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ABSTRACT

In this paper, the major direct solutions to the three
point perspective pose estimation problems are re-
viewed from a unified perspective beginning with the
first solution which was published in 1841 by a Ger-
man mathematician, continuing through the solu-
tions published in the German and then American
photogrammetry literature, and most recently in the
current computer vision literature. The numerical
stability of these three point perspective solutions are
discussed. We show that even in case where the so-
lution is not near the geometric unstable region con-
siderable care must be exercised in the calculation.
Depending on the order of the substitutions utilized,
the relative error can change over a thousand to one.
This difference is due entirely to the way the calcu-
lations are performed and not due to any geometric
structural instability of any problem instance. We
present an analysis method which produces a numer-
ically stable calculation.

1. Introduction

Given the perspective projection of three points consti-
tuting the vertices of a known triangle in 3D space, it
is possible to determine the position of each of the ver-
tices. There may be as many as four possible solutions
for point positions in front of the center of perspectivity
and four corresponding solutions whose point positions
are behind the center of perspectivity. In photogramme-
try, this problem is called the three point space resection
problem. This problem is an important problem in pho-
togrammetry as well as in computer vision. It was solved
by a direct solution first by a German mathematician in
1841 and then refined by German photogrammatrists in
1904 and 1925. Then it was independently solved by
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an American photogrammatrist in 1949.

In this paper, first, we give a consistent treatment of
all the major direct solutions to the three point pose
estimation problem. There is a bit of mathematical
tedium in describing the various solutions, and perhaps
it is worthwhile to put them all in one place so that
another vision researcher can be saved from having to
redo the tedium himself or herself. Second, we discuss
the numerical stability of each of these solutions. Some

of solutions have a singular point or region during the

derivation. Calculation near the singularity will cause
serious error. However, the probability of occurrence is
very scarce. Fach of the six solutions begins from three
equations generated by the law of cosines.

We show that the order of using these equations to
derive the final solution affects the accuracy of numerical
results. In order to determine how to obtain a reasonably
good accuracy by choice of appropriate equation the best
accuracy from different manipulation order, we review
some analysis methods to analyze the first solution. The
analysis methods focus on the rounding error and the
characteristic zero of a derived polynomial. We discuss
an experimental protocol and summarize the results.
The results show that our stability analysis technique
is effective in determining equation order manipulation.
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Figure 1 Iustrates the geometry of the three
point space resection problem.

2. The Problem Definition

Grunert (1841) appears to have been the first one to
solve the problem. The solution he gives is outlined



iiller (1925). The problem can be set up in the This expression for u? can be substituted into (7). This
by M

following way which is illustrated in Figure 1. permits a solution for u to be obtained in terms of v.
Let the unknown positions of the ‘three poults of the i a:b__cz e 2(“?;_42)cos Bur L+ azb_fg g
i t = _
known triangle be p1,pa, andps; pi = | % |, = 2(cosy — vcos )
% This expression for u can then be substituted back nto
1,2,3. Let the known side lengths of the triangle be (6) to obtain a fourth order polynomial in v.
s = |lpz — o3, = lip = pallc = llpr — pall. We At + Ags® + Agv? + Ao+ Ag =0 (9)

take the origin of the camera coordinate frame to be
the center of perspectivity and the image projection  This fourth order polynomial equation can have as many
lane to be a distance f in front of the center of  as four real roots.

perspectivity. Let the observed perspective projection  Finsterwalder (1903) as summarized by Finsterwalder

: up\ and Scheufele (1937) proceeded in a manner which

,p3 be ,q3, respectively; gi = e I : : :
of p1, P2, P3 Hpdaica P o i) required only finding a root of a cubic polynomial and
1,2,3. By the perspective equations, u; = f3, v = r. the roots of two quadratic polynomials rather than

The unit vectors ji, Jja2, js pointing from the center ﬁr}ding all the rogts_ of a fourth order polynomial.
of perspectivity to the observed points pi,p2,ps are Finsterwalder multiplies (7) by A and adds the result
to (6) to produce

given by ﬁ-ﬁ-’i,—_k—f—g : 1=1,2,3 respectively. The Au? + 2Buv + Cvl+2Du+2Ev+F=0 (10)

center of perspectivity together with the three points where the coefﬁcien:g d;apend i e S
of the 3D triangle form a tetrahedron. Let the angles B = —cosa, C = 5= — it D= —Acosy, E =
at the center of perspectivity qpposite sides a,b.,c be (%.:. + A-E;) cos B, F' = _-Fai 2 (vb_cz) ‘

a,, and 7. These angles are given by cosa = j2 - J3, g . ) : BT,
cos f = j1 - ja, COSY = 1 - Ja- Finsterwalder considers this as a quadratic equation In
v. Solving for v,

