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Abstract

An optimization approach to automatic sensor and
light source positioning for a machine vision task,
where geometric measurement and/or object veri-
fication is important, is discussed. The goal of the
vision task is assumed to be specified in terms of
edge visibility. There are two types of edge vis-
ibility: (1) geometric edge visibility tells us how
much of the given edge is not occluded, and (2)
photometric visibility tells how much of the given
edge has enough contrast to be detected in the im-
age. A heuristic optimality criteria for the opti-
mal sensor and light source position is defined in
terms of these two edge visibilities. A preliminary
experiment has been conducted to demonstrate the
feasibility of the optimization approach. The resuit
shows that the optimization problem we formulated
can be solved by mathematical programming tech-
niques.

1 Introduction

Ay ¥
A typical computer vision system can be decomposed func-
tionally into three subsystems: the image acquisition subsys-
tem, the image processing subsystem, and the image under-
standing subsystem. The image acquisition subsystem is re-
sponsible for providing pictures to the image processing sub-
system. The image processing subsystem analyzes input pic-
ilufts and generates lower-level information, such as edges and
regions. The image understanding subsystem uses lower-level
information produced by the image processing subsystem to
genefate higher-level information and produces an inference
relative to a scene description or object mensuration. There
has been much work done on image processing and image un-
flerata.nding, but there has been little work to automate the
Image acquisition subsystem.
Peqtla.nd [7] and Krotokov’s [5] works are related to lens
selection, Ikeuchi concentrated on view class classification
rather t}}?.n on camera and illumination control [4]. Shirai
and Tsuji are two of the first researchers who took advan-
tage of controlled illumination in extracting line drawings of
8-D ?bJe_Cts [8]. Cowan and Kovesi studied automatic de-
toe‘r’l:mnatlon of sensor location[2]. VIO (Vision Illumination
thej;ct) developed by R. Niepold and S. Sakane [6] may be
I8t system that considered camera, illumination, and
: tures simultaneously.
;é‘éveﬁii:ﬁit?:t‘;zfrgd an liI]I;:Jmina.ticm control system cglled
o ontrol Expert) that suggests an optimal
'b'llmrpoae [9] (g) source position f(_)r a given environment and
- Vur approach to solving the problem, for a given
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Figure 1: (a) The reference sphere is shown. The origin of
the object coordinate system is placed at the center of the ref-
erence sphere. A point on the surface of the reference sphere
is referenced by two angles: (¢, ¢). (b) The viewing space is
approximated in such a way that the distance between any
neighboring two points in the viewing space is approximately
the same. In other words, d¥d¢ siny is approximately con-
stant.

vision task, what is the location of the sensor and the light
source in order to obtain the best image?, is to formulate an
optimization problem and take advantage of mathematical
programming techniques.

2 Viewing Space

In ICE, the sensor is assumed to always point to an object ref-
erence point, and the sensor and the light sources are placed
on the surface of a sphere with its center at the origin of the
object coordinate system. We will call this sphere a reference
sphere. Any point on the surface of the reference sphere can
be referenced by two angles, one measured from the north
pole and the other from the arbitrarily chosen reference line
along the equator (see Figure 1 (a)). The viewing space is
defined as the set of all points on the surface of the refer-
ence sphere. Every point on the surface is an element of the
viewing space. However, the viewing space is a contiguous
space and has an infinite number of elements in it. We ap-
proximate the contiguous viewing space by a discrete space
in such a way that the distance between any neighboring two
points in the viewing space is approximately the same. The
discrete viewing space VS is defined by

VS = {(5,7)I0 i <180, 0 <5< |360sin(yg=i)])
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Figure 2: A cube whose edge length is ¢ is shown. Three of
its edges are aligned along the three coordinate axis.

where i, j are integers. There are

90

2 [360siny ] — 360+ 1
$=0

view points in V5. Details are given in [9].

3 Contrast

Contrast is very important since most of the intensity-based
image processing algorithms use the contrast between regions
or across regions as their criterion. Most of the region grow-
ing algorithms work with average intensity and most of the
edge detection algorithms work with local gradient. In this
section, we will discuss how to compute the contrast graph
and the contrast distribution function along an edge of an
object.

