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Abstract

A corner is modelled as the intersection of two lines.
A corner point is that point on an input digital arc
whose a posteriori probability of being a corner is the
maximum among all the points on the arc. The per-
formance of the corner detector is characterized by its
false alarm rate, misdetection rate, and the corner lo-
cation error all as a function of the noise variance, the
included corner angle, and the arc length. Theoret-
ical expressions for the quantities compare well with
experimental results.

1 Introduction

There are two primary groups of corner detection
algorithmas: one is based on detection directly from the
underlying imagel' =2, the other one is based on detec-
tion from arcs or curves®=®! produced from previous
low level image processing operations such as edge de-
tection or line finding followed by thinning, linking
and labeling. In addition, some researchers/!?) have

also explored corner detection based on combinations
of these methods.

This paper presents a maximum a posteriori (MAP)
probability corner detection method. For a given arc
segment, the corner is estimated to be that point
whose a posteriori probability of being a corner is the
maximum among all the points on the arc segment.

We model an ideal corner as the intersection point
of two straight lines. Our mathematical formulation
of the corner detection incorporates the prior distri-
butions for corner model parameters, such as the pa-
rameters of the lines forming the corner and the index
of the corner point along the arc segment.

The detection procedure involves sliding a context
window of specified length over the given sequence of
pixels forming the arc segment, and doing a two-line
segment corner detection within each window. The
context window length is chosen so that there is at
most one corner within the context window.

*Funding from DARPA contract 92-F1428000-000 is grate-
fully acknowledged.
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2 Motivation and Theory

A corner is a discontinuity of the curvature of a
curve and the location of the discontinuity can be ap-
proximated by the intersection point of two straight
lines in its local neighborhood.

2.1 Corner Model and Its Detector

Given an observed sequence of ordered points aris-
ing from two line segments, the last observed point
arising from the first estimated line segment is what
we want to detect as the corner. The problem is to
decide which of the points in the observed sequence
has the maximum a posteriori probability of being the
“last” point from the first line segment. The following
is the formalized problem statement:

Problem Statement
Given: an observed sequence of points from an arc

segment, 5 = {( 2: ¥ 4 =l I (Fi, &) € Zr x Zc ¥,

where Zr x Z¢ is the image domain, I is the num-
ber of points and (;,&),7 = 1,..., I are the results of
random perturbations on the points (r;, cihi=1,..,1
constrained by

ricosfy + c;sinb; — py
ricosfy + ¢;3indy — py

0,i=1,...,k;
0,i=k41,..,1,

where 8;,p;;7 = 1,2 are line orientation and loca-
tion parameters for the two line segments. and k is
the index of the true corner position (ry,c;). Assume
perturbations to be independently introduced on each
sample point with Gaussian distributed noise in the
direction perpendicular to the line segment. Pertur-
bations on the two line segments can be expressed by

g Py + nicos61; ¢ = ¢ + mpsinfy;i=1, ..., k;

i + nicosbz; 8 = ¢; + pisinby,;i=k+1,..., 1.

s
where n; ~ N(0,02).

Find: the estimated corner (#4.,8-),2 < k* < T -1,

along the arc S and the estimates of two line param-
eters, (61, p1) and (83, p3) so that P(k,61,p1,02,02 |

S, 0,1I) is maximized.



Solution: By Bayes’
formula P(k, 61, p1,82,p2 | S,0,1I) can be written as
P(S | k: 61: P1;92; P2,0, I)P(k, 91: P1, 921 P2 f G,.I).

The first term is the likelihood of observing the

given sequence of points S, given the parameters of
the two lines forming the corner, the noise standard
deviation o, I and the index k of the true corner.