Ui
Ui

Let the unknown distances of the points pi,p2, pa from
the center of perspectivity be s1, 52, and s3, respectively. —(Bu +E)+ WBz — ACu*+ 2{BE — CD)u+ E* — oNs
Then s; = ||pi|l,i=1,2,3. To determine the position of? = C an

the points p1, P2, P3 with respect to the camera reference

frame, it is sufficient to determine s1, 52, and s3 since Now Finsterwalder asks, can a value for A be found

pi = siji, 1=1,2,3. which makes (B? — AC)u® + 2(BE - CD)u + E* -
; ; CF be a perfect square. For in this case v can be
3. The Solutions expressed as a first order polynomial in terms of u. The

geometric meaning of this case is that the solution to (10)

Grunert (1841) proceeded in the following way. By the corresponds to two intersecting lines. This first order

law of cosines, polynomial can then be substituted back into (6) or (7)

either one of which yields a quadratic equation which

can be solved for u, and then using the just determined

s2 + 55— 2s183¢c08 B = b? (2) ©  value for u in the first order expression for v, a value for

(3) v can be determined. Four solutions are produced since

there are two first order expressions for v and when each

of them is substituted back into (8) or (7) the resulting
Then, quadratic in u has two solutions.

The value of A which produces a perfect square satisfies
(5) GNP+ HXN+IX+JT=0 (12)

. where
from which G = ¢*(c?sin®f — b?sin’y), H = b2(b2 — a?)sin’ v +
son 2B 9a? a2 c(c? + 2a%)sin’ B + 2b2c2(—1 + cosacos feosv), [ =
it T 2uvcosa + -b—zvcosﬂ = 0(6)  b2(b — c?)sin’a + a*(a® + 2¢?)sin® f + 2a%b%(~-1 +
, & o2 B cos acos fcos 7), J = a*(a?sin® B— b? sin® «). Solve this
u® — b—z-v + ‘21)@ cos 3 —2ucosy + = =0.(T) equation for any root Ag. This determines the coefficients
A B0 D, Eand F. The v of (11) can be in terms
From (6) of the first order variable u. There are two equations.
Substituting v back into (7) and simplilying there re-
9 9 2a? & sults a second order equation Uu? 4+ Vu+ W =0. The
UL ST Cila _ﬁ_v cos f + o numerically stable way to calculate u is to compute the

5% 4 53— 2sys3c0os 0 = a® (1)

s:f + s% — 28189 c0sY = c?
Let s = us; and s3 = vsy. (4)

a? . b? c?

u? 4+ v? — 2uvcos = 1+v2—2vcosf = T+ u? —2ucosy

e
bl_.
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smaller root in terms of the larger root. Thus, Ulgrge =
=ZD V) +VIVTZUW] and u,, = il
Ularge

Merritt (1949) unaware of the German solutions also
obtained a fourth order polynomial. Smith (1965) gives
the following derivation for Merritt’s polynomial. He
multiplies (1) by b2, multiplies (2) by a® and subtracts
to obtain one equation. Similarly, he multiplies (1) by
¢, multiplies (3) by a2 and subtracts to obtain the
other. Then using the substitution of (4) we obtain the
following two equations.

—b%u? 4 (a® - b%)v? — 2a® cos Bu + 262 cos auw +a®=0(13)

(a® —cPyu? — 242 _ 942 cos yu + 2¢” cos quv + a? = 0.(1

i3 o2 2,2 2 § .
From (13), v? = 28 cosfu=2 cosauvtbiu®=a? giporie s

ing this expression for v2 into (14) and simplifying to
obtain a eqaution in terms of u?, u, v, Solving for v and
substituting this expression for v into (14) produces the
fourth order polynomial equation

Bqu4+Bgu3+Bgu2+Blu+BU:0 (15)

Fischler and Bolles (1981) were apparently not aware of
the eariler American or earlier German solutions to the
problem. From (5), they obtain

(

o 2(—cosau)v + (

a

2 2
1—%2—)'02+2(

b—zcosﬁ’

¥
[l
C2

(16) is identical to (6) but (17) is different from (7) since
it arises by manipulating a different pair of equations
than was used to obtain (6).

