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ABSTRACT

A convex, filled polygonal shape in R x R can be uniquely represented in the discrete Z x Z
domain by the set of all the lattice points lying in its interior and on its edges. We define a restricted
convez shape as the discrete four connected set of points representing any convex, filled polygon
whose vertices lie on the lattice points and whose interior angles are multiples of 45°. In this paper
we introduce the Boundary Code (B-Code), and we express the morphological dilation operation on
the restricted convex shapes with structuring elements that are also restricted convex shapes. The
algorithm for this operation is of O(1) complexity and hence is independent of the size of the abject.
Further, we show that the algorithm for the n-fold dilation is of O(1) complexity. We prove that
there is an unique set of thirteen shapes {K;, K»,..., K13} such that any given restricted convex
shape. K, is expressible as A = A" & K2* & --- @ K[3> where K" represents the n;-fold dilation
of K;. We also derive a finite step algorithm to find this decomposition.

1. Introduction

The concepts of mathematical morphology have been used for shape description Ghosh[1988], Ghosh and
Haralick[1990] , Pitas et al.[1990]. Shapes or objects can be described in terms of simpler, better characterized,
underlying parts. A morphological description of a shape usually expresses a shape by decomposing it into an
equivalent series of dilations of simpler parts. Simpler parts in the case of binary shapes can be disks, lines, rectangles
etc. of various sizes. When a shape is expressible as a dilation of two other simpler shapes, it means that the original
shape can be described as the area marked out when one of the parts is held fixed and the other is swept over the
first.

Binary shape are usually represented as the sets of all the points constituting them. These shapes are
completely characterized by their boundaries and many efficient representation schemes for representing border
information have been presented, Freeman[1974]. Boundary representations make explicit many important features
such as the vertices. edge lengths, etc. If these features are used by shape description algorithms, the use of the
boundary representation will make the extraction of the description from the representation much more efficient.

SPIE Vol. 1350 Image Algebra and Morphological Image Processing (1990) / 419



Algorithms that perform morphological operations using object outlines in the continuous domain have been proposed
Ghosh([1986]. However, the equivalence of these approaches to the existing set theoretic definitions has not been
proved.

Morphological operations on machines specialized to perform these operations are limited by the maximum
size of the structuring elements that the machine allows. If a morphological operation has to be performed with
a structuring element larger than the maximum allowable size, the structuring element has to be decomposed into
smaller ones. The new structuring elements have to be such that (i) each of them can be handled by the hardware,
and (i) the dilation of all of them is the original structuring element.

From the above discussion we can see that structuring element decomposition is an important problem
from both points of view — shape description and liardware implementation of morphological operations. Several
algorithms to find such decompositions have been presented in the literature . These algorithms work either on
shapes represented as sets or as their outlines in the continuous domain and have a time complexity of O(n?). In
this paper we introduce the concept of B-Codes which is a boundary representation for binary shapes. B-Codes are
then used to perform morphology and decomposition. We also prove that results obtained by B-Code morphology
is equivalent to performing the same operations using the standard set theoretic operations. Furthermore, we show
that the time complexity of our algorithins for decornposition and morphology are O(1).

[ section 2 the related literature has been discussed. In section 3 we set the stage by giving all the definitions
and notations, In section 4 we define restricted convex shapes and B-Codes . B-Code dilation and n-fold dilation is
discussed in section 5. The proof of the algorithm is given in 6. The algorithm for structuring element decomposition
has been given in section 7. Computational complexity of the algorithms has been considered in section 8. Finally,
a summary of the presented work and future work directions towards generalizing the algorithms for any zonvex and
nen convex shape has been considered in section 9.