The model says that the observed sequence $ can be
separated into two sub-sequences, or sub segments,

Sy and S, where, §; {( g‘ )4 =1,.,k} and

5 ={( E: )] i=1k+1,..,I}. Since perturbations

the second line (63, p2), the likelihood of the observed
3 given two lines (61, p1), (62, p2) can be written as

on the first line f&l, pl; are independent from those on
H

P(‘é | k,61, p1,02, p2,0,1) =
P(§1 | k! 61})011 0', I)P(SQ l k, 62,;32,0', I)'

The conditional probability of observing the first
sub segment given the true line parameters is given
by

P(‘§1 l k, Blaplsav I)
P(Sl | kzeliplsa)
P((f1,81) s .o., (P, 61) | 61, p1, )

k
HP((;}HE‘-) |911P110-)
i=1

1
Vano

Similarly, the conditional probability of observing
the second sub segment S, can be computed by

k

i=1

=

P('§2 I k|62|P2:U:I)

( 1

2wo

I
)I—k H i #(F;caaﬁ‘:+é;ain9:—p,)’

i=k+1

The index k and parameters (61,p1), (62, p2) are
independent of ¢, hence

P(k:61|p1:321p2 I(J‘, I) P(k:61)p1a921p2 | I)

Further, the index k is independent from the line
parameters §91,p1) (62, p2), and these line parameters
are independent of the number of points I. So

P(k,01,p1,62,p2 | I)

P(62,p2,01,p1 | I)P(k | I)

P(62, p2,61,p1)P(k | I) ;
P(02 | p2,61, p1)P(p2 | 61, p1)P(p1 | 6).
P(6,)P(k | I)

P(62 | 61)P(p2)P(p1 | 6:)P(8:)P(k | I).

283

The index k, i. e. the index of the last point arising
from the first line, is assumed to be uniformly dis-
tributed between the second point and the second-
from-last point, i. e. §; is assumed to be uniformly
distributed in [0, 27], 1. e. P(8;) = 1/2m.

The conditional probability distribution P(p, | 6;)
is a probability density of the distance p of the line
from the origin, given 6;, which is the orientation of
the vector normal to the line,

We assume the probability distribution of p1 given
61 is constant and equal to 1/Z, where Z is the larger
of the number of rows or columns in the image. We
agsume p3 to be uniformly distributed in [0 < p; < Z)

‘and has zero probability in the region of [Z < p2 £

V23]

The conditional probability distribution P(6; | 6,)
is assumed to be determined just by the angle included
between the two lines. P(6; | 6,) = P(|6, — 6, 13

Let 612 =| 62—6 |€ [0, 7]. ;3 is called the included
corner angle. It is assumed that there is a higher prob-
ability that the included angle is close to a right angle.
This assumption is consistent with some practical ap-
plications such as roof corner detection of buildings in
aerial images*?~13, We assume the probability dis-
tribution of 8;3 to be

P(glg) = K]_EK: lin(B‘u),

where K; and K, are two constants.! X, can be
estimated from the empirical distribution of 812 by

K, = 1/6% ., and K can be estimated by
- 1
K, A 1
J"eKzsin(au)dan
0

where &gu is the estimated variance of the empirical
distribution of 5.

Taking logarithms, the problem becomes that of
finding the (k*, 61, p}, 65, p3) that maximizes

E
1 e .
K — 252 ;(mcosﬁ’l + &;sinfy — py)? —

I
1
357 (F;cosaz + é;5inf, — ,az)"2 -+
& i=k+41
+K, sin(| 6, — 8, D,

where

K =log Ky — log(27) — 21og Z — log(I — 2) — I'log(v/ 27a).

The above problem is a nonlinear optimization
problem. We use a two step procedure to find the
solution. In the first step, we use maximum likelihood
estimation to quickly find a good initial estimate and
in the second step, we make use of a gradient search
scheme to find the solution to the MAP problem.

1This distribution is nothing but a truncated form of the
Von Mises distribution with mean= = /2.



2.2 Application to Multi Linear Segment
Models

The procedure begins by examining the first I pix-
els in the chain. If a corner is detected, the corner
detector puts the next context window to start at the
point following the detected corner. If no corner is
detected, the window is moved along the pixel chain
in a fixed step size (Susually one pixel) and the corner
detector is reapplied.

For any context window, there is always one whose
a posteriori probability of being a corner is the max-
imum among all the points in the window. However,
there may actually be no true corner located in the
context window. In this case, the point with the MAP
probability of being a corner should not be claimed as
a detected corner point. Therefore, we need a way of
determining whether the MAP probability of a point
being a corner is high enough so that the detector
should label the point as a corner.