Multiplying (16) by (1 — ﬁ;—j—)ug 4
multiplying (17) by u® — %; and subtracting to produce

a2 2
4~ cosyu — %r, and

a2

ru
to produce the other. Finally,
ation by 2c?(cos au — cos B),
multiplying the second equation by [(a® — 6% — M2 4
2(6* — a®) cosyu + (a2 — b2 + c?)] and subtracting to
eliminate v. This produces the fourth order polynomial
equation

Dau* + D3u® + Dyu® + Dyu + Do=0

one equation. Similarly, multiplying (17) by (l -

and subtracting from (16)
multiplying the first equ

(18)

where Dy = 4b%c®cos® o — (a2 — 42 _ o O
-—4c2(a2+b:’—c32 cos a cos f— 8b%¢? cos® a cos y +4(a? —
b* — ¢M)(a® — b?)cos, Dy = 4c*(a? - ¢*)cos? g +
8c*(a? + b*)cosacos Beosy + 4c?(b? — ¢ costa —
2(a® — 6% — eM)(a® - b + ¢?) = 4(a® — b?)2cos?y,

1 = —8a?c?cos® feosy — 4c?(b? — czz) cosccos 3 —
4a*c* cosacos B + 4(a® — 6%)(a® — b2 + ¢ Jeosy, Dy =
da’c* cos® f ~ (a® — b2 + ¢2)? Corresponding to each of
the four roots of (18) for u there is an associated value

for v through (16) or (17).
Grafarend, Lohse, and Schaffrim (1988) aware of all the
previous work, except for the Fischler-Bolles solution,

1)

proceed in the following way.  They begin wiy,
equations (1),(2), and (3) and seek to reduce them tq

a homogeneous form. After multiplying (3) by =% ang
adding the result to (1) there results one equation. After
multiplying (3) by —-f:’-i- and adding the result to (2),
there results the other. Next they use the same idea
as Finsterwalder. They multiply the first equation by
A and from it subtract the second equation to produce

51
(51 s2 s3)A| sy | =0 (19)
83
2 2 2 2 2
a = A(b%=c*) Ab*—a?)cosy
E, el cg) —Acosf
— 2_ a2 2_.2_ 322
where 4 = | (5> :2)5:057 a cc2 Ab ais
—Acosf3 cosq —-14 2

Now, as Finsterwalder did, they seek a value of )
which makes the determinant of A zero. Setting the
determinant of 4 to zero produces a cubic for A. For this
value of A the solution to (19) becomes a pair of planes
intersecting at the origin.

They let p s3/sy and ¢
the homogeneous (19) in s,
homogeneous equation in p and

s3/s1 and rewrite
s2, and $3 as a non-
q.

2
— Ccos au) vtu? - Z—z = 0(16) (a® — ¢ — Ab*)p? + 2¢ cos apg + c*(—1 4 X)g?+

2(—a® 4 Ab?) cos vp — 2Ac? cos By +a* - A(b? = ¢?) = 0(20;

2a? a®
) u? 4 o7 COSTu — ri 0.(17) Now
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since |A] = 0, and
in c2cosa c?(=1+ )
& a2 _c2_ pp2 c?cos a
exists such that (20) can be written in the homogeneous
form, rotating the coordinate system by an angle, and
then generating a pair of straight lines intercepting in p,
q plane to solve A. Finally, they solve p and q, and then
51y 82, 83.
However, a simple method is proposed by Lohse [Lohse
1989]. Instead of translating and rotating (20). One
can solve the quadratic equation in (20) to get p and
q relation by using different 4. Once the relation of p
and q obtained it can be substituted into (19) to solve
s1. There are 15 possible solutions. Since we are only
interested in real solution, we only use real ) to solve
(20).
Linnainmaa, Harwood, and Davis (1988) give another
direct solution. They begin with (1), (2), and (3) and
make a change of variables §2 = u + cosvys) s§3 =
v +cosf3s;. (2) and (3) become (1 — cos? B)s? +v? =2 |
(1 — cos?v)s? + u? = ¢2. Substituting above equations
into (1) there results

assum-

# 0 a value for (p,q)

53(2cos® y — 2cosacos B cosy + 2cos? § — 2)—
2cosauv + ¢ + 6% - a? + 2usy(cosy — cos a cos 3)+
2us)(cosJ — cosacosy) = 0.(21)