2. Literature Survey

The paper on structuring element decomposition by Zhuang and Haralick[1986] presented the theory and
algorithm for decomposing a binary structuring element as the dilations of two point structuring elements. This
algorithm is for an arbitrary binary structuring element and the time complexity is proportional to the square of
number of foreground pixels in the structuring element. Gong[1988] presents an O(n?) algorithm for decomposing
a binary 2-D image. Here the n is the number of points in the decomposed sequence. Gosh [1988] discusses the
decomposition of convex shapes in R? and R3. Gosh and Haralick[1989] present an algorithm for decomposing
a convex shape in R? into triangles and straight lines. They also give a way of decomposing binary structuring
elements in Z° by going into the R* domain by taking the convex hull of the structuring element, then decomposing
in the R* domain, and finally comming back to the discrete domain by sampling. Xu [1989] presents an algorithm
for decomposing a class of chain coded convex shape into dilations of a structuring elements from a finite set
of structuring elements but does not provide any type of basis set. Pitas et al.[1990] use morphological shape
decomposition techniques for shape description of real. binary images. None of the above papers have provided an
algebra for dilation of restricted convex shapes in terms of their B-Code. In this paper we provide a tecnique way for
performing dilation of B-coded structuring elements without going back into the discrete domain. Also, we provide
an algorithm for decomposing the B-coded structuring element into dilations of structuriny elements from a primitive
set of 13 structuring elements. The time complexity is independent of the size. In fact it is constant time.

3. Notations and Definitions
In order to present our work. we need to introduce the following definitions:

A binary discrete image is a function g : Z> — Z such that the function g can take only two values : 0 and 1.
The lattice points (7, j) € Z* corresponding to the the points where g takes up the value 1 are called foreground points,
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or pixels and background pixels otherwise. Two foreground points (¢,7) and (k,!) are said to be f-neighbours if and
only if (k.1) is one of {(i+1,7),(i—1,7),(4,j+1),(¢,5—1), (i,7)}. The foreground points (7, j) and (k, [) are said to be
8-neighboursif and only if (k,1) is one of {(G+1.7),(i=1,4),(3,j+1), (¢,7=1).(4,3), (341, j+1), (i+1.5=1),(i=1,7+1)}.

The points 2; and z, are said to be 4-connected if and only if there is a sequence of foreground points { z;,....z; }
such that 2 and z44; are 4-neighbours. Two foreground points z; and z; are said to be -connecied if and only if
there is a sequence of foreground points { z,,...,z; } such that =, and zj4, are 8-neighbours.

A set of foreground points is a 4-connected component if has the property that all pairs of points in the set
are 4-connected. A set of foreground points is an §-connected component if has the property that all pairs of points
in the set are 8-connected.

We define a 4 or 8 connected component as convez if and only if all the lattice points lying inside or on the
convex hull of the foreground points are members of set of foreground points constituting the connected component.
This definition directly implies that a convex connected component has no holes.

Dilation is the morphological transformation which combines two sets using vector addition of set elements.
If A and B are sets in N-space (EV) with elements a and b. respectively, a = (ay,...,an) and b = (by,...,bw)
being N-tuples of element coordinates, then the dilation of A by B is the set of all possible vector sums of pairs of
clements. one comming from A and one comnung from B. Rigorously, the dilation of A by B is denoted by A& B
and is defined by A= B={c€EY |c=a+bforsomea€ Aandbe B}.

Structuring element decomposition problem is defined as follows: given a set A C Z x Z determine the
smallest .V and the corresponding structuring elements Ky, K2, ..., Kysuchthat A= K1 & ho® - & Kn.

4. Restricted Convex Shapes and B-Codes

A restricted conver shape is defined as a convex 4-connected component whose convex hull has boundary
lines oriented only at angles u®, 45°,90°, 135° with respect to the positive r-axis.

Boundary Code or B-Code is a notation for representing 4 or 8 connected components in terms of their
boundary lattice points. Only a starting boundary point is represented explicitly, while the rest of the boundary
points are represented as successive displacements from a boundary point to one of its neighbours along fixed set of
possible directions. If the successive displacements happen to be in the same direction, it is encoded as the direction
followed by the number of successive moves in that direction. The formal notation to represent a convex connected
component A is given below A =< (ia,ja) | (d1 : m)(d2 1 n2) ... (dm : nm) > where (14, ja) is the starting boundary
lattice point, and the ordered pairs following the vertical bar describes each successive displacement. The integer
di € {0° 459 90°,135°, 180°,225°. 270°,315°} gives the direction and the the integer n; following the colon sign is
the number of successive moves in that direction.

