, we have to sort the sequence
to obtain the ordered sequence < (7,¢;);4,..., K > desired for the perturbation.
If | cosé; |>] sin¢; [;j=1,2, the sorting is done according to the row coordinate,
otherwise, on the column coordinate. Then we get the perturbed sequence S =<
(7,8:) | 4 =1,..., K > in which the true corner position index k* and the included
true corner angle 6 are contained. For each specified noise standard deviation o
we repeat the experiment for N,,, times of runs.

?

In this experiment, Ly = 50, L, = 50, (1, ¢1) = (0.0,0.0), ¢; = 30°,0 = 90°, 0 =
{0.4,0.6,0.8,1.0,1.2,1.4, 1.6,2.0 2530}a.ndN,-,m—{20 40,60, 80 100}

Let {kj,j = 1,..., Nrun} be the set of indices of estimated corner positions and
{0;,7 = 1,..., N;un} be the set of estimated included angles determined from the
Bayesian corner detector. For each run, we can obtain the error of the estimated
corner position,

dps = £/ (#(k5) — r(k*)) + (&(k;) — c(kt))?

and the error of the included corner angle

de; =] 6; —6*|.
Then, we can obtain the means of the these errors by
_ 1 Nyun
dp N Z dp;)
TUn J"—_l
B 1 Neun
0 = ) dg;
TUun j=1
and the variances of the these errors by
var{d,) = ;Ain(d - dy)?,
D (Nﬂm s 1) pour I D

run

var(dg) = (Nru.n z (do; — dp)?

Experimental Results

Figure 1 shows the error between the estimated corner position and the true
corner position with respect to the different noise standard deviation. For this
experiment, number of runs N,,, is 100. This plot indicates that estimated corner
position errors are relatively small and stable for the small noise perturbation.

Figure 2 shows the error between the estimated included corner angle and the
true included corner angle with respect to the noise standard deviation. This figure
has the same meaning as the figure 1.



Figure 3 shows the error of the included corner angle versus the different corner
index k. This plot indicates that the estimated corner angle has smaller error when
the true corner is located in the middle of the sequence.

4 Further Work

We are currently applying the theory described in this paper to detect the dominant
point for the two line segment model sequence. Our aim is to apply this method
to the dominant points for the multiple line segment model sequence and then for
a more arbitrary curve model sequence. In the general case, we assume the given
sequence contains multiple subsequences which arise line segments or any other
given curve model. We assume that the angle distribution P(8) of the included angle
between two segments is given and the number of curve segments is N+ 1, then there
will be N corners distributed along the sequence S =< (7;,4),i = 1,..K > and
the sequence will be partioned into subsequences S;,i = 1,..., N 4+ 1 with respective
lengths of k;,2 = 1,..., N + 1 and line angles of ¢;,7 = 1,..., N + 1, where ¢; is the
angle between the line S; and row coordinate. 6; = ¢; 11 — ¢;;i=1,..., N.

The corners can be obtained by maximizing the posterior probability distri-
bution P(k,...,kn;61,...,0N | §). According to the Bayes’ theorem, the posterior
probability distribution is proportional to

P(S | k1yoos kN 01,0, O8) P(kr, oy ks 01, .., B),

where P(ki,...,kn; 01, ...,0N) contains the prior information about the distribution
of k1,....,kN;01,....0n, and P(S | ky,...,kN; 01, ...,0x) reflects the likelihood of the
sequence S coming from the assumed model (ki, ..., kn; 61,..., On).

We will also work on the performance characterization of this method by a
combination of theoretical analysis and experimental observation. The performance
characterization will concentrate on the analysis method and test with a large groups
of simulated noisy data[11,12]. After the simulation of synthetic data, the detection
method should be applied to process sequences generated from real images.

5 Conclusions

We have discussed the theory and experiments of a Bayesian corner detection
method. The theory was explored for the estimation of the corner position and
the included corner angle of the two line segment model. The method, however, can
be applied to corner detection in sequences having more than two subsequences. We
tested the method by using the synthetic data which reflects the sequence model
and the Gaussian noise perturbation onto each sequence element independently. On
the bases of our preliminary experiments, we are assured that this method is feasible



and applicable for the dominant point detection. As for the multiple corner detec-
tion, we here suggest a global optimization method which obtains the best detection
by comparing all of estimations related to different number of line segment on the
sequence. It is also possible to recursively apply the two line segment model to a
multiple corner sequence.
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Figure 1: Corner position errors vs. noise perturbation (o), where 8 = 90°, L; =
Ly =50, Npyn, = 100 x 10.
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Figure 2: Corner angle errors vs. noise perturbation (¢), where § = 90°, Ly = L, =
50, Npyn = 100 x 10.
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Figure 3: Errors of included corner angles vs. corner index (k), where ¢ = 0.8,
Li = L3 = 50, Ny = 100,
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