7 g2 =1 —cos® g, ¢

Letting q; = | — cos? g, ¢a
y 4 = C° +b

cosacos Fcosy + cos® 3 — 1)



9(cos @ cos B — cos7), qgs = 2(coswcosy — cos ), there

results
pst+ut=c" (22)
g25% + v = b° (23)
g3st — 2 cos auv + g4 = gsus| + ggusi. (24)

Then they square (24) a2 simplify, obtaining
r185 + rast 4+ r3 = (res? +rs)uv (25)

where r1 = g3 +4q192 cos® o + 103 + q2q3, 12 = 203qa ~
4(c%q; +b2q,) cos® @ — c2gs — b2gg, 3 = g3 + 4 cos® ab?c?,
rq = 4 cos g3 + 2qsqe, s = 4 €08 aqa.

Then to eliminate the wv term, they square (25) and
simplify to obtain

t165 4t +tast + tasi +ts =0 (26)

where t; = 7‘1 — r4q1q2, tp = 2ryrg + {b qp + ¢* qg)r4 -
27‘47‘591‘19!2: ts = r3 — b’ qu4 + 2rgrsbiq + 2"4’”56 g2 —
riqigz + 27173, t4 = 2rars — 262t ryrs +b%qy13 + c?qar,
ty =ri—rib 2,

(26) is considered as a 4th degree equation in si. Since
sy must be positive, there are at most 4 solutions to (286).
Once a value for s, has been determined, (22) and (23)
can be solved for two values of u and v. Once sy, u, v
are solved, the s» and s3 can immediately solved.

4. The Numerical Accuracy of the
Solutions

4,1 The Problem Definition

The behavior of numerical calculations are different
for the different solution techniques. In this section
we present several analysis methods to compare the
performance of the six solutions. In the first solution
we form a pair of equations, (6) and (7) from (5). But
we still can form another two pairs of equations from
(5). In further manipulations we still can change the
order of the equation manipulation or variables. These
changes in the order of equation manipulation may affect
the numerical accuracy of final results. The summary of
the features and the singularity of six solutions is listed
in Table I. In the experiments we show the effects of the
order of equation manipulation by preordering the three
input corresponding 2D perspective projection 3D points
in the six different possible permutation.

4.2 The Analysis

In this section we present several analysis methods to
compare the performance of the six solutions. ‘They
include the histogram of the mean absclute error
which will be defined in the experiment section, the
numerical relative and absolute errors, and the drift
of polynomial zeros. We are mainly concerned about
how the manipulation order affects the rounding error
propagation and the computed roots of the polynomial.
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Since both absolute rounding error and relative rounding
error may affect the final accuracy, we consider both
factors.

4.2.1
Zeros

The Sensitivity Analysis of Polynomial

The global accuracy is affected by the side lengths,
the angles at the center of perspectivity with respect
to side lengths, and the permutation order in which
the input data is given. These effects appear in the
coefficients of the computed polynomial and affect the
stability of the zeros of the polynomial. The sensitivity
of the zeros of a polynomial with respect to a change
in the coefficients is best derived by assuming the
zero location is a function of the coefficients (Vlach
and Singhal 1983). Thus for j-th zero z; of the
polynomial P(ag,a1,...,an,2) = an2™ + ... +-a1 +
ap we represent P(ap,ay, ..., an,z(d0, a1, .., 8n))|z=z; =
0. Differentiating with respect to a; gives aP +
8P dz -

HE';‘:;]- — D

|,,.__ZJ = —5-;,-I-|,, =¢; where ag,aq, .5

coefﬁments of the polynomial,
polynomial.

Consider the total sensitivity, S, of all the coeﬁments

on a particular zero. We have S =
P

n ~Fa;
Zamt
positive and negative terms, we take the absolute value
of each term and consider the worst case. We express the

. A large

i ;11;2- e
sensitivity of the zero with respect to the coefficients
may lead to a large error in the final result. Laguerre’s
method is used to find the zeros of polynomial. The
accuracy for the iterative stop criterion is the rounding
error of the machine.