Let d(). a’fl‘ R .d',' be vectors given I)y do = (1,0),d1 = (1, 1),d2 = (0, 1),d3 = (—]., l),d4 = (-—1,0),(:[5 =
(=1,—1).ds = (0,—1).d7 = (1,—1) Let an restricted convex shape, A, be given by 4 = ((iA,jA) | (do : nd)(d: :
ni')---(dr : n?')) The eight vertices of A are VA VA, ..., V4 where Vi = (ia,ja) and rest of the vertices are given
by V4, = Vi* + nfd;. We define A™ as the set of vertices of A: A™ = (VA VA, ..., VA). See figure 1 for examples
of restricted convex shapes and their B-Codes.

The convex hull of A is denoted by Hull[4], and is defined as

Hullld] = {de R?|d= Z o; VA where o; € R, a; 20, Za,— 1,VA € A"} = Hull[4"]

We define a sampling set S as the set of all lattice points jie., S = {s|s € Z?}. The set of all lattice points
contained in A can be defined using the sampling set S as Hull[A*] NS {d € Z? | d = T a;V where o €
R,o; >0.) a; =1. Vi4 € A"} Since the set vertices of A, i.e. A", are lattice points, it can be easily seen that the
convex hull of A* and Hull[4°] NS are equal to Hull{4]. That is Hull[4*] = Hull[ Hull[A*] N S ]] = Hull[4].
Since a B-Code shape 4 = ((ia,ja) | (do : nd)(dy : nft)---(d7 : n$)) is a closed contour, it inherits the following
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properties of closed contours:
; y ; A
ng +ni +nf = ngd +nd + nf

A (1)

A A A
nf‘+n2 +n§:n5 +ng + ng

where nf* > 0 for 0 <

i £ 7. The second two equations come about form the noting that V;' is equal to Vg and
substituting for the d;’s.

i

5. B-Code Dilation

Let A and B be two restricted convex shape defined by A = ((ia,da) | (do : nd)(d, : ) (d7 : nf)) and
B ={(ig,jg) | (do : nB)(dy : nB) .. (dy : n¥)). The B-Code dilation of A and B is then a restricted convex shape
D given by

D::(UA,jA]+-UB,jB)i(do:néﬁ—n§Xd1:nf—knf)-u(d7:n¢-+n$)> (2)
The following proposition states the exact relations that have to be proved.
Proposition: Hull[D] = Hull[{ Hulll4]N'S )& ( HullB]n'S )]
Proof :  Since the vertices of A. B. and D are latice points, proposition becomes Hull[D*] = Hull[( Hull[4*] N
S )& ( Hull[B*]NS )]. It follows that Hull[D*] = Hull[( HullA*]) & ( Hull[B"])]. From Ghosh and Haralick[ 1989
] we have Hull{A"]+ Hull[B*] = Hull{4"  B~]. Tle proposition now becomes, Hull[D*]= Hull[ Hulll4" @ B*]].
That is, we now have to prove that Hull[D*] = Hull{A" @ B*]. Let V(z) and V(y) denote the z and y coordinates
of the lattice point V. Further, le!
Afomin = {Vi* | V' (2) = min VA(z), VA € 4%} = V&, VA)
j