We first concentrate on the likelihood part of the
detector. The maximization of the likelihood of ob-
serving the given sequence from the estimated corner
model is equal to the minimization of

k
1 5 o
X1:0_7 E (fi cos 6y +c,-su191—p1)2+

i=1

I
O_Lz Z (‘F" cos @z + é;sinfy — 93)2 (1)
i=k+1

When there is no corner in the window, 6, = 8; X,
would be a x? distributed random variable with I de-
grees of freedoms.

We choose a confidence level ag and set a threshold
T, so that

Prob(X, < Tp) = arp.

This is the probability that a x? random variable with
I degrees of freedom is less than T},. In reality, we have

two estimates for the angles of the lines él and 6, and
we compute the quantity:

il
1 5 o
Xa = min{‘,_z Z(f‘e cos 0y + ¢;sin by — py)?,
i=1
1 I
o Z(f-‘-'cos 62 + & sinf, — py)?}, (2)

1’=1

and then compare X; with the determined threshold
Tp. If X, is larger than T, the estimated break point
is claimed as a detected corner. Otherwise, the esti-
mated breaking point is not claimed as a corner.

If, according to the above criterion, no corner is
claimed, the detector is moved along the given arc
by a defined step (usually one pixel). If a corner is
detected, the detector is moved to the next window
starting at the pixel next to the detected corner. This
procedure is repeated until the tail of the detector win-
dow reaches the last point of the given arc.
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3 Location Error

The squared location error d? is the squared dis-
tance between the detected corner position and the
true corner position,

d? = (Fre — 1‘0)2 + (€= — ca)z, (3)
where k* is the index of the estimated corner position
(r*,c*), (r°,¢°) is the true corner position, i. e. the

intersection of the two lines forming the corner. The
variance of the squared distance can be proved to be

VId® | @] = B{[(res = r°)* + (cx» — )] | @}
{Bl(re- — )7 | @] + E[(ck+ — ) | @]} + 20,

where
I-1
Elire =1 8] = 3 (e —°)?P(k*; @)
f1e=2
-1
Bl(er ~ ) [ €] = ) (exe —°)?P(k"; @)
1302

and

Bl{(re- =) + (cx — °)*Y | 3] =
I-1

D [ree =1°) + (cae — )22 P(k"; 2)

i1e=2

where P(k*;®) is the notation used to denote the

probability that the observed sequence $ is such that
the corner estimated from it has index k*, given that
the parameters of the underlying lines are © and the
noise standard deviation is o.

In the experiments for examining the location error
as a function of the noise standard deviation o, for
each value of o, many trials are performed with the
same value of the included corner angle. For each trial,
an pair of line segments is generated and is sampled,
and then the samples are perturbed with Gaussian
noise of variance g?. For each of the N trials there
is a different observed sequence S(n); = 1w ., N,

and the observed points in S"(n) are substituted in the
above expression to obtain an estimate of E(d?|®).
Thus an estimate of E(d%|®) is obtained from each

trial, and these are then averaged to obtain a better
estimate of E(d?|®).

4 Experimental Protocol and Results

The experiments utilize synthetically generated
two-line-segment sequences. The input parameters to
the corner detector are the context window length cwl,
the estimated standard deviation of the noise o, and
the confidence coefficient arg..



4.1 Two Line Segment Arc Generation

A two line segment arc can be generated in three
steps: (1) Specify the starting point (r1,¢;), the first
line length L;, the second line length Lj, the first line
angle ¢1 and the included corner angle 8,3, where ¢,
is the counterclockwise angle between the first line
and the row axis. (2) Generate a sequence of sam-
ples < miji =1,..,I >, where each my; i =1,...,is
an independent random sample coming from a Gaus-
sian distributed random variable with zero mean and a
standard deviation o. (3) Obtain a perturbed sequence
of the arc segment < (r;+m; cos#y, c; + my sin 61);i=
1,...,%" >, and < (r; + m;cosby,c; + misinf,);i =
i*+1,...,I > . Thus, a perturbed two line segment
arc § =< (Fy&);2=1,...,I > is generated.