4.2.2 The Numerical Stability

Rearranging the equation gives

an, are the

z; is the j-th. zero of

|I ZJ

To avoid the cancellatlon among

worst sensitivity Syby S

In order to study how large a rounding absolute error
can be produced by the mathematical operation, we
will calculate the worst absolute and relative error
for each kind of arithmetic operation. Hence, the
rounding error produced by a mathematical operation
on two numbers which themselves have rounding error or
truncation error can be found in (Wilkinson 1963). We
define a sequence < OP;,OPa,...,0P,_; > of binary
mathematical operators from the class of addition,
subtraction, multiplication and division applied to a
series of numbers (z),22,...,,) two at a time is given
as OPI“ > (:L,,a.,+1)f(cx s€zipir€r) = i(1+€;0161) where
f is a function of €;,, ez, +,and €,, £ is the result of the
operatlon assuming infinite precision computation and
€total IS the total relative error propagated from the first
operation to the last operation. Hence, £(1+¢€:0ta1) is the
result of the calculation using finite precision. Similarly,

€z, 1s the relative error of z;; €;,,, Is the relative error



of £i44.

We consider the worst case for each operation, iLe.
¢ = 0.5 x 10~ Thus, the worst relative rounding
error(eyrre ) is expressed by €yrre = €101a1 and the worst
absolute rounding error(€yqre) is given by eyare = & x
€total- The €yare and €yrre will be accumulated for each
of the coefficient.

4.2.3 Polynomial Zero Drift

The zero sensitivity helps us to understand how a
permutation of the polynomial coefficients affects the
zeros. The worst relative and absolute error provide
a quantitative measurement of errors. The drift of a
polynomial zero from its correct value depends on both
sensitivity and error variation. Define the normalized
sensitivity S7; of zero with respect to a coefficient by
S5 = %f—f- and the function x z|;=;; = z(ao, a1, ..., an).
Then, the worst normalized sensitivity (Sy,) is given
by Sun = ¥ 1-o|5%]. The polynomial zero drift can
be expressed as dz|.=,; = ) i, gﬁda;. Dividing both
sides of the previous equation by z and in terms of
normalized sensitivity we obtain —“—;‘3{2“5 = SF 'i—“'-
Consider the worst absolute drift case due to the absolute
rounding error (€;uare) We have €yuare = Y 1nglS X
€ware| and the worst relative drift case due to the relative
rounding error (€;urre) We have €,ypmre = 2;;0 ES’;"‘. X
€wrre|- As discused above the final error is expected
in proportion to the value of the worst drift €4y, and

fsware-

5. The Experiments

To characterize the numerical sensitivity of each three
point perspective solution, we performed experiments to
compare the stability of six different 3 point resection
solutions and analyze the Grunert solution.

5.1 Test Data Generation and Permuta-
tion

The coordinates of the vertices of the 3D triangle
are randomly generated by a uniform random number
generator. The range of the x, y, and z coordinates
are within [-25, 25, [-25, 25], and [f + a,b] respectively.
Since the image.plane is located in front of camera at
the distance of focal length, f, the z coordinate must be
larger than the focal length. Soa > 0 and b > f + a.
The a and b are used as parameters to test the solution
under different sets of depth. To permute the test data
assume the original order of vertices is 123 for vertex
one, vertex two and vertex three, respectively, then the
other five permutations are 312, 231, 132, 321, and 213.
The permutation of triangle vertices means permuting in
a consistent way to the 3D triangle side lengths, the 3D
vertices and the corresponding 2D perspective projection
vertices.
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Step 5.1. Calculate the sensitivity of zero w.r.t.

5.2 The Design of Experiments

We summarize the parameters in the experiments dis.
cussed in the section 4 and present the experimental pro.
cedures of experiments. The parameters and methods
involved in accuracy and picking the best permutation
are Ny, the number of trials = 10000, N, the number of
trials = 100000, P, different number of precisions = 2.
d1, the number of the different depths = 2, d3, the num.
ber of the different depths = 3, Su, Sun, €ware, €wrrs |

Esware) and Eswrre-

5.2.1 The Design Procedures

The experimental procedures and the characteristics to
be studied are itemized as follows:

Step 0. Do the following steps N times.

Step 1. Generate the coordinates of vertices of the 3D
triangle. The values of z; coordinate can be
between 1 and 5, 5 and 20, or 25 and 75.

Step 2. For single and double precision do the calcula-
tion.

Step 3. Permutation of the vertices.

Step 4. For any of the resection techniques, determine

the location of the 3D vertices if the calculation
can succeed.