Adomas = (Vi | Vi (2) = max VA(2), VA € 4%} = (VA 14}
Adamin = (V1 1V () = min VA(y), Vi € 4°) = (VA 14)
Adamaz = (V7 1 VA (y) = max VA@), VA € A7) = (V2 1)
Amaz = {V Vi (2) + VA(y) = Y VA 2) + ViAW), VA € A"} = (VA VA
Adymin = (VA VA (2) + VA(y) = min Vi) + V(). VA € A%} = (V4 vA)
Asmaz = V1 TV ) - VA=) = maxVA() - VA(2), VA € A7) = {4, 1)
Adsmin = (V2 1V Y) - V(@) = min VA®) - VA=), VA € 47 = (A, 144)
LetI'=A*@ B ={y|y= VA 4 IJ}B,V‘-A = A",Vjﬁ € B*} and let
Taomin = {7 | v(2) = min y(z),y € T’}
= {7 | 7(2) = miumin{VA(2) + V2 (2)}, Vi* € 4%, VB € B")
= {7 [7(2) = min{VA@)} + min{V2 ()}, V* € 4", VF € B"}
={717=P+ 0P € AL min: 0 € Bjmin}
= Adomin D Biomin = (V&', Vi } @ {VE, VF}
We can easily see that there are four elements in domin and all of them lie on a straight line perpendicular

to the z axis. Similarly we can show that Piomin = {V&', Vi) @ {VB, VB}; Lemaz = {Vi4, Vi) & (VB VB,
I‘:fgmin = {VDA' Vl‘l} & {VUB! I/IB}: F;;maz = {%A’ ‘%A] S {L’;B! VSB}; P;1maz = {VSA' ‘/‘iA} @ {V3B' I/QB}' F;;lmin ==

{VoAnVTA}GHVOBvVTB}C Iy = {V&*, V&) @ {Vi#, ViF}; and I} = {VA, VAl @ {VE, VB).

damaz damin
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Consider r.im\u.c - _1d—=111a.;. T Bdgnmz {I VS } @ {V4 ' B} Thls set has a four elements Wit'h same
v(2). Hence these four points lie on a straight line segment parallel to the = axis. This segment is the uppermost
bounding line of Hull[T]. Since the elements of I'; ... lie on a line, Hull[T;, maw] is completely defined by the

segments end points. Thus HulllT} ,...] = Hull[’yl,'yz] where 11 = {7 | 7(z) = min;~(z)} = {VaA + V)
and 72 = {7 | 7(z) = max;y(x)} = {V& + VEL}. Thus Hull[l] is bounded on the top by a line segment
parallel to the z axis and given by the set of two end points — {(VA + V.8), (V& + V). e Hulllly, o.] =

Hull[(VA + VB), (VA + V8)]. Similarly the bounding segment on the extreme right is perpendicular to the z axis
and is given by Hull[l'] ,...] = Hull[(V;* + V), (V5 + V£)] The bounding segment on the upper right corner is
given by Hull[[% 1= Hull[(Vi* +VE), (Vi + VP

dimazr

Since the point (V3* + ViB) is common in  Hull[l'y,,,,] and Hull[l; ,,,.] and the point (V& +VP) is common
in Hull[l; .,.] and Hull[Tg, .| , the only bounding segment in the upper right corner is given by Hull[l'y ,,.]-
Similarly we can prove that the other bounding segments of I' are

(2) Hull[[, pae] = Hull[(V + V), (! + V&)
(i) Hull[[5, o) = Hull[(Vs* + V), (v + V2]
(i11) Hull[[5, 0] = Hull[(Vs* + V), (V# + 2
(iv) Hulll'},,,,,] = Hull[(Vg' + VE)Y, (VA + VB
(v) Hull[T5, 0] = Hull[(Vs* + V&), (Vi + V)]
(vi) HUll[T], e = Hull[(Ve* + V), (Vi + V)]
(vid) Hull[T, n) = Hull[(V* + VP), (V7 ¥
(viif) Hull[[, 0] = Hull[(VA + VF), (V! + V5

Since the bounding segments of Hull[['] are given by the above set of equations, Hull[I'] is the convex hull of the
bounding segments. That is.

Hull[T} = Hull(V5* + VE), (VA + V), ..., (Vi + Vi)
= Hull[v?,vP.... VP
= Hull[D")

We have thus proved that Hull[A* & B*] = Hull[D"].