3.1 Contrast Graph

It is known that the image intensity I is proportional to the
scene radiance. It is also known that the scene radiance de-
pends on (1) the amount of light that falls on a surface, (2)
the fraction of the incident light that is reflected, (3) the ge-
ometry of light reflection, i.e. the direction from which it is
viewed as well as the direction from which it is illuminated.

Let N be the unit normal vector to a given surface at a
certain surface point, and let L the unit vector in the direc-
tion of the light source from the given surface point. Then,
the image intensity can be written as

I=fa!wN-L{R"(/\)Jﬁ()\)-i-RJ_(,\)JfL(/\))dA 1)

where A is wavelength, and Ry and R, are the bi-directional
reflectance functions for the parallelly polarized incident light
and perpendicularly polarized incident light, respectively. A
detailed derivation of equation 1 is in [9].

We will be using an object coordinate system with a refer-
ence point on the given 3-D object as its origin Q. Let 1 and
v be position vectors of the light and sensor, respectively,
seen from O. As in Figure 2, let 5; and S, be adjacent ob-
ject surfaces. Let r be a point on the intersection curve, and
N; be the unit normal vector on surface 5;. Let M; be the
unit vector perpendicular to both N; and S; NS, and on the
surface 5; for 7 = 1,2. Let p; be a point on 5; located at a
distance (; away from r along M ;. Explicitly,

p1 =r+ GM;s, p2 =T+ (2Ms.
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Assume that ¢; and (2 are very small. The contrast at an
edge point r is defined as the difference of the intensity of
the reflected light between two small patches with centers at
p: and p2. Let the position vectors of the sensor and the
light source at each p; be V; and V;, respectively. Let J* be
the incident light and J” be the reflected light. Let R! and
R? be the bi-directional reflectance functions of two surfaces.
The contrast between the two small patches can be computed
using equation 1.

|Jf — J5| = [Ny - Ly (R Jf + RLJYL)

— N3 - La(RjJj + RLJL)I. @

The contrast graph G along a given edge can be obtained by
evaluating equation 2 along the intersection curve 51 NSz. In
practice, the contrast graph G is computed by evaluating the
intensity differences only on a finite number of edge points.

3.2 Contrast Distribution Function

A contrast graph tells us how contrast varies spatially along
an edge but does not give the distribution of the contrast.
Since most edge operators use threshold values, the contrast
distribution is more important than the spatial variation. In
order to compute the contrast distibution function F, we
need an explicit form which is easier to handle. The contrast
graph is fitted with piece-wise continuous polynomials using
a regression analysis technique [3]. From the fitted contrast
graph, we can easily compute a distribution function F of
contrast. The cumulative distribution function of a2 random
variable C is defined by

F(c) = Prob(C < ¢).
To compute the distribution function from the contrast
graph, we define the length of a subset of real numbers.
Definition 1 Let R be the set of real numbers. Let R’ be a
subset of R, which consists of n continuous line segments:

R' = {(ai,bi)]a1 < by < a2 < b2 < ... < an < b}

The length of such a set R’ is defined as the sum of the lengths
of the n line segments in il.

LR) =) (b~ a)

i=1

Suppose the polynomial that fits the given contrast graph is
y = g(z),a < = < b (see Figure 3). Let the solutions of
g(z) = ¢ be a1, 22,...,an in increasing order. Let ao = a
and apt1 = b. Then the contrast distribution function JF can
be computed by

= [’({(a"’a"l'l)l g(I) < c,Var.- <z <o })
b—a

Flc) (3)
We will call this distribution function a CDF(Contrast Dis-
tribution Function).