Step 4.1. For any calculation which has succeeded record

the absolute distance error associated with each
permutation. The mean absolute distance error
is defined as €, = 3 7_, & where n is the number
of experiments and ¢; in the Euclidean distance
between the three coordinates of the vertices
and the computed coordinates of the vertices.
The error standard deviation is expressed as

ZT‘__ (fi_fﬁl)z
—
sd = ~—-—-‘=41——-—(n_lJ

The following procedures are only applied to
Grunert’s solution

Step 5.

each
coefficient and total sensitivity for all coefficients
based on the discussion in section 4.2.3.

Step 5.2. Calculate the worst absolute and relative round-

ing error for each coefficient based on the discus-
sion in section 4.2.4. The number of significant
digits is the same as the mantissa representa-
tion of machine for multiplication and division.
For addition and subtraction the possible lost
significant digits in operation must be checked.

Step 5.3. Calculate the polynomial zero drift.
Step 5.4. Record the values of Sy, Sun, €ware,

fwr‘rm
€swrre, Esware fOr each permutation.

Step 5.5. Based on the smallest value of ware, wrre, S,

Swn, sware, or swrre pick the corresponding
error generated by the corresponding permuta-
tion.

Step 6. Redo the whole procedure again by changing N,



to N, and d; to dy and use Grunert’s solution
only. If the largest absolute distance error is
greater than 10-7 redo steps 5 and record the
corresponding values for the large error cases.

6. Results and Discussion

The software is coded in the C language and the
experiments are run on both a Sun 3/280 workstation
and a Vax 8500 computer. Unless stated otherwise, the
results in the following paragraphs are obtained from
the Sun 3/280. Table II shows the results of random
permutation of six different solutions. From Table II
we find that Finsterwalder’s solution gives the best
accuracy and Merritt’s solution gives the worst result.
The reasons for the better results can be explained in
terms of the order of polynomial and the complexity
of computation. Finsterwalder’s solution only needs
to solve a third order polynomial, but Linnainmaa’s
solution generates an eighth order polynomial. The
higher order polynomial calculation tends to be less
numerically stable. However, Merritt’s solution also
converts the fourth order polynomial problem into a
third order polynomial problem, but it gives a worse
result. This is because the conversion process itself is
not the most numerical stable. '

Generally speaking, the double precision results are
about 108 times better than the results of single
precision. Table III shows the best mean absolute
distance error and the worst mean absolute distance
error of six permutations for the double precision.
The best results are about 10% times better than the
worst results. The best permutation of Finsterwalder’s
solution, Grunert’s solution and Fischler’s solution give
the better accuracy.

Because Grunert’s solution has the second best accuracy
and most easy to analyze, we use it to demonstrate how
analysis methods can discriminate the worst and the best
from the six permutations. The analysis methods can be
applied to the other solution techniques as well.

The fraction of times of six selection techniques select
the data permutation giving the best (least) error to
the worst (most) error for 1 < z < 5 is plotted in
the Fig. 2. Obviously the drift of zeros is not affected
by the absolute error or the relative error. The worst
sensitivity does not permit an accurate choice to be made
for the picking order. The worst normalized sensitivity
produces the best results and can effectively stabilize the
calculation of the coefficients of the polynomial. The
absolute drift of polynomial zeros is changed by both
the absolute error of coefficients and the sensitivity of
the polynomial zero with respect to the coefficients.

The comparisons of the mean absolute error of randomly
order, the best, and the worst and of that picked by
the ware, wrre, Sy, Swn, SWITE and sware for two
different depths are shown in Table IV. The goal 1s to
achieve the best accuracy. The accuracy of the best
permutation is about a ten thousand times better than
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the accuracy obtained by the worst case and by arandom
permutation. The Syn, sware, and swrre methods
is approximately 2 times worse than the accuracy of
the best permutation. Hence, any of these three
methods can be used to choose a permutation order
which gives a reasonably good accuracy. However, the
worst normalized sensitivity only involves the sensitivity
calculation, so that it is a good method to quickly
pick the right permutation. Although the histograms of
probability of Syn, sware, and swrre don’t have very high
population around the best pick, they still have a very
accurate ADE compared to the best ADE. This reveals
that in many cases the accuracy of six permutations are
too close to be discriminated.