From this it follows that the n-fold B-Code dilation of A, is given by

(PA"=ABAD... & A n times
= ((nia.nja) | (do: nnd)(dy : nanf) ... (d7 : nnfﬁ))

6. Proof of the Decomposition Algorithm

Proposition 1: There exists a unique set of 13 restncted convex shape {Ki, K2, ..., K13} such that any restricted
convex shape A is decomposable as A = Ky @ Kk‘ P K - @ Kfs“, where k; can be zero or positive integers,
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restricted convex shape £’ is given by the B-Code {(ia.Ja) |}, and the K;,i <1< 13 are as given below.

Ky = ((0,0) | (dp : 1)(dg : 1))
Kz =((0,0) [ (dy : 1)(ds : 1))

K3 = {(0,0) | (do : 1)(ds : 1))

Ky = ((0.0) | (da: 1)(d7 : 1))

K5 ={(0,0) | (do : 1)(dz : 1)(d5 : 1))

Ks = {(0,0) | (dg : 1)(ds : 1)(ds : 1))

K7 =((0,0) | (d1 : 1)(d : 1)(ds : 1)) (4)
Ks = ((0,0) | (do : 1)(ds : 1)(dy : 1))

Ko = ((0,0) | (do : 2)(d3 : 1)(ds : 1))

K10=((0,0) | (c1 : 1)(ds : 2)(d7 : 1))

K11 = ((0,0) | (dy : 1)(da : 1)(de : 2))

Ry2=((0,0) | (da: 2)(ds : 1)(d7 : 1))

A3 =((0,0) [ (dy : 1)(d3 : 1)(ds : 1)(d7 : 1))
These shapes are shown in figure 2.
Proof :

From the dilation rule we see that it is sufficient to prove that there exists a set of k; that satisfy the following

relations
=ky + ks + kg + 2kg

o
it = ko + k7 + k1o + kg + Ky
3 =ka+ ks + ks + 2kqo
ng = ky + ke + ko + k11 + ks
ng = ky + k1 + ks + 2k
ng = ka4 ks + ko + k1o + kyg
ng = ks + ks + k7 + 2k,
ng = kq + ke + k1o + k12 + k13
We can also see that the k; chosen in such a manner satisfy the equations in (1).
Proposition 2: Any restricted convex shape A = ((Ga.da) | (do : nf)(dy s nd) - (dy n4)) can be decomposed as
A= AM@ Ko, where A0 is an restricied conves shape given by the B-Code ((0,0) | (dg : nf)(d : ). (d7: n))
and Ko = ((ia,ja))
Proof: The above proposition follows immediately from the rule for B-Code dilations.
(a1 Jaw) + (ikes Jko) = (0,0) + (i4,7a) = (i, ja)
And from the definition it follows nf™ = n#, Since np"” = n{', A is just a translated version of 4. Hence it is
an restricted convex shape satisfying the necessary and sufficient conditions given by equations (1).
Proposition 3: A0 = AW 3 ¥ where i) = ((0,0) | (do : 1)(ds : 1)) and k; = min[nf,“m.nf(u}}. and A1) is an
restricted convex shape with
{iAth',.un} = (0‘

0)

© © .
ng o —nd, if nd > ad;
0,

AtD
n =
0 B
otherwise.
A A e 4 A,
n.fm ={ny —=nf , ifng >ng,
0, otherwise.
A q@
n =ny ifi#0ord
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Proof:

Case 1: na“( y > nA( ’ From the dilation rule it follows that n“"(”ﬁ-k (nK‘) [ e “"m)]+mm[ ‘6‘(0) AM] = Am
and n“( 3 ky(nEy =04 min[n(,‘m,n;;‘m] = ng"(a) From the definition we have n# "tk (nPt) = nA( R if i # o or
4; (iam,Jaw) = (ig@.Jam) = (0,0). To prove that A(1) is an restricted convex shape we have to show that the

nf o satisfy the conditions given by the equations in (1). That is. it is sufficient to show that

) ¢y (m (0 e A1)
ng 4t +nd =ng +nf +ng (6)
) ) ) (1) e Al
ni4+nd 403 =nf +nd +07 (7)

Equation (6) can be rewritten using the definition of n;‘m as follows

(0) (0) @) () (@) (0)
[nél A ] A A - ﬂg 0 ﬂé
that is,
(0) () (0) (0) (0) (0)
n‘;‘ + n‘f‘ + n# = ‘4 +n A 2 n‘;‘

But the above equation holds since A'%) is an restricted convex shape. Similarly we show that equation (7) holds.
QED.
Case 2: ' > nd"”.