4 Edge Visibility

From a certain view point, any point on the object surface
may be said to be visible or invisible depending on whether
it is occluded or not. It is the case that an object point may
not be visible even though it is not occluded by any other
part of the object or the surroundings. This happens when
the object point is in shadow and therfore no light is reflected
from the object point. An object point is said to be in shadow
if and only if it is visible from the sensor and it is not visible
from the light source. It is also the case that the object point
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Figure 3: The value of the cumulative distribution function
F of a random variable C at ¢ is the probability of C being
less than or equal to ¢. Since g(z) < ¢ wherea; <z < b

and a2 5- z < ba, Flc) is (i f"-lg i— ,:(,bz = aq)-

may not appear in the image even though it is visible from
both the sensor and the light source. This happens when the
intensity of the reflected light from the object point which
goes to the sensor is not strong enough. There are two types
of visibility associated with an edge: one comes from the
geometry and the other from the illumination. We will call
the former 4-type visibility and the latter 7-type visibility.

An edge is said to be fully visible if all of its points appear
in the image, fully invisible if none of them appear in the
image, partially visible if some of them appear in the image
and others do not. For a given edge e, light source position
1 and sensor position v, one may ask how much of the edge
will appear in the image. This means how many of the edge
pixels are not geometrically occluded or how many of the
edge pixels have enough contrast to be detected by an edge
operator.

Definition 2 The y-indez of an edge e is defined as the ratio
of the unoccluded portion of the edge to the actual edge length
when it is seen from V.

L3(occluded portion of €)
Ea(e)

y-index(e,v) =1 —

where L3 gives 3D length.

Deﬁnition. 3 The w-indez of an edge € is defined as the ratio
of the portion of edge whose contrast is greater than a given
threshold value of an edge operator to the whole edge.

w-indez(e,v,1) = 1 — Fle, v, ];c()

where F is the contrast distribution function along the edge e

Uh_m it is seen from v and illuminated from 1, and c, is the
ulfﬂhold value of an edge operator,

8. Feasible Region

“:_el’equireme.nts for the vision task we consider are specified
‘ 'e;r:;.of object eci_ges. Let E.be the set of all edges of the

:bbjectje‘zit' A required edge list, denoted by REL, is a set
W edges that we want to have in the image. Suppose
» Ve a vision task whose requirements are as follows:
;=I1-»E}IEL1,...,RELH} where REL; = {ei,, .., eir, } C E, Vi.
%_,;*; .REE'.ig:lf-iJ- has weight w;;. There must be at least one
S b, all of whose edges appear in the image.

‘1 2p fpr all edges in each REL;, where p; is the mini-
mum y-index required by REL;. -
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3. 7 > g¢; for all edges in each REL:, where g; is the mini-
mum w-index required by REL;.

4. The minimum edge contrast is ce.

Fach edge in a REL has an associated weight w which rep-
resents the preference of that edge in that REL. Among the
points in the viewing space, there are sets whose elements sat-
isfy the above requirements. We will call these sets feasible
regions.

Deflnition 4 The v-feasible region for an edge € is defined
as a set

T-F(e;p) — {V (] VS"T(E,V) > P}

where p is the minimum v-index required by the vision task.
For a required edge list REL;, the v-feasible region is the in-
tersection of the v-feasible regions for all edges in it,

v-FR(REL;) = ﬁ v-F(e; pi)

e€REL;
where p; is the minimum required y-indez of REL;.

Definition 5 The w-feasible region for an edge e and a sen-
sor position v is defined as a set

W—F(E,V; Q) = {1 € VSl"r(e: v, 1) 2 q}

where g is the minimum required w-indez. For a required edge
list REL;, the x-feasible region is the intersection of the -
feasible regions for all edges in it

x-FR(RELi, v) = ﬂ m-F(e, v;qi)

e€REL;

where g; is the minimum required m-indez of REL,.

If v-FR(REL;) = ¢, then not all edges in REL: can appear
in the image. This means the edge requirement can not be
met with one view point, and more than one picture from dif-
ferent view points are needed. If =-FR(REL;, v) = ¢, not all
edges in REL; can have enough contrast to be detected by an
edge operator. This means the edge requirement cannot be
met with one lighting setup, and more than one picture with
different lighting setups are needed. The 7y-feasible region
can be directly computed from PREMIO [1], and n-feasible
region can be directly computed from the CDF described in
section 3.