In order to study the frequency with which singularites
may happen we pick the large error cases whose

'ADE is greater than 10~7, run more trials and add

different depths for Grunert’s technique. There are
two obvious singularities of the Grunert solution. The
first singularity is related to a vanishing dominator in
the formula for u, i.e. cosy = v-cosa. The second
problem might occur on a vanishing of the constant term
Ag in the polynomial, leading to v = 0 as a solution
of the polynomial. In addition to singular cases we
have to deal with very large errors in the vicinity of
singular points in the parameter space. Our task is
to define an objective function on the parameter space,
which allows us to select a parametrization from the
six possible parametrizations, which has the smallest
absolute distance error to the exact solution.

Table V and Table VI whose results are obtained from
the Vax 8500 running VMS operating system contain the
statistics of the absolute distance error of the different
picking methods for the three different depth cases.
Table V is based on the sample of all 100000 experiments.
and Table IV is based on the subsample of large error
cases. The sample size for this cases is about 69 for the
first depths, about 96 for the second depth and about
495 for the large depth. The experiment of one hundred
thousands trials basically gives the similar results. The
Swn, sware, and swrre picking methods are pretty good
in select the right permutation. Table VI shows that
these picking methods do quite well in the larger error
cases. The similar results are also obtained in the Sun
3/280.
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a fourth order polvnomial
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ubic polynomial an 1 |
find the roots of two quadratics
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Table I into cubic l'nanl -
enerate an eighth ) |
order polynomial —_—
o a cubic polynomial and < 1
| find intersection of two quadratics | .
Algorwbms Tecision Mean Absolute Tandazd Deviation
Distance Error
Sol. I (Grunert] D.F. 5 D.16e-06
5.P. 0.31e-01 0.88¢-00
ol 2 [Finsterwalder) DY 0. re
S.P. 0.89¢-02 0.5le-01
Col. § [Merntt T T1le U.bde-04
Table II o= ! 5.P. 0.280.01 115,00
Tol. 4 (Fuchler) D.F. [X T.55e08
S.P. 0.14e-01 0.34e-00
ol DAIDmAs P, 2 e
S.P. 0.32e-01 0.82e00
ol & (Gralacend) P — 0.46e-08 T43e-06
S.P 0,20e-01 0.75e-01




Table III The best and the worst mean absol

distance error in double precision.
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Table IV The comparison of the mean absolute

error of randomly order, ¢
mean absolute distance er

Swy Swn, swrre and sware for two different depths.
PlCEiG‘ mlEOE :[Cln KSM ute DI:I.LIIE! Eﬂ’ﬂl’ Di Iounamg Eﬂﬂr
th T<z<3 1<z <10

:m order U008 U608
TEe best 0.4Te-T7 U 10eTT
worst U.M .gred
T3 11 2
Seers . D0 —
BETY T.
;:n 0- —U38e1T
Iwrre U.30e- 17 T1Te
Tware 135612 T1T=10

he best and the worst and the
ror picked by the ware, wrre,

Table V The same as Table IV. But it runs
100000 trials and with three different depths,

Pickin Depth 1.5 Depth (3... Depth 13575 =
2 J.\lun .AUPL >td. Dev. VMean ADE | 5t3. Dev. Mean ADETStd Uev. |
Handom | 10760y 3 6. TTei AdeTT v Je-D0%
est 1 E 1 0e-00 20leT7 TATeT0 1 T8e 1T 1. 38e- 00
Worst | 15908 | 1 We ™ | el T T30 TEle-0F ERUIDR
WARE | 10608 e b i 2 - Oe-T7 T T1e-T
bde- 4 1019 6 Ie-O7 JBe-] BTe
S ! ;.§§&U§ T3e-08 3 UBe-07 T 3814 He-T9 T1Je-06
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SWARE | T 59e1? Tx0eT9 T66e12 1.1Ve- 10 T Te-10 13708 -
SWRRE T~ oeld [.30e-03 4 T6e-T7 15110 [ 310 [ Tve

Table VI The same as Table V. But it
considers large error cases.
Pick T3 Depth 5. Depth 135,03
— Mean ADE b!t‘l.a v. |Vean Aigh Std. Dev. [Mean ADE [ Std. Dev
Rand; [ J505 | “ITIeDE | T3re- T2 TTe
T 72508 15 2309 | T. TI7e 08| T08e
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WARE 57507 | 1Wels | ZHeUT |1 01e 3 [ 20803 ]
WRREE E0Ze0S [ TT8e04 | 13000 | 15207+ T 7303 |
SW B 2lel6 i T 1307 | 57507 | 1. | 47603
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