The proof is similar to that of case I. From r,he dilation rule it again follows that n4"’ + ki(nf?) =

(o) (o) : (@) (@) (0) (0) {0) (9) .
[ = ngd )+ minfng nd™] = 0™ and ng™” + £(nE) = 04+ min[nd"”, n2”] = 02" From the definition we
have

ndY Lk (nKy) =2 ifi# 0 or 4
(fam), Jaw) = (a0, jam) = (0,0)

To prove that A" is an restricted convex shape we haye to show that the nA""’ satisfy the conditions given by the
equations in (1). That is, it is sufficient to show that

A Al (1) A Al AN
ng  +ny +n? =ny +ny; +n; (8)

(1) ) (1) 1) Al Al®
nd +nd T 40 =0l +nd 4 nd (9)

Equation (8) can be rewritten using the definition of nf*m as follows

© (0 (© © Am) A
0+nd" 408" =nd" +[nd ] + né
that is,

(J {0) (o) (0) (9)
nd nd® 4 nd® = qd® 4 pa@ 4 pa

But the above equation holds since A‘®) is an restricted convex shape. Similarly we show that equation (9) holds.
QED.

Proposition 4: A'") = A3 K7 where K2 = ((0,0) | (dy : 1)(ds : 1)) and k; = min[n£"” . n2”] and AD) is an
restricted convex shape with
(5,1(:)-]_4('.'1) = (0,0)

) ) (1) (1)
nA::n _ { nf - nSA , if nA >n A :
1 =

0, otherwme.

e8] ity ) e8]

n‘;m _ind " —af ifnd >afth
0, otherwise.

@ (S H—
0} =nd ififlors

Proof : The proof is similar to that of Proposition 3. QED.
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Proposition 5: A = 43 K$* where A3 = ((0,0) | (da : 1)(ds : 1)) and k3 = rnin[nﬁ‘(z’. ng‘m] and AG) is an
restricted convex shape with

{l"q(:ﬂ .J.Aia} ) =1(0,0)

(2) @ (2) (2)
A _ I ng = ndT ) if pa® S nE
1 = .
0, otherwise,
(2 @ . () )
A _ 1™ ad™ g ngd"” >t
5 — .
0, otherwise,

(3 [ R
=" ifit20r6

1

Proof : The proof is similar to that of Proposition 3. QED.,
Proposition 6: 43) = 4(4) 5 K{* where iy = ((0,0) | (ds : 1)(d7 : 1)) and k4 = min[né“{a).nf(a)] and AM is an
restricted convex shape with

(Law, Jaw) =(0,0)

g = { nd" = nd® i g 5 g,

? 0, otherwise.

{n“‘“—nfm. ifﬂ.ﬁ(a] >né4(3):
0

otherwise.

li

(4)

(4) 5 £
nt =t i3 or 7

|

Proof : The proof is similar to that of Proposition 3. QED.

Now A" is a four sided restricted convex shape with the following properties,

nt >0fr0<i<T)

1

7164(4 +nf( ) +n¢(“ _134( ) +n:}4u) +n5‘4“}
”‘1 +1.3‘”+n§1m:n?”+ng4m+ni;‘m
a_li G .;1(1)_“0 (10)
nit™ or ngd™ = g
n%‘"m or ;;“ "=0
ng‘w or nAH—HO

[t can be easily verified that there are only eight four sided restricted convex shape that satisfy the above
equations. They are