6 An Optimality Criterion

Now we turn to the question, where should the sensor and
light source be placed in order to obtain the best picture? Our
definition of a best picture is in terms of the edge visibility.
For a given vision task, we want to see as many edges as
possible in the image. For a given edge, we want to have as
many of the edge pixels as possible in the image.

6.1 Optimal Sensor Position

In order to satisfy a vision task requirement, the sensor can
be positioned at any point in a y-feasible region; however,
the bigger the v-index is, the better. There arises a natural
question how much better is a larger v-indez than a smaller
one? Since every point in a y-feasible region has v-index
greater than p, the degree of betterness should be measured
within the interval 1 — p. Suppose that 0 < p< 12 < m < 1.
Then +; is better than v2 by

M= 2
1—p
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Figure 4: Optimality criterion on w-index is shown.

For any edge ¢ and sensor position v, define

‘7(51 V) — P
r ip) = ————
1(e, v;p) =7
Then, for a given edge ¢, the optimal sensor position is v® €
7-F(e; p) such that

Ti(e, v;p) < Tie, v*; p), ¥v € v-F(e; p)- (4)

We will call the above criterion the edge-level y-criterion. For
any required edge list REL; and sensor position v, define

L2(REL;, vip) = » . wiiTa(es, vipi)

e;EREL;

where wi; denotes the weight of edge e; in REL;. Then
the best sensor position for the entire set of edges is v{ €

¥-FR(REL;) such that
[2(REL:, v; pi) € T2(REL;, vi; pi), Vv € v-FR(REL:) (5)

where w; denotes the weight of each edge. The above is
called the combined-level v-criterion. Now suppose we have
the corresponding optimal sensor positions for each required
edge list in the vision task requirement, and let v{ be the
optimal sensor position for REL;. Let VC = {v{,...,v5}.
The best sensor position for the given vision task is vi € VC
such that

T2(REL:, vi; pi) < T2(REL, vi; pi), Yvi € VC (6)
We call this the task-level v-criterion and denote the task-
level optimal sensor position as v*.

6.2 Optimal Light Source Position

We will now describe how the optimal light source position
is determined. Let c¢; be the minimum edge contrast, and
consider the two CDI’s shown in Figure 4(a). Both satisfy
the m-visibility requirement since 7, (c:) < 1—g and Fa(c:) <
1 —g. Of these two CDF’s, CDF; is better than CDF, by

F, - F
Z(C:i = 1({":)‘ (7)
q
Figure 4(b) shows two CDF’s whose F{c;) are the same.
In this case CDF; is better than CDF4 because CDF3 is less
steep than CDF4, and therefore CDF; is less sensitive to the
choice of the threshold value ¢;. CDF3 is better than CDFs

by
Fa ' (1—¢q)— Fa~ (1 —-gq)
1-g¢

; (8)

Combining equations 7 and 8, the optimal light source
position for a given edge e and sensor position v* is 1¢ €
m-F(e, v';g) such that

Hl(e,vt, Lg) < Mi(e, v 1%¢q),VIE n-F(e, v';q),

(9)
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where

x(e!thn _Q)(j:_l(l —'q)—Ct).

t. —
(e, v, bg) = (2 .

The above is called the edge-level m-criterion. Let

Mo(REL, v, L) = . wijli(e;, v\ Lgo)
e;EREL,

where w;; denotes the weight of edge e; in REL;. Then the
best light source position for the entire set of edges is If €
x-FR(REL;, v*) such that

I2(REL;, v%, L qi) < T(REL;, v%,15; g)
vl € =-FR(REL;, v').

This is called the combined-level v-criterion. Now suppose we
have the corresponding optimal light source positions for each
required edge list in the vision task requirement, and let If be
the optimal sensor position for REL;. Let LC = {15, ...,13}.

The best light source position for the given vision task is
£ € LC such that

Iz (REL;, v*, I§;¢:) < II2(REL:, v, I%; k), VIF € LC - (10)

We call this the task-level m-criterion and denote the task-
level optimal light source position as 1°.