4.2 Location Error Measurement

For measuring the location error, we utilize syn-
thetically generated two-line-segment sequences, and
obtain the distance between the true corner and the
detected corner. In this experiment, the context win-
dow length is equal to the length of the sequence, o is
systematically set up, and ar is not used.

Location error vs noise standard deviation
Let 642 90°, L, Lq 50 units, For
each ¢ € {0.0,0.2,0.4,...,5.0} and for all of 8, €
{0°,1°,...,359°}, generate 10 sequences of two-line-
segment arcs. There are 360*10 runs, defined as N,,,,,
for each o. For each sequence, apply the corner detec-
tor, and obtain the squared location error by

n) _ raln) nh2 4 (aln)
d:( b= o, rinh? 4 (GRS
where (r"ET), EET)); n=1,..., Neyn is the estimated cor-

ner and (r*(?), ¢"));in =1, ..., Npun is the related true
corner. Obtain the root-mean-square error by

N.

_ 1 TUM x "

d, = (N E:dfj( N3,
TUn. n=1

and its related variance by -

N,
s 1 %l 2(n) _ 72y %
var(dy) = (m ;(dp dy))7.

Figure 77 shows the root-mean-square location er-
ror and the root-mean-square variance of the location
error versus the noise standard deviation, by theory
and experiment. It indicates that the error linearly
increases as the noise increases and the variance of the
error quadratically increases as the noise increases.

Location error vs the included corner angle
This experiment is the same as above except that 85
is chosen from the set {10°,20°,...,170°} and o = 1.0

Figure 7?7 illustrates the root-mean-square loca-
tion error vs f;,, and indicates that the detection has
the tendency of having smaller error for 90° included
corner angle and larger error for included corner angles
away 90°. In addition, the rather flat region around
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Figure 1: Location error and its Variance Versus o
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Figure 2: Location Error vs Included Corner Angles
And Arc Length

90° corner angle indicates that the algorithm is more
stable over a large range of corner angles.

Location error vs the arc sequence length
This experiment is the same as that in the first case
but at this time the arc length is varied from 10 to
100 by a step of 10 pixels and the two line segment
lengths are kept the same, ie. L; = L.

Figure 7?7 is the root-mean-square location error
versus the arc length. The result indicates that the
algorithm is stable with different arc lengths.

4.3 Performance Measurement

Once the algorithm has been designed, it’s perfor-
mance should be characterized [*4], In this experi-
ment, we test the performance of the detector by plot-
ting its false alarm rate and misdetection rate versus
the context window length cwl, the included corner
angle 81, and the distance threshold dy which is a
special parameter used during performance test.

Here, cwl is chosen smaller than the sequence
length, o is systematically set up, and aq = 0.9.

The false alarm rate is defined as the probability of
a true noncorners being detected as a corner and the
misdetection rate is defined as the probability of a true
corner not being detected as a corner. Define a circle
of radius do, called the distance threshold, centered
at a true corner. If no point exists within this circle,

Location Error Varianee Versus Nolse Standarad Deviation
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Figure 3: False Alarm and Misdetection versus Con-
text Window Length

a misdetection happens. If the detected corner does
not fall into any region centered by a true corner with
the given radius do, this detection is claimed as a false
alarm.

1. False alarm rate and misdetection rate ver-
sus the context window length.

Let 812 = 90°, Ly = Ly = 50 units, Ty = 3. For
each cwl € {3,4,...,70}, where cwl < 2 % 50. and
all of 8; € {0°,1°,...,359° generate 10 sequences
of two-line-segment arcs. For each context win-
dow length, there is N,,, = 360 * 10 runs. For
each generated curve, detect corners. The false
alarm and misdetection rates are shown in Fig-
ure ?77.

2. False alarm rate and misdetection rate ver-
sus the included corner angle.
This experiment is the same as above except that
the included corner angle 61 at this time is var-
ied from 1° to 179° by a step size of 1° and the
context window length cwl! = 2 = 50 unit.

The results are shown in Figure ??.
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Figure 4: False Alarm and Misdetection Versus In-
cluded Angle
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