(0,001 (do s 0™ )(dy : 0 )ds : ™ )(ds - nf)) (i)
((0,0) | (dy = ™ ) - nfYdy : 02 )(d nd ™)) (i%)
((0-00 1 (do < 0™ )(dy ™ )(ds : ) (ds : nf)) (i)
(0-00 1 (e = 0™ )ds : g™ )(dy : ™ )(ds - mf) (iv)
((0.0) [ (d2: 8" )(dy : nf” )(dg : nd™(ds - n?)) (v)

ds : nf")( ) (vi)

((0.0) | (dg : nA™")
((0,0) ] (dy : nt™)

( ) )
(dy : nf(”){ds : ng‘“’ d-: n?“’)) (vii)
((0,0) | (do : ngt ") )

(
Md2 03 )(ds : nd™ )(dy ; pa™ ) (viid)

Now we will solve for n"‘m on a case by case basis.
Case (i) : A" = ((0,0) [ (do : 13" )(d, : 28" (dy 0 (ds - ng ™))
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From the set of equations in (5) A" = K g"’ @ Kk“ since the mclusmn of any other restricted convex shape

. i W
in f,he decompos)utlon strln% will produce a non zero ng ,ng ,nf , orng . The following equations then hold
4 4 4
ng " = ke nt = ki nd T = ke + ki nd D = ke + 2k

These equations provide the values for ks and k.

Similarly we can find out the decomposition for all the other seven cases. We give the results below. The
values for k;’s can be also found in a similar fashion.

(i) : AW = KFe g KR
mn:#”—h“®A
(iv): AW=FRKs K,

Case (v) : A% = K¥ @ K12
(vi): AW = Kf @ Ko
(vii): AW =K;oK k‘“.
(

7. The Decomposition Algorithm

The decomposition proposition states that there exists a unique set of 13 restricted convex shape
{R~|, Ka...., 13} such that any restricted convex shape 4 = ((iA,jA) | (do : n@)dy : nd).. : ))15
decomposable as A = Ky @ K f‘ B K.f’ @D Kk" where k; can be zero or positive integers, restncted convex
shape Ky is given by the B-Code ((iA,jA i), and the f{;,i <1 < 13 are as given in (4).

This section gives the details of the algorithm for finding the Ky, k1, k2, .. ., k1a.

STEP 1 : Check if the B-Code of the restricted  Here the k; are given as:
convex shape, A, satisfies the following

- minfnd o4
‘ ki = min[n{', nf)
requirements.

Eas lnlnd nlf

(i) nA>0for0<i<7 kz m‘m[n;,ni]
(ii) for some #,0 <i < 7,nft #0 3 = min[n3, ng]
N 1 A _A

k4 = min[ng, n?)

(iii) n§ +nf +n8 =nf +nf +nd o
and Kj is given as:

(iv) nf +nd +ng =nd +nf +nd o
Ko =< (ia,Ja) >

(v) Set all k; equal to zero.
If the conditions (i), (iii) and (iv) are not satisfied 4 is  Lhe restricted convex shape A™ is now given as:
not an restricted convex shape. If (ii) is not satisfied, 4 AW =< (0,0)|(do : nﬁ( ))(dl -4(”) - (dg : nA(‘)) >
is a trivial restricted convex shape, i.e., a solitary point

in the Z x Z domai where
in the 4 X omain. (4) (4)
led = ma'x{(nA( ) 3+4)mod 3) 0}
STEP 2: Decompose the restricted convex shape A _
A such that =0, 10040

— Al4) - ky kg ks kq
A= oRi, Bty SR 9 STEP 3: Count the number of n4"” that are non-

where K; are as defined earlier, k; are zero. The count can be 0, 3, or 4. If
integers, and A'% is another restricted count equals 0, goto Step 6; if count
convex shape. K{' represents restricted equals 3, goto Step 5; if count equals
convex shape K; dilated k; times. The 4, goto Step 4.