7 Experiment

We assume that all surfaces of an object have the same photo-
metric properties and thus they have the same bi-directional
reflectance function, We also assume that the incident light
is totally unpolarized and use the Torrance-Sparrow model
which is given by

sR.+ dRy

where R, is for the specular reflection, and R4 is for the
diffusion. R, can be written as

FDG
(N -L)(N - V)

where F is the Fresnel reflectance coefficient, D is a surface
roughness distribution function, and G is the geometric at-
tenuation factor. Note that the Torrance-Sparrow model is
a special case of the model given in equation 1. In this ex-
periment, the Fresnel term F is not considered for simplicity
reason. The surface roughness distribution D is assumed to
be Gaussian and is given by D = exp(—(8/m)*) where m is
some constant.

7.1 Vision Task Requirements

The given object is a cube with side length . Three of its
sides are aligned along the three axes of the object coordinate
system as shown in Figure 2. The requirements are

1. REL = {{S: N 52,5 N S3}, {1 N 52, 52N 55}},

2. pp=p2=0.T, ¢1 =q2=0.8,

3. ¢t = 0.05.
A point T on the edge S; N Sz has coordinates r = (1,9, iF
with 0 <y <1t
7.2 Optimality Criterion Computation

The optimality criterion for the edge Sy NS is computed as
follows. The contrast graph along the edge is computed by
changing r. We chose 100 values of r varying y from 0.0 to
1.0 in steps of 0.01.



Figure 5: The edge-level m-criterion II; for all possible light
source positions for the edge S; N Sz of the cube is shown.
One can see the global maximum at the top-left area.

For each edge e in REL and a fixed sensor position v°*, =-
feasible region w-F(e, v'; g), is computed. For each edge e in
REL and a fixed sensor position v', the edge-level m-criterion
I1(e,v*, 1 q) is evaluated for all possible light source posi-
tions in the r-feasible region of e. The following parameters
are used in this experiment.

e the fraction of specular reflectance s = 0.8 and the frac-
tion of diffuse reflectance d = 0.2

e diffuse constant Rg = 0.5

¢ surface roughness m = 0.15
¢ =¢2=10.01

cube side length ¢t = 1.0

e radius of the reference sphere = 3.0

o sensor position is fixed at (45, 45)

7.3 Result and Discussion

The optimization technique was implemented on a SUN-
3/280 using the C programming language. The edge-level
x-criterion II; for the edge S; N Sz of the cube is computed
for all possible light source positions in the r-feasible region
and shown in Figure 5. Each pixel in the picture corresponds
to an element of the viewing space VS. The rows and columns
denote the polar and azimuth angle, respectively. The top-
left corner corresponds to (0,0), and the bottom-left corner
corresponds to (180,0). The right-most corner corresponds
to (90,359). The viewing space VS is shown as a triangular
shape because the number of elements in each row increases
asthe polar angle gets bigger until 90°, and it decreases after-
wards. The w-feasible region is the dark area in the picture.
The darker a pixel is, the bigger II; is at that position. One
can easily notice the global maximum at the top-left area. A
3-D plot of the picture in Figure 5 is shown in Figure 6, and
it shows the global maximum more clearly.

‘& Conclusion

An optimization approach to the automatic sensor and light
source .pusitioning was discussed. The contrast was defined
llfhe Intensity difference between two small patches on the

Ject surface in 3-D. The contrast was evaluated along the

ven edge, and the contrast distribution was computed using

€ regression method. A heuristic optimal criterion for both
®ensor and light source position was presented. An experi-
‘ment was conducted to see if the optimization approach is
:l.ndﬁhle.' We computed the edge-level optimization criterion
“40¢ noticed that there was one and only one global max-
(J8um in the entire viewing space. We can claim that the
optimization problem we formulated is a convex problem in
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Figure 6: A 3-D plot clearly shows that there is one and only
one global maximum in the edge-level w-criterion for the edge
S; N Sz of the cube.

the edge-level, at least in our examples, and therefore it can
be solved by mathematical programming techniques. The
complete experiments and results are presented in [9].
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