K; used here are lines at orientations of STEP 4: A“) is a 4-sided polygon. The appro-
09,459, 900, and 135°, priate decomposition is a dilation of two
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triangles.
IF ( 23" #0)
F *"¢0>
It is case (i) : A = K§° 2 [\k”

Do the following assignments:

kg = ng‘“)

By e nﬁm
ELSEIF (nd'" #0)

IF ( A“" £0)

It is case (iii) : A = Ké" @ K;“

Do the following assignments:

ks = ”;1(“
kg = ué‘w
ELSE

A4 = [fk's EBA!’CH
Do the following assignments:

[t is case (vili) :

s gl
ks = nj "
kl"l = n#

ELSE
It is case (vi) : Al*) = Kk @ Kk

Do the following assignments:

I'c,; A“'

Lq = 3(4!
ELSEIF ( nt™ £0)

nd™ #£0)

IL is case (ii) :AW) = Kt @ Kfe
Do the following assignments:

AW
£ =rig (4)

A
k1o = n

ELSEIF (n£™ £0)
AY) = K K]
Do the following assignments:

It is case( S

k? = ?(H
iy = ngm
ELSE

It is case (vii) : A = K5" @ Kf3°

Do the following assignments:
(4
k'; = ﬂ‘é‘ :

ELSE
It is case (v) : A = ki o I\‘““‘
Do the following assignments

kg = nj

8. Complexity of the Algorithms

: STEP 6: STOP
At

'&'12 _ ng{m
GOTO Step 6

STEP 5: A is a 3-sided polygon. Find which
triangle K;,5 < i < 12 it is and the
number of times (k;) it is dilated.

IF (ng™ #0)

IF (nd“ %0)
OM Kp
Do the following assignment:
T

ELSEIF (& #0)
Ald) = Kfcs
Do the following assignment:
ko = nA{‘)

ELSE
AW = ks

Do the following assignment:
AlD)

ELSEIF ( n 3“’;&0)
IF (ng"

ELSEIF (n3
A =

£0)
ft k: 1
Do the following assignments:
k]_l = ﬂf(‘)
ELSE
AWM = K_’;f
Do the following assignments:
k7 s nA(l)
ELSEIF (n4™ #0)
mﬂ—K ® K1)
Do the following assignments:
ks = nd AL
ELSE
AW = K
Do the following assignments:

sz )
kn =Ny

: The values for the k; have been

obtained.

e The algorithm given for the B-code dilation of the restricted convex shapes (2) consists of 10 additions only.

Hence it is finite time.
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o The algorithm for an n-fold dilation of restricted convex shapes(3) consists of 10 multiplications. Hence this
too is finite timne.

e The algorithm for the structuring element decomposition consists of only assignment statements and no
loops. Thus this algorithm is also finite time.

9. Summary and Future Work

An technique for representing a restricted convex shape was introduced. Algorithms for morphological
dilation. n-fold dilation, and structuring element decomposition were provided. The proofs of the algorithms were
also provided and the time complexity of the algorithms was shown to be constant. Suggestions have been made as
how the algorithm can be generalized to and arbitary 2-D convex shape and then to 3-d convex shape.

Many extensions to the work presented here are being tried out. Some of the salient ones are:

o An algorithm for B-Code erosion of restricted domains is being worked out. With that, opening and closing
of restricted domains will automatically follow, and hence all the basic operations of Morphology will be
defined on the restricted domains for shapes represented in B-Codes. Also, given the B-Codes, all these
operations will be of constant time complexity.

e This algorithm can be generalized for the case of any convex figure. In that case the polygon edges can be at
any angle. These angles can be defined in terms of the basic angles that can be formed by a vector starting
from the origin and ending on any pixel (m.n) such that m and n are coprime.

o These algorithms can be extended to the case of 3-D restricted domain and then to any convex polyhedra.
But a new datastructure will be necessary for representing the polyhedra.
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Figure 1: (a) The displacement directions fro

m lattice point P. (b) A restricted convex

shape corresponding to the B-Code:< (1) L (dy 3)(d, :2)(d, : 3)(d, : 2)(ds : 3)(dg : 2) >
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Figure 2: The thirteen basis shapes

corresponding to equation 4.
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